雷达机动目标运动模型与跟踪算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标跟踪问题是一个随着跟踪对象的变化、发展而不断发展、深入研究的问题。通过目标跟踪,实现对目标状态的精确估计,从而为后续的很多信息处理,如目标威胁估计、指挥决策等提供稳定的数据基础。由于新型跟踪目标的出现以及对目标跟踪信息的不断需求,机动目标跟踪越来越成为当前研究热点。论文结合863课题:“空天多源信息×××研究”,主要开展雷达机动目标的运动建模与滤波跟踪算法方面的研究。论文的主要内容包括:
     首先介绍了论文的研究背景,并对机动目标跟踪中的两大问题:目标运动模型、跟踪算法的研究现状进行了详细论述,并介绍了本文的研究内容。
     以参数“α”和“η”为特征参量,建立了基于α-η参数的强机动目标运动模型。通过详细分析Singer模型和Jerk模型的特征,分析了二者在表征目标运动特征方面的不足。基于此,以参数α和η为参数特征,建立了强机动目标的α-η参数运动模型。通过对α-η参数运动模型的离散化处理,推导出α-η参数运动模型的状态-测量模型,并详细分析了α-η参数运动模型的特征。实验表明该运动模型具有较强的目标机动模式表征能力。
     提出了一种基于修正不敏卡尔曼滤波的目标跟踪算法。在UKF算法中,滤波增益的计算主要由两个协方差决定:状态协方差、状态与测量的协方差,当目标作机动时,滤波增益将滞后于目标的机动状态,从而使跟踪误差变大。因而,在跟踪过程中,通过实时估计噪声协方差的修正因子,然后利用修正因子实时修正预测状态协方差,利用修正后的预测协方差更新状态协方差,进而修正滤波增益。采用自适应因子修正后的协方差来计算滤波增益,使得修正后的滤波增益与目标的运动相匹配,从而获得较好的滤波跟踪精度。实验表明该算法具有比UKF更好的跟踪性能。
     融合UT变换和EKF各自优点,在提高算法的跟踪性能和较少运算时间方面,提出了两种目标跟踪算法。(1)不敏扩展卡尔曼滤波跟踪算法。UKF在非线性跟踪系统中具有比EKF更好的跟踪性能,但是所需的计算时间大于EKF的计算时间。基于此原因,提出了一种融合不敏变换(UT)和扩展卡尔曼滤波的目标跟踪方法,该方法主要通过把UKF中状态协方差以及状态和测量值的互协方差的多项矢量相乘转换成多个相加的计算,从而有效减少算法的运算时间。该算法融合UT变换的多样性Sigma粒子的特点以及EKF的运算时间快的特点,既保留了较好的滤波跟踪精度,又具有较少的运算时间。(2)自适应不敏扩展卡尔曼滤波跟踪算法。在不敏扩展卡尔曼滤波过程中,利用残差信息,采用指数衰减和遗忘因子的方式实时估计和修正两个噪声协方差,实现噪声协方差的自适应估计。实验表明这两种算法具有比UKF较好的跟踪精度,又具有较少的运算时间。
     在提高模型概率估计准确性方面,提出了一种基于模型概率修正的交互多模型算法。交互多模算法在计算滤波后的状态信息时,加权因子(即模型概率)的计算主要利用两类信息:新息和模型概率预测值,该方法没有利用当前时刻状态协方差的有效信息,造成对模型概率估计的不准确。基于这个特性,把状态协方差的信息融合得到另一个加权因子,利用该加权因子修正IMM算法中的模型概率估计值,即:加权因子的模型概率修正。该算法既利用了预测模型概率因子,又利用了当前状态方差加权因子,因而,具有较为准确的模型选择概率估计。通过实验验证了该算法具有比IMM较准确的模型概率估计能力。
     最后对论文的工作进行了总结,并指出论文的不足和今后的研究方向。
With the change and development of tracking target, the study of target tracking iscontinuously and deeply developed. Through target tracking, accurate estimation oftarget state is gotten, and then a large amount of subsequent information processing canbe realized, such as target threat estimation, command decisions, and so on, which arebased on stable tracking data of the target. For the emergence of new tracking targetsand the increasing information requirement of target tracking, maneuvering targettracking is more and more becoming the current research hotspot. Combined with the863project:“the research of xxx aerospace multi-source information”, this dissertationmainly studies the motion model and tracking algorithms of radar maneuvering target.The main contents of the dissertation include:
     Firstly, research background of this dissertation is introduced, then two keyproblems in maneuvering target tracking are discussed detailly, which include targetmotion model and tracking algorithms, and the research contents of this dissertation areintroduced.
