GDNF在糖尿病神经病理性疼痛大鼠模型中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:糖尿病的全球发病率高达6-7%,且发病率逐年升高。糖尿病神经病变是糖尿病最常见的长期并发症之一,50%的患者可出现神经病变,其中以感觉神经病变即疼痛性糖尿病神经病变(PDN)最为常见,占16%-26%。PDN患者可因为慢性疼痛而活动减少,出现睡眠障碍和抑郁症状,降低正常工作和其他社会活动的能力,削弱心理和社会功能以及生活质量。而且PDN常难以治疗,目前的治疗策略首先是控制血糖,其次是对症治疗疼痛症状:常用的镇痛药物包括非甾体类抗炎药(NSAIDs),三环类抗抑郁药,选择性5-羟色胺重摄取抑制剂,阿片类药物,抗惊厥药等,一般都有疗效但效果和耐受性较差。
     胶质细胞源性神经生长因子(GDNF)对初级传入神经元具有营养和促进再生作用,而且可能与脊髓背角的伤害性感觉形成有关,一些实验动物模型也证实了GDNF可防止和逆转神经病理性疼痛的某些症状,其作用机制是使TTX敏感性钠离子通道的Ⅲα亚型的表达正常,抑制初级传入神经纤维的异常放电以及对细小伤害性感觉神经元的神经保护作用等,因此在各种疼痛状态中调节GDNF的合成和释放可能是缓解疼痛的有效工具。
     本研究拟观察糖尿病神经病理性疼痛大鼠模型及应用有效镇痛治疗后大鼠DRG中GDNF的表达变化,从而探讨GDNF在糖尿病神经病理性疼痛中的作用,为临床应用神经营养因子制剂治疗PDN提供依据。
     第一部分糖尿病大鼠模型的建立和GDNF的表达变化
     目的:应用链脲霉素(STZ)诱导的糖尿病神经病理性疼痛大鼠模型,观察其背根神经节(DRG)中GDNF的表达变化,从而探讨GDNF在糖尿病神经病理性疼痛中的作用。
     方法:雄性SD大鼠48只,随机分为正常对照组(n=12)和糖尿病组(36只)。糖尿病组大鼠左下腹腔一次性注射STZ 60mg/kg,一周后查血糖16.7mmol以上者列为DM大鼠,同时定期测定并记录大鼠的体重、血糖和机械痛阈;大鼠分别在模型制备后2周、4周处死,取双侧背根神经节进行Western Blot分析。
     结果:79%的DM组大鼠的血糖高于16.7mmol/L,其体重均显著低于对照组大鼠。注射STZ后5天,大鼠即可出现疼痛行为的显著变化,对机械刺激的缩足反射阈值与对照组和基础值均具有显著的统计学差异,直至注射后28天。与同龄大鼠相比,注射STZ2周和4周后DRG中GDNF均发生下调,四周后GDNF的表达略低于两周时,但未见统计学差异。
     结论:糖尿病神经病理性疼痛大鼠模型中,DRG中GDNF的表达出现下调,提示GDNF的改变与神经病理性疼痛形成或维持有关。
     第二部分应用加巴喷丁治疗糖尿病神经病理性疼痛后GDNF的表达变化
     目的:应用治疗疼痛的有效药物,如加巴喷丁,逆转糖尿病神经病理性疼痛大鼠的疼痛行为后观察GDNF的变化,从而推断GDNF在糖尿病神经病理性疼痛中发挥的作用。
     方法:注射STZ的糖尿病大鼠模型,测定痛阈,出现疼痛行为的纳入实验,随机分为四组,每日两次分别腹腔内注射0.9%生理盐水0.6ml,加巴喷丁30mg/kg;加巴喷丁60mg/kg(约0.6ml);或者加巴喷丁120mg/kg(约0.6ml)。每组大鼠在第一次注射药物后,每隔半小时测定其机械痛阈,持续4h。然后所有大鼠每周定时测痛阈、血糖和体重,注药三周后处死,取双侧背根神经节进行Western Blot分析。
     结果:单次给药时,加巴喷丁呈剂量依赖性改善大鼠的疼痛症状。腹腔内注射加巴喷丁60mg/kg或120mg/kg后,60min达作用峰值,持续240min,与生理盐水组存在统计学差异。连续应用加巴喷丁60mg/kg,120mg/kg治疗14天后,大鼠机械痛阈较治疗前有显著改善,这种差异持续至治疗21天。DM大鼠应用加巴喷丁60mg/kg和120mg/kg治疗后,其DRG中GDNF表达显著高于与注射生理盐水组大鼠。
     结论:加巴喷丁60mg/kg和120mg/kg可有效逆转糖尿病大鼠模型的疼痛行为,而疼痛行为改善后,大鼠DRG中的GDNF表达回升,提示GDNF在神经病理性疼痛发生过程中可能具有与加巴喷丁相关的保护性作用。
Background.
     Diabetes mellitus(DM) is a common disorder and has a worldwide prevalence of6-7%. The neuropathies are among the most common of the long-time complications,affecting up to 50% patients with DM. Between 16% and 26% of diabetic patientsexperience chronic pain. This may be referred to as diabetic neuropathic pain (DNP)or painful diabetic neuropathy (PDN). Given that depression and other co-morbiditiesare commonly associated with pain, a broad approach to management is essential. Themechanisms of neuropathic pain are complex and the management is still quitedifficult. Optimisation of glycaemic control is recommended as initial step inmanagement. Tricyclic antidepressant, anticonvulsants, selective serotoninnoradrenaline re-uptake inhibitor are thought to be effective, together with opioidagonist. Irrespective of which treatment is offered, only about one third of patients arelikely to achieve more than 50% pain and many patients only achieve partial relieffrom therapy relief. Further research is needed to improve the diagnosis andmanagement of DPN.
     Neurotrophic factors may play key roles in pathophysiological mechanisms ofhuman neuropathies. GDNF, Glial cell line-derived neurotrophic factor, was found to have potent survival-promoting effects on various types of neurons including primarysensory neurons. Immunohistochemical studies have revealed the existence of GDNFin the superficial layers of spinal cord, an area closely related to pain transmission.GDNF also reversed sensory abnormalities that developed in neuropathic pain models,without affecting pain-related behavior in normal animals, possibly through theregulation of sodium-channel subunits expression in DRG (dorsal root ganglion),reducing ectopic discharge of unmyelinated primary afferents, and preventing DRGneuron daeth. GDNF has been proved to play an important role in the modulation ofnociceptive signals. However, it is not clear whether and how endogenous GDNFcould be involved in the diabetic neuropathic pain model.
     PartⅠ. Expression changes of glial cell line-derivedneurotrophie factor in DRG of streptozotocin-induced diabeticrats
     Objective: To observe changes in the expressions of GDNF (glial cellline-derived neurotrophic factor) in STZ (streptozotocin) induced diabetic rat modelsof neuropathic pain.
     Methods: Forty-eight male Sprague-Dawley rats were randomly divided into
     2 groups: diabetes was induced in 36 rats with a single intraperitoneal injection ofstreptozotocin (60 mg/kg), another 12 rats were selected as controls. Diabetes wasconfirmed 5 days after injection by measurement of blood glucose levels. Tactileallodynia was determined by measuring paw withdrawal in response to probing with aseries of von Frey filaments. The expression of GDNF was examined by Western blotanalysis. The time points of analysis were selected as 2, and 4 weeks after STZinjection. At each time point, six animals of each group were used for every analysis.
     Results: Five days after administration of STZ, glucose level of 79%animals increased up to 16.7mmol/L and remained high after 4 weeks. The weight of DM rats became significantly lower than that of controls by day 5 and did not changesignificantly up to week 4. The thresholds of paw withdrawal in response to themechanical stimulus began to decrease at day 5 and further decreased for more than 4weeks. Two weeks following STZ injection, the GDNF contents in DRG weremarkedly decreased and stayed at lower levels in the following two weeks.
     Conclusions: The present results suggested that the changes of GDNF inthe nociceptive afferent system might contribute to the development and/ormaintenance of painful diabetic neuropathy.
     PartⅡ. Changes of expression of GDNF in DRG ofpainful diabetic rats treated with gabapentin
     Objective: To investigate changes of expression of GDNF in DRG aftergabapentin was administered in STZ-induced diabetic neuropathic pain rats.
     Methods: Painful diabetic neuropathic rats were randomly divided into fourgroups and treated intraperitoneally with gabapentin (30, 60 and 120 mg/kg) or salinerespectively. The withdrawal threshold was measured for the next 4 hours. Then therats were treated twice with gabapentin (30, 60 and 120 mg/kg) or saline respectivelyevery day. And tactile sensitivity was measured every week using von Freymonofilaments following treatment with gabapentin (30, 60 and 120 mg/kg) or saline.Three weeks after gabapentin administration, Rats were sacrificed and Western Blot(n=6 in each group) analyses were used to observe the changes of GDNF expression.
     Results: Gabapentin (60 and 120 mg/kg) produced significant dose-dependentanti-hyperalgesia or anti-allodynia in painful diabetic rats. After treated withGabapentin (60 and 120 mg/kg), the withdrawal threshold of rats was significantlyincreased an hour after injection, and lasted for about 4 hours. Saline and Gabapentin (30 mg/kg) injection had no significant effect on the withdrawal threshold. Comparedto salines controls, rats treated twice daily with gabapentin (60 and 120 mg/kg) hadsignificantly higher von Frey thresholds on day 14 and stayed at higher level until day21. The expressions of GDNF in DRG of rats with gabapentin (60 and 120mg/kg)were markedly higher than that of rats treated with gabapentin30mg/kg orsaline.
     Conclusions: While the hyperalgeia and allodynia of diabetic rats werecompletely reversed by treatment with gabapentin, expression of GDNF in DRGincreased markedly, which indicated the correlation between GDNF and gabapentinein their anti-nociceptive effect.
引文
Abdi S, Lee DH, Chung JM. The anti-allodynic effects of amitriptyline, gabapentin, and lidocaine in a rat model of neuropathic pain. Anesth Analg 1998;87:1360-1366.
    Ahlgren SC, Levine JD. Mechanical hyperalgesia in streptozotocin-diabetic rats. Neuroscience 1993; 52(4): 1049-55.
    Ahlgren SC, White DM, Levine JD. Increased responsiveness of sensory neurons in the saphenous nerve of the streptozotocin-diabetic rat. J Neurophysiol 1992; 68(6):2077-85.
    Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and the rapeutic value. Nature Rev Neurosci 2002; 3:383-394.
    Airavaara M, Mijatovic J, Vihavainen T, et al. In heterozygous GDNF knockout mice the response of striatal dopaminergic system to acute morphine is altered. Synapse 2006; 59(6):321-9.
    Akkina SK, Patterson CL, Wright DE, et al. GDNF rescues nonpeptidergic unmyelinated primary afferents in streptozotocin-treated diabetic mice. Exp Neurol 2001; 167(1): 173-82.
    Anand P. Neurotrophic factors and their receptors in human sensory neuropathies. Prog Brain Res 2004; 146:477-92.
    Anitha M, Chandrasekharan B, Salgado JR, et al. Glial-derived neurotrophic factor modulates enteric neuronal survival and proliferation through neuropeptide Y.Gastroenterology 2006; 131(4): 1164-78.
    Anitha M, Gondha C, Sutliff R, et al. GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest 2006; 116(2):344-56.
    Argoff CE, Backonja MM, Belgrade MJ. Diabetic peripheral neuropathic pain: Consensus guidelines for treatment. J Fam Pract. 2006; 55(6): 1-20.
    Attal N, Brasseur L, Parker F, Chauvin M, et al. Effects of gabapentin on the different components of peripheral and central neuropathic pain syndromes: A pilot study. Eur Neurol 1998; 40:191-200.
    Barde YA. Trophic factors and neuronal survival. Neuron 1989; 2:1525-1534.
    Baydas G, Reiter RJ, Nedzvetskii VS, et al. Melatonin protects the central nervous system of rats against toluene-containing thinner intoxication by reducing reactive gliosis. Toxicol Lett 2003; 137: 169-74.
    Baydas G, Sonkaya E, Tuzcu M, et al. Novel role for gabapentin in neuroprotection of central nervous system in streptozotocine-induced diabetic rats. Acta Pharmacol Sin 2005; 26(4):417-22.
    Bennett DL, Michael GJ, Ramachandran N, et al. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J Neurosci 1998; 18:3059-3072.
    Blumenthal SA. Observations on sodium retention related to insulin treatment of experimental diabetes. Diabetes 1975; 24(7):645-9.
    Boucher TJ, Okuse K, Bennett DL, et al. Potent analgesic effects of GDNF in neuropathic pain states. Science 2000; 290(5489): 124-7.
    Boulton A J, Knight G, Drury J, et al. The prevalence of symptomatic, diabetic neuropathy in an insulin-treated population. Diabetes Care 1985; 8:125-8.
    Boulton AJ. Guidelines for diagnosis and outpatient management of diabetic peripheral neuropathy. European Association for the Study of Diabetes, Neurodiab. Diabetes Metab 1998; 24 Suppl 3:55-65.
    Boulton AJM, Vinik AI, Arezzo JC, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 2005; 28:956-962.
    Bradbury EJ, Khemani S, Von R, et al. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur J Neurosci 1999; 11(11):3873-83.
    Buj-Bello A, Buchman VL, HortonA, et al. GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 1995; 15:821-828.