     The motion model of strong maneuvering target is studied, which is based on “α”and “η” parameters. Based on detail analysis of Singer model and Jerk model, someshortages of Singer model and Jerk model in the characterization of target motioncharacteristics are pointed out. Based on this, α-η parameter motion model of strongmaneuvering target is built, which is using maneuvering frequency α and jerkingfrequency η as parameter characteristics. Through discretization processing for α-ηparameter motion model, the state-measurement model of α-η parameter motion modelis deduced, and the characteristics of α-η parameter motion model are analyzed in detail.The experimental results show that the proposed motion model is effective for the targetmaneuvering model representation.
     A kind of target tracking algorithm based on improvedly unscented kalmanfilter(MUKF) is proposed. In the UKF algorithm, filtering gain calculation is mainlydecided by two variances: state covariance and measurement covariance, filter gain willlag behind the target maneuvering state when the target maneuvers, so that the trackingerror is bigger. Therefore, in the process of tracking, the scale factor of state noisecovariance is estimated in every tracking step of UKF, which is used to modify theforecast state covariance, the state covariance is updated by forecast state covariance,then filter gain is modified. The filter gain is got by modified state covariance using adaptive scale factor, which causes the filter gain matches maneuvering state of thetarget, then the better tracking accuracy is got. The experimental results show that thetracking performance of the proposed method is more accurary than that of UKF.
     Based on the advantage of unscented transform(UT) and extended kalmanfilter(EKF), two algorithms of target tracking are proposed, which aims to improvetracking performance and decrease operation time of algorithm.(1) A new targettracking algorithm based on unscented extended kalman filter(UEKF) is studied. Innonlinear tracking system, UKF has better tracking performance than EKF, but thecomputational time of UKF is greater than that of the EKF. For these reasons, a newmethod for tracking maneuvering target is put forward, which is to combine the UT withthe EKF. The key idea is to transform multi-vector multiplying into the addition ofmulti-vector, which causes the operation time of new algorithm is much less than that ofthe UKF. The UEKF is to combine the diversity of sigma particle with the lessoperation time of EKF, which causes that not only the better tracking presion but alsothe less operation time is kept.(2) An adaptivly unscented extended Kalmanfilter(AUEKF) algorithm is studied. In course of UEKF, the two covariances of noisebased on the exponential attenuation and forgetting factor are estimated, which is basedon the residual information of filter, so the covariance of noise is adaptively estimated.The experimental results show that the tracking presion of the two kinds of algorithmsis better than that of UKF, but also has less operation time.
     Based on modified model probability, a kind of interacting multiple modelalgorithm is brought forward, which aims to improve model probability estimationaccuracy. In calculating course of the interacting multiple model algorithm, the sateweighting factor(or model probability) is calculated by covariance of residualinformation and predicted value of model probability, but information of current statecovariance isn’t effectivly used in IMM algorithm, which causes that the modelprobability estimation isn’t accurate. For these reasons, the new scale factor based onthe current state covariance is studied, then the state weighting factor is modified by thenew scale factor. Both the predicted model probability factor and the scale factor of thecurrent state covariance are used, as a result, the relatively precise model probabilityestimation is got. The experimental results show that the model probability estimationof the proposed method is more accurate than that of IMM.
     At last, this paper’s work is concluded, and the shortage of paper is pointed out,research directions in the future are discussed.
引文
[1] X. Rong Li, Vesselin P. Jilkov. A Survey of Maneuvering Target Tracking:Dynamic Models[J]. Proceedings of SPIE Conference on Signal and DataProcessing of Small Targets, Orlando, USA,2000, April, pp:1-24.
    [2] X.R.Li, Vesselin P.Jilkov. Survey of Maneuvering Target Tracking: Part I:DynamicModels[J]. IEEE Trans. on Aerospace and Electronic Systems,2003,39(4), pp:1333-1363.
    [3]周宏仁,敬忠良,王陪德.机动目标跟踪[M].北京:国防工业出版社,1994.
    [4]刘昌云,刘进忙,陈长兴,等.机动目标跟踪的机动频率自适应算法[J].控制理论与应用,2004,26(4), pp:961-965.
    [5]任少伟,王睿,张平定.基于机动频率自适应的目标跟踪算法[J].空军工程大学学报(自然科学版),2004,5(5), pp:32-35.