    Burchiel KJ, Russell LC, Lee RP, et al. Spontaneous activity of primary afferent neurons in diabetic BB/Wistar rats: A possible mechanism of chronic diabetic neuropathic pain. Diabetes 1985; 34(11): 1210-3.
    Cesena RM, Calcutt NA. Gabapentin prevents hyperalgesia during the formalin test in diabetic rats. Neurosci Lett 1999; 262(2): 101-4.
    Chan A, MacFarlane IA, Bowsher D, et al. Chronic pain in patients with diabetes mellitus: comparison with a non-diabetic population. Pain Clinic 1990; 3:147-59.
    Chapman V, Suzuki R, Chamarette HL, et al. Effects of systemic carbamazepine and gabapentin on spinal neuronal responses in spinal nerve ligated rats. Pain 1998; 75:261-272.
    Chen SR, Pan HL. Effect of systemic and intrathecal gabapentin on allodynia in a new rat model of postherpetic neuralgia. Brain Research 2005; 1042:108-113.
    Chong MS, Hester J. Diabetic painful neuropathy: current and future treatment options. Drugs 2007; 67(4):569-85.
    Christianson JA, Riekhof JT, Wright DE. Restorative effects of neurotrophin treatment on diabetes-induced cutaneous axon loss in mice. Exp Neurol. 2003(b);179(2):188-99.
    Christianson JA, Ryals JM, McCarson KE, et al. Beneficial actions of neurotrophin treatment on diabetes-induced hypoalgesia in mice. J Pain 2003 (a);4(9):493-504.
    Coderre TJ, Katz J, Vaccarino AL, Melzack R: Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 1993; 52:259-285.
    Colombo B, Annovazzi POL, Comi G. Medications for neuropathic pain: current trends. Neurol Sci 2006; 27:S183-S189.
    Courteix CE, Eschalier A, Lavarenne J. Streptozotocin-induced diabetic rats: Behavioural evidence for a model of chronic pain. Pain 1993; 53:81-8.
    Cummins TR, Waxman SG. Downregulation of tetrodotoxinresistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 1997; 17:3503-3514.
    Devor M, Seltzer Z. Pathophysiology of damaged nerves in relation to chronic pain. Textbook of Pain, ed No4. Edited by Wall PD, Melzack R. London: Churchill Livingstone; 1999:129-164.
    Devor M, Wall PD, Catalan N. Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain 1992; 48:261-268.
    Dogrul A, Gul H, Yildiz O, et al. Cannabinoids blocks tactile allodynia in diabetic mice without attenuation of its antinociceptive effect. Neurosci Lett 2004; 368(1):82-6.
    Dong ZQ, Ma F, Xie H, et al. Down-regulation of GFRalpha-1 expression by antisense oligodeoxynucleotide attenuates electroacupuncture analgesia on heat hyperalgesia in a rat model ofneuropathic pain. Brain Res Bull 2006; 69(1):30-6.
    Dong ZQ, Wang YQ, Ma F, et al. Down-regulation of GFRalpha-1 expression by antisense oligodeoxynucleotide aggravates thermal hyperalgesia in a rat model of neuropathic pain. Neuropharmacology 2006; 50(4):393-403.
    Duby JJ, Campbell RK, Setter SM, et al. Diabetic neuropathy: an intensive review. Am J Health-Syst Pharm 2004; 61:160-76.
    Durbec P, Marcos-Gutierrez CV, Kilkenny C, et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature 1996;381:789-793.
    England JD, Gould JH. Neuropathic pain. Adv Neurol 2002; 88:147-57.
    Ercel E, Baydas G, Akyol A, et al. The effect of vitamin E on the sciatic nerve lipid peroxidation in streptozotocin induced diabetes mellitus. Biomed Res 1999; 10:95-101.
    Fang M, Wang Y, Liu HX, et al. Decreased GDNF mRNA expression in dorsal spinal cord of unilateral arthritic rat. Neuroreport 2000; 11(4):737-41.
    Fedele D, Giugliano D. Peripheral diabetic neuropathy. Current recommendations and future prospects for its prevention and management. Drugs 1997; 54(3):414-421.
    Field MJ, Oles RJ, Lewis AS, et al. Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br J Pharmacol 1997; 121:1513-1522.
    Fink K, Dooley D J, Meder WP, et al. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology 2002; 42: 229-36.
    Fjell J, Cummins TR, Dib-Hajj SD, et al. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. Brain Res Mol Brain Res 1999; 67:267-282.
    Freiman TM, Kukolja J, Heinemeyer J, et al. Modulation of K+-evoked [3H]-noradrenaline release from rat and human brain slices by gabapentin: involvement of KATP channels. Naunyn Schmiedebergs Arch Pharmacol. 2001;363(5):537-42.
    Gee NS, Brown JP, Dissanayake VU, et al. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 1996; 271(10):5768-76.
    Gillian CH, Dawn C, David Petal. Epidemiology and treatment of neuropathic pain: The UK primary care perspective. Pain 2006; 122:156-162.
    Gillin S, Sorkin LS. Gabapentin reverses the allodynia produced by the administration of anti-GD2 ganglioside, an immunotherapeutic drug. Anesth Analg 1998; 86:111-116.
    Gilron I, Flatters SJ. Gabapentin and pregabalin for the treatment of neuropathic pain: A review of laboratory and clinical evidence. Pain Res Manag 2006; 11(Suppl A):16A-29A.
    Gu Y, Huang LY. Gabapentin actions on N-methyl-D-aspartate receptor channels are protein kinase C-dependent. Pain 2001;93(1):85-92.
    Gul H, Yildiz O, Dogrul A, et al.The interaction between IL-1 beta and morphine: possible mechanisms of the deficiency of the morphine-induced analgesia in diabetic mice. Pain 2000; 15:39-45.
    Gupta M, Singh J, Sood S, Arora B. Mechanism of antinociceptive effect of nimodipine in experimental diabetic neuropathic pain. Methods Find Exp Clin Pharmacol 2003; 25: 49-52.
    Harris MI, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988-1994. Diabetes Care 1998; 21:518-524.
    Holstege JC, Jongen JL, Kennis JH, et al. Immunocytochemical localization of GDNF in primary afferents of the lumbar dorsal horn. Neuroreport 1998; 9(12):2893-7.
    Honda K, Koguchi M, Koga K, et al. Contribution of ca2+-dependent protein kinase C in the spinal cord to the development of mechanical allodynia in diabetic mice. Biol Pharm Bull 2007; 30(5):990-3.
    Hoseini SS, Hoseini M, Gharibzadeh S. Sprouting phenomenon, a new model for the role of A-beta fibers in wind up. Med Hypotheses 2006;66(4):805-7.
    Hounsom L, Tomlinson D R. Does neuropathy develop in animal models? Clin Neurol Sci 1997;4:380-389.
    Huizinga MM, Rothman RL. Addressing the diabetes pandemic: a comprehensive approach. Indian J Med Res 2006; 124(5):481-4.
    Hunter JC, Gogas KR, Hedley LR, et al.The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 1997; 324:153-160.
    Hwang JH, Yaksh TL. Effect of subarachnoid gabapentin on tactile-evoked allodynia in a surgically induced neuropathic pain model in the rat. Reg Anesth 1997; 22(3):249-56.
    Jing S, Wen D, Yu Y, et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 1996; 85:1113-1124.
    Jongen JL, Haasdijk ED, Sabel-Goedknegt H, et al. Intrathecal injection of GDNF and BDNF induces immediate early gene expression in rat spinal dorsal horn. Exp Neurol 2005; 194(1):255-66.
    Kamei J, Ohhashi Y, Aoki T, et al. Streptozotocin-induced diabetes in mice reduced the nociceptive threshold,as recognized after application of noxious mechanical stimuli but not of thermal stimuli. Pharmacol Biochem Behav 1991; 39:541-544.
    Kamei J, Zushida K, Morita K, et al. Role of vanilloid VR1 receptor in thermal allodynia and hyperalgesia in diabetic mice. Eur J Pharmacol 2001; (422)83-86.
    Klugbauer N, Marais E, Hofmann F. Calcium channel alpha2delta subunits: differential expression, function, and drug binding. J Bioenerg Biomembr 2003; 35(6):639-47.
    Kuraishia Y, Takasakia I, Nojimaa H, et al. Effects of the suppression of acute herpetic pain by gabapentin and amitriptyline on the incidence of delayed postherpetic pain in mice. Life Sciences 2004; 74:2619-2626.
    Lee JH, Cox DJ, Mook DG, et al. Effect of hyperglycemia on pain threshold in alloxan-diabetic rats. Pain. 1990; 40(1): 105-7.
    Lewin G.R and Barde YA. Physiology of the neurotrophins, Annu Rev Neurosci 1996; 19:289-317.
    Li F, Obrosova IG, Abatan O, et al. Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats. Am J Physiol Endocrinol Metab 2005; 288(1):E29-36.
    Li S, Xu B, Martin D. Glial cell line-derived neurotrophic factor modulates kindling and activation-induced sprouting in hippocampus of adult rats. Exp Neurol 2002; 178(1):49-58.
    Lin LF, Doherty DH, Lile JD, et al. GDNF:a glial cell line-derived neurotrophic factor form midbrain dopaminergic neurons. Science 1993; 260:1130-1132.
    Luo ZD, Calcutt NA, Higuera ES, et al. Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 2002; 303(3): 1199-205.
    Macias MY, Syring MB, Pizzi MA, et al. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury. Exp Neurol 2006; 201(2):335-48.
    Malcangio M, Getting SJ, Grist J, et al. A novel control mechanism based on GDNF modulation of somatostatin release from sensory neurones. FASEB J 2002; 16(7):730-2.
    Malcangio M, Tomlinson DR. A pharmacologic analysis of mechanical hyperalgesia in streptozotocin/diabetic rats. Pain 1998; 76(1-2): 151-7.
    Malcangio M. GDNF and somatostatin in sensory neurones. Curr Opin Pharmacol 2003; 3(1):41-5.
    Malin SA, Molliver DC, Koerber HR, et al. Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J Neurosci 2006; 26(33):8588-99.
    Matthews EA, Dickenson AH. A combination of gabapentin and morphine mediates enhanced inhibitory effects on dorsal horn neuronal responses in a rat model of neuropathy. Anesthesiology 2002; 96:633-40.
    Merskey H. Logic, truth and language in concepts of pain. Qual Life Res 1994;3 Suppl 1: S69-76.
    Michael GJ, Averill S, Nitkunan A, et al. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord.J. Neurosci. 1997;17: 8476-8490.
    Miki S, Yoshinaga N, Iwamoto T, et al. Antinociceptive effect of the novel compound OT-7100 in a diabetic neuropathy model. Eur J Pharmacol 2001; 430(2-3):229-34.
    Mixcoatl-Zecuatl T, Medina-Santillan R, Reyes-Garcia Get al. Effect of K+ channel modulators on the antiallodynic effect of gabapentin. Eur J Pharmacol 2004; 484:201-208.
    Mokdad AH, et al. The continuing increase of diabetes in the US [letter]. Diabetes Care 2001; 24:412.
    Mount H J, Dean DO, Alberch J, et al. Glial cell line-derived neurotrophic factor promotes the survival and morphologic differentiation of Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America 1995; 92; 9092-9096.
    Nagano M, Sakai A, Takahashi N, et al. Decreased expression of glial cell line-derived neurotrophic factor signaling in rat models of neuropathic pain. Br J Pharmacol. 2003; 140(7): 1252-60.
    Nomura H, Furuta A, Iwaki T. Dorsal root rupture injury induces extension of astrocytic processes into the peripheral nervous system and expression of GDNF in astrocytes, Brain Res 2002; 95: 21-30.
    O'Hare JA, Abuaisha F, Geoghegan M. Prevalence and forms of neuropathic morbidity in 800 diabetics. Ir JMed Sci 1994; 163:132-5.
    Ohta K, Inokuchi T, Gen E, et al. Ultrastructural study of anterograde transport of glial cell line-derived neurotrophic factor from dorsal root ganglion neurons of rats towards the nerve terminal. Cells Tissues Organs 2001; 169(4):410-21.
    Omana-Zapata I, Khabbaz MA, Hunter JC, Clarke DE, Bley KR. Tetrodotoxin inhibits neuropathic ectopic activity in neuromas, dorsal root ganglia and dorsal horn neurons. Pain 1997; 72:41-49.
    Pan HL, Eisenach JC, Chen SR. Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats. J Pharmacol Exp Ther 1999; 288(3):1026-30.
    Partridge BJ, Chaplan SR, Sakamoto E, et al. Characterization of the effects of gabapentin and 3-isobutyl-gamma-aminobutyric acid on substance P induced thermal hyperalgesia. Anesthesiology 1998; 88:196-205
    Paveliev M, Airaksinen MS, Saarma M. GDNF family ligands activate multiple events during axonal growth in mature sensory neurons. Mol Cell Neurosci 2004; 25: 453-459.
    Pezet S, Krzyzanowska A, Wong LF, et al. Reversal of neurochemical changes and pain-related behavior in a model of neuropathic pain using modified lentiviral vectors expressing GDNF. Mol Ther 2006; 13(6): 1101-9.
    Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord. Nature 2000; 403:312-316.