    [6]王军政,沈伟,赵江波.机动目标跟踪中机动频率的自适应调整[J].北京理工大学学报,2007,27(1), pp:38-41.
    [7] Jiahong Chen, Jiuqiang Han, Xinman Zhang. An Adaptive Single Model ofManeuvering Target Tracking[J]. IEEE2006, pp:714-718.
    [8]罗笑冰,王宏强,黎湘,等.机动目标跟踪MS模型[J].系统工程与电子技术,2006,28(6), pp:813-815.
    [9] Zhou,H., Kumar, K.S.P. A “current” statistical model and adaptive algorithm forestimating maneuvering targets[J]. AIAA Journal of Guidance,1984, Sep, pp:596-602.
    [10] K.Mehrotra, P.R.Mahapatra. A jerk model to tracking highly maneuveringtargets[J]. IEEE Trans. on Areospace and Electronic Systems,1991,33(4), pp:1094-1105.
    [11]罗笑冰,王宏强,黎湘,等.机动目标跟踪α-Jerk模型[J].信号处理,2007,23(4), pp:481-485.
    [12]乔向东,王宝树,李涛,等.一种高度机动目标的“当前”统计Jerk模型[J].西安电子科技大学学报,2002,29(4), pp:534-539.
    [13] S. Ghosh, S.Mukhopadhyay. Tracking Reentry Ballistic Targets using Accelerationand Jerk Models[J]. IEEE Trans. on Areospace and Electronic Systems,2011,47(1), pp:666-683.
    [14] G.A.Waston, W.D.Blair. IMM algorithm for tracking targets that maneuveringthrough coordinated turns[J]. Proceedings of SPIE Signal and Data Processing ofSmall Targets,1992, pp:236-247.
    [15] Ding Quanxin, Liang Guowei, Tian Ye, etc. Adaptive Variable Structure MultipleModel Filter for High Maneuvering Target Tracking[J]. International Conferenceon Computational and Information Sciences,2010, pp:289-292.
    [16]赵艳丽,刘剑,罗鹏飞.自适应转弯模型的机动目标跟踪算法[J].现代雷达,2003,11, pp:14-16.
    [17] Efe M, Atherton D. P. Interacting Model Maneuvering Target Tracking UsingAdaptive Turn Rate Models Algorithm[J]. Proceedings of the35th Conference onDecision&Control,1996, pp:3151-3156.
    [18]孙福明,吴秀清,段曼妮.曲线模型的自适应跟踪算法[J].中国科学技术大学学报,2007,37(12), pp:1455-1460.
    [19] G.A Waston, W.D.Blair. IMM algorithm for tracking targets that maneuveringthrough coordinates turns[J]. Proceedings of SPIE signal and data processing ofsmall targets,1992, pp:236-247.
    [20] J.A.Roecker, C.D.McGillem. Target tracking in maneuver centered coordinates[J].IEEE Trans. on Aerospace and Electronic Systems,1989,25(11), pp:836-843.
    [21] R.A.Best, J.P.Norton. A new model and efficient tracker for a target withcurvilinear[J]. IEEE Trans. on Aerospace and Electronic Systems,1997,33(3),pp:1030-1037.
    [22] N.Nabaa, R.H.Bishop. Validation and comparison of coordinated turn aircraftmaneuver models[J]. IEEE Trans. on Aerospace and Electronic Systems,2000,36(1), pp:250-259.
    [23] R.H.Bishop, A.C.Antoulas. Nonlinear approach to the aircraft tracking problem[J].AIAA Journal of Guidance, Control and Dynamics,1994,17(5), pp:1124-1130.
    [24] H.A.P.Blom, Y.Bar-Shalom. The interacting multiple model algorithm fo systemswith markovian switching coefficients[J]. IEEE Trans. on Automatic Control,1988,33, pp:780-783.
    [25] X.R Li, Y.Bar-Shalom. Multiple-model estimation with variable structure–Part I[J].IEEE Trans. on Automatic Control,1996,41(4), pp:478-493.
    [26] X.R Li. Multiple-model estimation with variable structure–Part II:Model-setadaptation[J]. IEEE Trans. on Automatic Control,2000,45(11), pp:2047-2060.
    [27] X. R Li, X. R Zhi, Y. M Zhang. Multiple-model estimation with variable structure–Part III: Model-group switching algorithm[J]. IEEE Trans. on Aerospace andElectronic Systems,1999,35(1), pp:225-241.