    Rashid MH, Ueda H. Nonopioid and neuropathy-specific analgesic action of the nootropic drug nefiracetam in mice. J. Pharmacol Exp Ther 2002; 303:226-231.
    Rind HB, von Bartheld CS. Anterograde axonal transport of internalized GDNF in sensory and motor neurons. Neuroreport 2002; 13(5):659-64.
    Rosenberg JM, Harrell C, Ristic H, et al. The effect of gabapentin on neuropathic pain. Clin J Pain 1997;13:251-255.
    Rosner H, Rubin L, Kestenbaum A. Gabapentin adjunctive therapy in neuropathic pain states. Clin J Pain 1996;12:56-58.
    Rothstein JD, Kuncl RW. Neuroprotective strategies in a model of chronic glutamate-mediated motor neuron toxicity. J Neurochem 1995; 65:643-51.
    Ruiz G, Ceballos D, Banos JE. Behavioral and histological effects of endoneurial administration of nerve growth factor: possible implications in neuropathic pain. Brain Res 2004; 1011(1):1-6.
    Schmader KE. Epidemiology and impact on quality of life of postherpetic neuralgia and painful diabetic neuropathy. Clin J Pain 2002; 18:350-4.
    Shimoyama M, Shimoyama N, Hori Y. Gabapentin affects glutamatergic excitatory neurotransmission in the rat dorsal hom. Pain 2000;85:405-414.
    Sills GJ. The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol 2006; 6(1): 108-13.
    Sima AAF, Sugimoto K. Experimental diabetic neuropathy: An update. Diabetologia 1999; 42:773-88.
    Sindrup SH, Jensen TS. Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 1999; 83(3):389-400.
    Singh L, Field MJ, Ferris P, et al. The antiepileptic agent gabapentin (neurontin) possesses anxiolytic-like and antinociceptive actions that are reversed by D-serine. Psychopharmacology 1996; 127: 1-9.
    Spencer DA. From pain cost to opportunity economy cost: the eclipse of the quality of work as a factor in economic theory. History of political economy 2004; 36:387-400.
    Stover T, Gong TL, Cho Y, et al. Expression of the GDNF family members and their receptors in the mature rat cochlea, Brain Res. Mol. Brain Res 2000;76: 25-35.
    Takahashi N, Nagano M, Suzuki H, et al. Expression changes of glial cell line-derived neurotrophic factor in a rat model of neuropathic pain. J Med Dent Sci 2003; 50(1):87-92.
    Terence JC, Naresh K, Celeste D L. Evidence that gabapentin reduces neuropathic pain by inhibiting the spinal release of glutamate. Journal of Neurochemistry 2005;94, 1131-1139.
    Vinik E J, Hayes RP, Oglesby A, et al. The development and validation of the Norfolk QOL-DN, a new measure of patients' perception of the effects of diabetes and diabetic neuropathy. Diabetes Technol Ther 2005; 7:497-508.
    Wamil AW, McLean MJ. Limitation by gabapentin of high frequency action potential firing by mouse central neurons in cell culture. Epilepsy Res 1994; 17:1-11.
    Wang R, Guo W, Ossipov MH,et al. Glial cell line-derived neurotrophic factor normalizes neurochemical changes in injured dorsal root ganglion neurons and prevents the expression of experimental neuropathic pain. Neuroscience 2003;121: 815-824.
    Waxman SG: The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain 1999; suppl6: S133-S140.
    Werner MU, Perkins FM, Holte K, et al. Effects of gabapentin in acute inflammatory pain in humans. Reg Anesth Pain Med 2001; 26:322-328
    Zhao Z, et al. Overexpression of glial cell line-derived neurotrophic factor in the CNS rescues motoneurons from programmed cell death and promotes their long-term survival following axotomy. Exp Neurol 2004; 190:356-372.
    Aaron IV. Diabetic neuropathy: pathogenesis and therapy. Am J Med 1999; 107(2B): 17S-26S.
    Abdi S, Lee DH, Chung JM. The anti-allodynic effects of amitriptyline, gabapentin, and lidocaine in a rat model of neuropathic pain. Anesth Analg 1998; 87:1360-1366.
    Adler AI, Boyko EJ, Ahroni JH, et al. Risk factors for diabetic peripheral sensory neuropathy: results of the Seattle Prospective Diabetic Foot Study. Diabetes Care 1997; 20:1162-1167.
    Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and the rapeutic value. Nature Rev Neurosci. 2002; 3:383-394.
    Ando H, Takamura T, Nagai Y, et al. Erythrocyte sorbitol level as a predictor of the efficacy of epalrestat treatment for diabetic peripheral polyneuropathy. J Diabetes Complications. 2006; 20(6):367-70.
    Apfel SC. Neurotrophic factors in peripheral neuropathies: therapeutic implications. Brain Pathol 1999; 9(2):393.
    Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physician 2005; 71:2123-2128.
    Asbury AK, Fields HL. Pain due to peripheral nerve damage: an hypothesis. Neurology 1984; 34:1587-1590.
    Backonja M, Beydoun A, Edwards KR, et al. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 1998; 280:1831-1836.
    Bansal V, Kalita J, Misra UK. Diabetic neuropathy. Postgrad Med J 2006; 82(964):95-100.
    Bedlack RS,Edelman D,Gibbs JW 3rd, et al. APOE genotype is a risk factor for neuropathy severity in diabetic patients. Neurology. 2003; 60(6): 1022-4.
    Bennett DH, Michael GJ, Ramachandran N, et al. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J Neurosci 1998; 18 (8): 3059-3072.
    Biesbroeck R, Bril V, Hollander P, et al. A double-blind comp;arison of topical cap-saicin and oral amitriptyline in painful diabetic neuropathy. Adv Ther 1995; 12:111-120.
    Biessels GJ, ter Laak MP, Hamers FP, et al. Neuronal Ca2+ disregulation in diabetes mellitus. Eur J Pharmacol 2002; 447(2-3):201-9.
    Bird SJ, Brown MJ, Spino C, et al. Value of repeated measures of nerve conduction and quantitative sensory testing in a diabetic neuropathy trial. Muscle Nerve 2006; 34:214-224.
    Boucher TJ, Okuse K, Bennett DL, et al. Potent analgesic effects of GDNF in neuropathic pain states. Science 2000; 290(5489): 124-7.
    Boulton AJM, Malik RA, Arezzo JC, et al. Diabetic somatic neuropathies. Diabetes Care 2004; 27:1458-1486
    Boulton AJM, Vinik AI, Arezzo JC, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 2005; 28:956-962.
    Boulton AJM. Treatment of prediabetic neuropathy. Curr Diabetes Rep 2006; 6:415-416.
    Britland ST, Young RJ, Sharma AK et al. Acute remitting painful diabetic polyneuropathy: a comparison of peripheral nerve fibre pathology. Pain 1992; 48:361-370.
    Brown AF, Mangione CM, Saliba D, et al. Guidelines for improving the care of the older person with diabetes mellitus. J Am Geriatr Soc 2003; 51(Suppl):S265-80.
    Buj-Bello A, BuchmanVL, HortonA, et al. GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 1995; 15:821-828.
    Calcutt NA, Freshwater JD, Hauptmann N, et al. Protection of sensory function in diabetic rats by Neotrofin. Eur J Pharmacol 2006; 18;534(1-3): 187-93.
    Cameron NE, Cotter MA. Effects of antioxidants on nerve and vascular dysfunction in experimental diabetes. Diabetes Res Clin Pract 1999; 45(2-3): 137-146.
    Caputo GM, Cavanagh PR, Ulbrecht JS, et al. Assessment and management of foot disease in patients with diabetes. N Engl J Med 1994; 331:854-860.
    Cesena RM, Calcutt NA. Gabapentin prevents hyperalgesia during the formalin test in diabetic rats. Neurosci Let. 1999; 262(2): 101-4.
    Chad DA, Aronin N, Lundstrom R, et al. Does capsaicin relieve the pain of diabetic neuropathy? Pain 1990; 42:387-388.
    Chakrabarti AK, Samantaray SK. Diabetic peripheral neuropathy: nerve conduction studies before, during and after carbamazepine therapy. Aust N Z J Med 1976; 6:565-568.
    Chapman V, Suzuki R, Chamarette HL, et al. Effects of systemic carbamazepine and gabapentin on spinal neuronal responses in spinal nerve ligated rats. Pain 1998; 75:261-72.
    Chung SS, Chung SK. Genetic analysis of aldose reductase in diabetic complications. Curr Med Chem. 2003; 10(15):1375-87.
    Chung SS, Ho EC, Lam KS, et al. Contribution ofpolyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 2003; 14 (Suppl 3):S233.
    Corbett CF. Practical management of patients with painful diabetic neuropathy. Diabetes Educ 2005;31:523-524.
    Coste T, Pierlovisi M, Leonardi J, et al. Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na~+-K~+-ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats. J Nutr Biochem. 1999; 10(7):411-20.
    Courteix C, Bardin M, Chantelauze C, et al. Study of the sensitivity of the diabetes-induced pain model in rats to a range of analgesics. Pain 1994; 57(2):153-60.
    Davis JL, Lewis SB, Gerich JE, et al. Peripheral diabetic neuropathy treated with amitriptyline and fluphenazine. JAMA 1977; 238:2291-2292.
    Davis JL, Smith RL. Painful peripheral diabetic neuropathy treated with venlafaxine HCl extended release capsules. Diabetes Care 1999; 22:1909-1910.
    Dejong RN. CNS manifestations of diabetes mellitus. Postgrad Med 1977; 61:101-107.
    DeToledo JC, Toledo C, DeCerce J, et al. Changes in body weight with chronic, high-dose gabapentin therapy. Ther Drug Monit 1997; 19:394-396.
    Durbec P, Marcos-Gutierrez CV, Kilkenny C, et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature 1996; 381:789-793.
    Eaton S, Harris ND, Rajbhandari SM, et al. Spinal cord involvement in diabetic peripheral neuropathy. Lancet 2001; 358:35-36.
    Eisenberg E, Alon N, Ishay A, et al. Lamotrigine in the treatment of painful diabetic neuropathy. Eur J Neurol 1998; 5:167-173.
    Eisenberg E, Lurie Y, Braker C, et al. Lamotrigine reduces painful diabetic neuropathy: a randomized, controlled study. Neurology 2001; 57:505-509.
    El-Kabbani O,Ruiz F, Darmanin C, et al. Aldose reductase structures: implications for mechanism and inhibition. Cell Mol Life Sci. 2004; 61(7-8):750-62.
    Fernstrom MH, Kupfer DJ. Antidepressantinduced weight gain: a comparison study of four medications. Psychiatry Res 1988; 26:265-271.
    Field M J, Oles RJ, Lewis AS, et al. Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br J Pharmacol 1997; 121:1513-1522.
    Finnerup NB, Otto M, McQuay HJ, et al. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 2005; 118:289-305.
    Galer BS, Gianas A, Jensen MP. Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract 2000; 47:123-128.
    Garrow AP, Boulton AJM. Vibration perception threshold: a valuable assessment of neural dysfunction in people with diabetes. Diabetes Metab Res Rev 2006; 22:411-419
    Gibbons CH, Griffin JW, Polydefkis M, et al. The utility of skin biopsy for prediction of progression in suspected small fiber neuropathy. Neurology 2006; 66:256-258.
    Glassman AH, Roose SP, Bigger JT. The safety of tricyclic antidepressants in cardiac patients: risk-benefit reconsidered. JAMA 1993; 269:2673-2675.
    Golden JP, DeMaro JA, Osborne PA, et al. Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mous e. Exp. Neurol 1999; 158:504-528.
    Goldstein DJ, Lu Y, Detke MJ, et al. Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain 2005; 116:109-118.
    Gomez-Perez FJ, Choza R, Rios JM, et al. Nortriptylinefluphenazine vs. carbamazepine in the symptomatic treatment of diabetic neuropathy. Arch Med Res 1996; 27:525-529.
    Gordon Smith A, Robinson Singleton J. Idiopathic neuropathy, prediabetes and the metabolic syndrome. J Neurol Sci 2006; 242:9-14.
    Gorson KC, Schott C, Herman R, et al. Gabapentin in the treatment of painful diabetic neuropathy: a placebo controlled, double blind, crossover trial. J Neurol Neurosurg Psychiatry 1999; 66:251-252.
    Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase inhibition on nerve conduction and morphine in diabetic neuropathy. Zenarestat Study Group. Neurology 1999; 53 (3):580-91.
    Greene DA,Sima AA,Stevens MJ, et al. Complications: neuropathy, pathogenetic considerations. Diabetes Care. 1992; 15(12): 1902-25.
    Gupta M, Singh J, Sood S, Arora B. Mechanism of antinociceptive effect of nimodipine in experimental diabetic neuropathic pain. Methods Find Exp Clin Pharmacol 2003; 25(1):49-52.
    Hamada Y, Nakamura J. Clinical potential of aldose reductase inhibitors in diabetic neuropathy. Treat Endocrinol. 2004; 3(4):245-55.
    Harati Y. Diabetic neuropathies: unanswered questions. Neurol Clin. 2007; 25(1):303-17.
    Head RJ, McLennan PL, Raederstorff D, et al. Prevention of nerve conduction deficit in diabetic rats by polyunsaturated fatty acids. Am J Clin Nutr. 2000; 71(1 Suppl): 386S-92S.
    Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001; 88:E14-E22.