    [28] X. R Li, Y. M Zhang, X. R Zhi. Multiple-model estimation with variable structure–Part IV: Design and evaluation of model-group switching algorithm[J]. IEEE Trans.on Aerospace and Electronic Systems,1999,35(1), pp:242-254.
    [29] X. R Li, Y. M Zhang. Multiple-model estimation with variable structure–Part V:Likely-model set algorithm[J]. IEEE Trans. on Aerospace and ElectronicSystems,2000,36(2), pp:448-466.
    [30] X. R Li, V. P. JILKOV, JiFeng Ru. Multiple-Model Estimation with VariableStructure–Part VI: Expected-ModeAugmentation[J]. IEEE Trans.on Aerospace andElectronic Systems,2005,41(3), pp:853-867.
    [31] Linfeng Xu, X.R Li. Multiple model estimation by hybrid grid[J]. Americancontrol conference, Marriott Waterfront, Baltimore, MD, USA,2010, June, pp:142-147.
    [32] X.R.Li, Y.Bar Shalom. Multiple model estimation with variable structure[J]. IEEETrans.on Automatic Control,1996,41(4), pp:478-493.
    [33] X.R Li, Zhanlue Zhao, Xiao-Bai Li. General model-set design methods formultiple model approach[J]. IEEE Trans. on Automatic Control,2005,50(9),pp:1260-1276.
    [34] R.K.Paul, M.M.Kevin. α-β target tracking with track rate variations[J].Proceedings of the Twenty-Ninth Southeastern Symposium on System Theory,Cookeville, TN,1997, Mar, pp:71-74.
    [35]陈亮,吴小俊,王士同,等.一种新的常增益机动目标跟踪方法:α-β-γ-δ模型[J].系统仿真学报,2008,20(17), pp:4550-4554.
    [36] K.Tetsuya, T.Hideshi, E.Naoki, etc. A kalman tracker with a turning accelerationestimation for maneuvering target tracking[J].0-7803.5435.4/99/$10.000IEEE,1999, pp:2057-2061.
    [37]李涛,王宝树,乔向东.基于截断正态概率模型的改进目标跟踪算法[J].系统工程与电子技术,2003,25(10), pp:1189-1191.
    [38]韩红,陈兆平,焦李成,等.基于模糊推理的机动目标跟踪[J].系统工程与电子技术,2003,31(3), pp:541-544.
    [39]王春柏,赵保军,何佩琨.模糊自适应强跟踪卡尔曼滤波器研究[J].系统工程与电子技术,2004,26(10), pp:1367-1369.
    [40] Pingping Zhu, Badong Chen, J.C. Principe. Extended Kalman Filter Using aKernel Recursive Least Squares Observer[J]. Proceedings of International JointConference on Neural Nerworks, California, USA,2011, July-August, pp:1402-1408.
    [41] W.Liu, Y.Wang, J.C.Principe, etc. Extended kernel recursive least squaresalgorithm[J]. IEEE Trans. on Signal Processing,2009,57(10), pp:3801-3814
    [42] Long Kam-Kim, Hanh Dang-Ngoc, Tuan Do-Hong. Improving iterated extendedkalman for non-gaussian noise environments[J]. The6th International Forum onStratrgic Technology,2011, August, pp:1114-1117.
    [43] D.Lerro, Y.Bar.Shalom. Tracking with debiased consistent convertedmeasurements versus EKF[J]. IEEE Trans.on Aerospace and Electronic Systems,1998,34(6), pp:1023-1027.
    [44] G.M.Siouris, GuRong Chen, JianRong Wang. Tracking an incoming ballisticmissile using an extended interval kalman filter[J]. IEEE Trans.on Aerospace andElectronic Systems,1997,33(1), pp:232-240.
    [45] S.Julier, J.Uhlmann, H.F.Durrant-White. A new method for the nonlineartransformation of means and covariances in filters and estimators[J]. IEEETrans.on Automatic Control,2000,45(3), pp:477-482.
    [46] T.Ledebvre, H.Bruyninckx, J.D.Schutter. Comment on “A new method for thenonlinear transformation of means and covariances in filters and estimators”[J].IEEE Trans.on Automatic Control,2002,47(8), pp:1406-1408.
    [47] S.J.Julier, J.K.Uhlmann. Unscented filtering and nonlinear estimation[J].Proceeding of the IEEE,2004,92(3), pp:401-422.