    Holstege JC, Jongen JL, Kennis JH, et al. Immunocytochemical localization of GDNF in primary afferents of the lumbar dorsal horn. Neuro report 1998; 9:2893-2897.
    Hossain P, Sachdev A, Malik RA. Early detection of diabetic peripheral neuropathy with corneal confocal microscopy. Lancet 2005; 366:1340-1343.
    Hotta N, Akanuma Y, Kawamori R, et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3year, multicentre, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care 2006; 29:1538-1544.
    Hunter JC, Gogas KR, Hedley LR, et al.The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 1997; 324:153-160.
    Huvers FC, De Leeuw PW, Houben AJ, et al. Endothelium-dependent vasodilatation, plasma markers of endothelial function, and adrenergic vasoconstrictor responses in type 1 diabetes under near-normoglycemic conditions. Diabetes. 1999;48:1300-1307.
    Jing S, Wen D, Yu Y, et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNE Cell 1996; 85:1113-1124.
    Kallinikos P, Berhanu M, O'Donnell C, et al. Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci 2004; 45:418-422.
    Kamei J, Mizoguchi H, Narita M, et al. Therapeutic potential of PKC inhibitors in painful diabetic neuropathy. Expert Opin Investig Drugs 2001; 10:1653-1664.
    Kapur D. Neuropathic pain and diabetes. Diabetes Metab Res Rev 2003; 19:S9-S15.
    Kawamoto Y, Nakamura S, Matsuo A, et al. Immunohistochemical localization of glial cell line-derived neurotrophic factor in the human central nervous system. Neurosci 2000;100:701-712.
    Kochar DK, Rawat N, Agrawal RP, et al. Sodium valproate for painful diabetic neuropathy: a randomized double-blind placebo-controlled study. QJM 2004; 97:33-38.
    Krebdel DA, Costigan DA, Hospkina LC. Successful treatment of neuropathies in patients with diabetes mellitus. Arch Neurol 1995; 52:1053-1061.
    Kuraishia Y, Takasakia I, Nojimaa H, et al. Effects of the suppression of acute herpetic pain by gabapentin and amitriptyline on the incidence of delayed postherpetic pain in mice. Life Sciences 2004;74:2619-2626.
    Lesser H, Sharma U, LaMoreaux L, et al. Pregabalin relieves symptoms of painful diabetic neuropathy: a randomized controlled trial. Neurology 2004; 63:2104-2110.
    Li LX, Wu WT, Lin LH, et al. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 9771-9775.
    Lin LF, Doherty DH, Lile JD, et al. GDNF:a glial cell line-derived neurotrophic factor form midbrain dopaminergic neurons. Science 1993; 260:1130-1132.
    Lindner MD, Bourin C, Chen P, et al. Adverse effects of gabapentin and lack of anti-allodynic efficacy of amitriptyline in the streptozotocin model of painful diabetic neuropathy. Exp Clin Psychopharmacol. 2006; 14(1):42-51.
    Litchy WJ, O'Brien PC. Double-blind, placebocontrolled study of the application of capsaicin cream in chronic distal painful polyneuropathy. Pain 1995; 62:163-168.
    Llewelyn JG, Gilbey SG, Thomas PK, et al. Sural nerve morphometry in diabetic autonomic and painful sensory neuropathy: a clinicopathological study. Brain 1991; 114:867-892.
    Malik RA, Kallinikos P, Abbott CA, et al. Corneal confocal microscopy: a noninvasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 2003; 46:683-688.
    Maneuf YP, Blake R, Andrews NA, et al. Reduction by gabapentin of K+-evoked release of [3H]-glutamate from the caudal trigeminal nucleus of the streptozotocin-treated rat. Br J Pharmacol. 2004; 141 (4):574-9.
    Marchettini P, Teloni L, Formaglio F, et al. Pain in diabetic neuropathy case study: whole patient management. Eur J Neurol. 2004; 11 Suppl1:12-21.
    Martin CL, Albers J, Herman WH, et al. Neuropathy among the diabetes control and complications trial cohort 8 years after trial completion. Diabetes Care 2006; 29:340-344.
    Matthews EA, Dickenson AH. A combination of gabapentin and morphine mediates enhanced inhibitory effects on dorsal horn neuronal responses in a rat model of neuropathy. Anesthesiology 2002; 96:633-40.
    Max MB, Culnane M, Schafer SC, et al. Amitriptyline relieves diabetic neuropathy pain in patients with normal or depressed mood. Neurology 1987; 37:589-596.
    Max MB, Lynch SA, Muir J, et al. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N Engl J Med 1992; 326:1250-1256.
    McQuay HJ, Carroll D, Glynn CJ. Dose response for analgesic effect of amitriptyline in chronic pain. Anaesthesia 1993; 48:281-285.
    McQuay HJ, Tramer M, Nye BA, et al. A systematic review of antidepressants in neuropathic pain. Pain 1996; 68:217-227.
    Molliver DC, Wright DE, L eitner ML, et al. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 1997:19:849-861.
    Morello CM, Leckband SG, Stoner CP, et al. Randomized double-blind study comparing the efficacy of gabapentin with amitriptyline on diabetic peripheral neuropathy pain. Arch Intern Med 1999; 159:1931-1937.
    Mount H J, Dean DO, Alberch J, et al. Glial cell line-derived neurotrophic factor promotes the survival and morphologic differentiation of Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America 1995; 92; 9092-9096.
    Nagano M, Sakai A, Takahashi N, et al. Decreased expression of glial cell line-derived neurotrophic factor signaling in rat models of neuropathic pain. Br J Pharmacol 2003; 140(7): 1252-60.
    Oates PJ. Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol 2002; 50:325-92.
    Obrosova IG, Van Huysen C, Fathallah L, et al. An aldose reductase inhibitor reverses early diabetes -induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J 2002; 16(1):123-5.
    Otto M, Bach FW, Jensen TS, et al. Valproic acid has no effect on pain in polyneuropathy: a randomized, controlled trial. Neurology 2004; 62: 285-288.
    Oyibo S, Prasad YD, Jackson NJ, et al. The relationship between blood glucose excursions and painful diabetic peripheral neuropathy: a pilot study. Diabetic Med 2002; 19:870-873.
    Partanen J, Niskanen L, Lehtinen J, et al. Natural history of peripheral neuropathy in patients with noninsulin-dependent diabetes mellitus. N Engl J Med 1995; 333:89-94.
    Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973 (author's translation). Diabetes Metab 1977; 3:245-256.
    Polydefkis M, Hauer P, Griffin JE, McArthur JC. Skin biopsy as a tool to assess distal small fibre innervation in diabetic neuropathy. Diabetes Yechnol Ther 2001; 3:23-28.
    Raskin P, Donofrio PD, Rosenthal NR, et al. Topiramate vs placebo in painful diabetic neuropathy: analgesic and metabolic effects. Neurology 2004; 63:865-873.
    Richter RW, Portenoy R, Sharma U, et al. Relief of painful diabetic peripheral neuropathy with pregabalin: a randomized, placebo-controlled trial. J Pain 2005; 6:253-260.
    Rosenstock J, Tuchman M, LaMoreaux L, et al. Pregabalin for the treatment of painful diabetic peripheral neuropathy: a double-blind, placebo-controlled trial. Pain 2004; 110:628-638.
    Ross MA. Neuropathies associated with diabetes. Med Clin North Am. 1993; 77(1):111-24.
    Rowbotham MC, Goli V, Kunz NR, et al. Venlafaxine extended release in the treatment of painful diabetic neuropathy: a double-blind, placebo-controlled study. Pain 2004; 110:697-706.
    Rull JA, Quibrera R, Gonzalez-Millan H, et al. Symptomatic treatment of peripheral diabetic neuropathy with carbamazepine (Tegretol): double blind crossover trial. Diabetologia 1969; 5:215-218.
    Said G, Goulon GC, Lacroix C, et al. Nerve biopsy finding in different patterns of proximal diabetic neuropathy. Ann Neurol 1994;35:559-569
    Sanchez-Ramirez GM, Caram-Salas NL, Rocha-Gonzalez HI, et al. Benfotiamine relieves inflammatory and neuropathic pain in rats. Eur J Pharmacol 2006; 530(1-2): 48-53.
    Selvarajah D, Wilkinson DA, Emery CJ, et al. Spinal cord atrophy in diabetic neuropathy, a comparison with healthy volunteers and hereditary sensory motor neuropathy. Diabetologia 2004; 47(Suppl 1): A35.
    Shutov L, Kruglikov I, Gryshchenko O, et al. The effect of nimodipine on calcium homeostasis and pain sensitivity in diabetic rats. Cell Mol Neurobiol 2006; 26(7-8): 1541-57.
    Sima AA, Sugimoto K. Experimental diabetic neuropathy: an update. Diabetologia 1999; 42 (7): 773-88.
    Simpson D. Gabapentin and venlafaxine for the treatment of painful diabetic neuropathy. J Clin Neuromusc Dis 2001; 3: 53-62.
    Sindrup SH, Jensen TS. Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 1999; 83:389-400.
    Sindrup SH, Otto M, Finnerup NB, et al. Antidepressants in the treatment of neuropathic pain. Basic Clin Pharmacol Toxicol 2005; 96:399-409.
    Sindrup SH, Bach FW, Madsen C, et al. Venlafaxine versus imipramine in painful polyneuropathy: a randomized, controlled trial. Neurology 2003;60:1284-1289.
    Singleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care 2001; 25:1448-1453.
    Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for prediabetic neuropathy. Diabetes Care 2006; 29:1294-1299.
    Snider WD, McMahon SB. Tackling pain at the source: new ideas about nociceptors. Neuron 1998;20:629-632.
    Stephens JW, Dhamrait SS, Acharya J, et al. A common variant in the ACE gene is associated with peripheral neuropathy in women with type 2 diabetes mellitus. J Diabetes Complications. 2006; 20(5):317-21.
    Sumner C, Seth S, Griffin J, et al. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003; 60:108-111
    Suzen S. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr Med Chem. 2003; 10(15): 1329-52.
    Suzuki C, Ozaki I, Taosaki M, et al. Peripheral and central conduction abnormalities in diabetes mellitus. Neurology 2000; 54:1932-1937.
    Terence JC, Naresh K, Celeste D L. Evidence that gabapentin reduces neuropathic pain by inhibiting the spinal release of glutamate. Journal of Neurochemistry 2005;94, 1131-1139.
    Tesfaye S, Selvarajah D, Emery CJ, et al. Thalamic sensory neuronal dysfunction in distal symmetrical polyneuropathy. Diabetologia 2004; 47(Suppl 1): A365.
    Thienel U, Neto W, Schwabe SK, et al. Topiramate in painful diabetic polyneuropathy: findings from three double-blind placebo-controlled trials. Acta Neurol Scand 2004; 110:221-231.
    Thomas PK. Classification of the diabetic neuropathies. Stuttgart: Textbook of diabetic neuropathy. 2003; 175-177.
    Ueda H, Rashid MH. Molecular mechanisms of neuropathic pain. Drug News Perspect 2003; 16:605-613.
    Ulugol A, Karadag HC, Tamer M, et al. Involvement of adenosine in the anti-allodynic effect of amitriptyline in streptozotocin-induced diabetic rats. Neurosci Lett 2002; 28:129.
    Vanina Y, Podolskaya A, Sedky K, et al.Body weight changes associated with psychopharmacology. Psychiatr Serv 2002; 53:842-847.
    Vileikyte L, Peyrot M, Bundy C, et al. The development and validation of a neuropathy- and foot ulcer-specific quality of life instrument. Diabetes Care 2003; 26:2549-2555.
    Vincent AM, McLean LL, Backus C, et al. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 2005; 19(6):638-40.
    Vinik AI, Leichter SB, Pittenger GL, et al. Phospholipid and glutamic acid decarboxylase antibodies in diabetic neuropathy. Diabetes Care 1995; 18:1225-1232.
    Vinik AI, Park TS, Stansberry KB, et al. Diabetic neuropathies. Diabetologia 2000; 43:957-973.
    Vrethem M, Boivie J, Arnqvist H, et al. A comparison of amitriptyline and maprotiline in the treatment of painful polyneuropathy in diabetics and nondiabetics. Clin J Pain 1997; 13:313-323.
    Wall PD, Gutnick M. Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating in a neuroma. Exp Neurol 1974; 43:580-593.
    Wiffen P J, McQuay HJ, Edwards JE, et al. Gabapentin for acute and chronic pain. Cochrane Database Syst Rev. 2005; (3):CD005452.
    Wilton TD. Tegretol in the treatment of diabetic neuropathy. S Afr Med J 1974; 48: 869-872.
    Writing Team for the DCCT/EDIC Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 2002;287:2563-2569.
    Young RJ. Structural functional interactions in the natural history of diabetic polyneuropathy: a key to the understanding of neuropathic pain? Diabetic Med 1993; 10(Suppl 2):87S-88S.
    Ziegler D, Nowak H, Kempler P, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabetic Med 2004; 21:114-121.
    Ziegler D. Treatment of diabetic polyneuropathy: Update 2006. Ann N Y Acad Sci 2006; 1084:250-66.
    Zochodne DW, Cheng C. Diabetic peripheral nerves are susceptible to multifocal ischemic damage from endothelin. Brain Res 1999; 838 (1-2): 11-7.
    Zochodne DW. Diabetic neuropathies: features and mechanisms. Brain Pathol 1999; 9 (2):369-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700