    [48] S.J.Julier. The scaled unscented transfom[J]. Proceedings of American ControlConferenc, USA,2002, May, pp:4555-4559.
    [49] S. Julier. The spherical simplex unscented transformation[J]. Proceedings ofAmerican Control Conference, USA,2003, March, pp:2430-2434.
    [50] Li Wan-Chun, Wei Ping, Xiao Xian-Ci. A novel simplex unscented transform andfilter[J]. International Symposium on Communications and InformationTechnologies,2007, pp:926-931.
    [51] Panlong Wu, Xingxiu Li, Yuming Bo. Iterated square root unscented kalman filterfor maneuvering target tracking using TDOA measurements[J]. InternationalJournal of Control, Automation and Systems,2013,11(4), pp:761-767.
    [52] Yong Zhou, Yu Feng Zhang, Ju Zhong Zhang. A new adaptive square-Rootunscented kalman filter for nonlinear systems[J]. Mechatronics and AppliedMechanics II,2013, March, pp:623-626.
    [53] Hai Zhu, Yongsheng Wang, Luyu Luan. A new robust square-root unscentedkalman filter[J].2012Second International Conference on Electric Informationand Control Engineering, Wahington DC, USA,2012, vol.2, pp:105-108.
    [54] Q Liu, Z Liu, Y Liu. Nonorthogonal problem in iterated unscented Kalman filterfor passive tracking[J]. IEEE Trans. on Electrical and Electronic Engineering,2013,8(4), pp:415-419.
    [55] Zhan.R, Wan.J. Iterated unscented kalman filter for passive target tracking[J].IEEE Trans. on Aerospace and Electronic Systems,2007,43(3), pp:1155-1163.
    [56] A.Mohsen, Li, Jianchun, S. Bijan. Application of extended, unscented, iteratedextended and iterated unscented kalman filter for real-time structuralidentification[J]. The7th Australasian Congress on Applied Mechanics, Australia,2013, Dec, pp:1041-4050.
    [57] Lei Sun, Dong Li, Dongyun Yi. Trajectory Tracking Based On Iterated UnscentedKalman Filter Of Boost Phase[J].2012IEEE International Conference on ServiceOperations, Logistics and Informatics, Suzhou, China,2012, August, pp:232-235.
    [58] PK Dash, S Hasan, BK Panigrahi. Adaptive complex unscented Kalman filter forfrequency estimation of time-varying signals[J]. IET Science, Measurement&Technology,2010,4(2), pp:93-103.
    [59] P.Regulski, V.Terzija. Estimation of Frequency and Fundamental PowerComponents Using an Unscented Kalman Filter[J]. IEEE Trans. onInstrumentation and Measurement,2012,61(4), pp:952-962.
    [60] H.G.Marina, F.J.Pereda, J.M.Giron-Sierr. UAV Attitude Estimation UsingUnscented Kalman Filter and TRIAD[J]. IEEE Trans. on Industrial Electronic,2012,59(11), pp:4465-4474.
    [61] N.J.Gordon, D.J.Salmond, A.F.M.Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proc. F (Radar and Signal Processing),1993,140(2), pp:107-113.
    [62] LI Guo-hui, LI Ya-an, YANG Hong, etc. Improved Unscented Kalman ParticleFilter[J]. Proceedings of the2010IEEE International Conference on Mechatronicsand Automation, Xi'an, China,2010, August, pp:804-808.
    [63] E. Baser, I. Bilik. Modified Unscented Particle Filter Using Variance ReductionFactor[J]. IEEE Radar Conferenc, Wahington, DC, USA,2010, May, pp:893-898.
    [64] Huajian WANG. Improved Extend Kalman Particle Filter Based on Markov chainMonte Carlo for Nonlinear State Estimation[J].2012International Conference onUncertainty Reasoning and Knowledge Engineering,2012, pp:281-285.
    [65]袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7),pp:970-973.
    [66] A. Giremus, J.Y.Tourneret, P.M.Djuric. An Improving regularized particle filtersfor GPS/INS integration[J].2005IEEE6th Workshop on signal processingdavances in wireless communications,2005, pp:1013-1017.
    [67] Jayesh H.Kotecha, P.M. Djuric. Gaussian sum particle filtering[J]. IEEE Trans. onSignal Processing,2013,51(10), pp:2602-2612.
    [68] M.Pit, N.Shephard. Filtering via simulation:Auxiliary particle filters[J]. AmericanStatistical Association,1999,94(46), pp:590-599.
    [69] M. S.Arulampalam, S.Maskell, N. Gordon, etc. A Tutorial on Particle Filters forOnline Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Trans. on SignalProcessing,2002,50(2), pp:174-188.
    [70] J.Y.Zuo, Y.N Jia, Y.Z Zhang, W Lian. Adaptive iterated particle filter [J].Electronics Letters,2013,49(12), pp:742-744.
    [71] D.H.Dini, P.M.Djuric, D.P.Mandic. The Augmented Complex Particle Filter[J].IEEE Trans. on Signal Processing,2013,61(17), pp:4341-4346.
    [72] D.Ross, S.John, P.Leonid. Multi-Target/Multi-SensorTracking using Only Rangeand Doppler Measurements[J]. IEEE Trans. on Aerospace and ElectronicSystems,2009,45(2), pp:593-611.
    [73] Becher K. Three-dimensional target motion analysis using angle and frequencyMeasurement[J]. IEEE Trans. on Aerospace and Electronic Systems,2005,41(1), pp:284-301.
    [74] Lindren A G. Position and velocity estimation via bearing observation[J]. IEEETrans. on Aerospace and Electronic Systems,1978,14(4), pp:564-577.
    [75] J. M. C. Clark, P. A. Kountouriotis, R. B. Vinter. A Gaussian Mixture Filter forRange-Only Tracking[J]. IEEE Trans. on Automatic Control,2011,56(3), pp:602-613
    [76] B. Ristic, S. Arulampalam, J. McCarthy. Target motion analysis using range-onlymeasurements: Algorithms, performance and application to ISAR data[J]. IEEETrans. on Signal Processing,2002,82(2), pp:273-296.
    [77]刘忠.纯方位目标运动分析与被动定位算法研究[D].武汉:华中科技大学,2002.
    [78]修建娟,何友,修建华.多目标纯方位定位和跟踪[J].现代雷达,2004,26(8),pp:45-48.
    [79]刘进忙,姬红兵,樊振华.一种新的单站红外目标纯方位参数航迹滤波方法[J].电子与信息学报,2010,32(9), pp:2253-2257.
    [80]刘进忙,姬红兵,左涛.纯方位观测的航迹不变量目标跟踪算法[J].西安电子科技大学学报,2008,35(1):49-53.
    [81] J.P.L.Cadre, O.Tremois. Bearings-only tracking for maneuvering sources[J]. IEEETrans. on Aerospace and Electronic Systems,1998,34(10), pp:179-193.
    [82] R.Sharma, R. W. Beard, C. N. Taylor, and etc. Bearing-only CooperativeGeo-Localization using Unmanned Aerial Vehicles[J]. American ControlConference, Canada,2012, June, pp:3883-3888.
    [83] A.Tilton, Tao Yang, Huibing Yin, etc. Feedback Particle Filter-based MultipleTarget Tracking usingBearing-only Measurements[J]. International Conference onInformation Fusion,2012, July, pp:2058-2064.
    [84] G.P. Huang, K.X. Zhou, N.Trawny, etc. Bearing-only Target Tracking using a Bankof MAP Estimators[J]. IEEE International Conference on Robotics andAutomation, China,2011, May, pp:4999-5005.
    [85] B.Ristic, MS. Arulampalam. Tracking a maneuvering target using angle-onlymeasurments:algorithms and performance[J]. Signal Processing,2003,83(6), pp:1223-1238.
    [86] Jin-mang Liu, Zhong-lin Wu, Jinlong Yang. A New Algorithm for Bearings-onlyParameter trajectory tracking[J].2011International Conference on Advanced inControl Engineering and Information Science, China,2011, August,pp:2644-2649.
    [87] T.L.Song. Observability of target tracking with range-only measurements[J]. IEEEJournal of Oceanic Engineering,1999,24(3), pp:383-387.
    [88] S.D. McPhail, M.Pebody. Range-Only Positioning of a Deep-Diving AutonomousUnderwater Vehicle From a Surface Ship[J]. IEEE Journal of Oceanic Engineering,2009,34(4), pp:669-677.
    [89]刘进忙,杨万海,杨柏胜.一种新的目标仰角信息航迹不变量参数估计原理[J].西安电子科技大学学报,2008,35(6), pp:986-991.
    [90]刘进忙.空中目标分坐标滤波与参数航迹融合技术研究[D].西安:西安电子科技大学,2012.
    [91] Branko Ristic. Beyond the kalman filter: particle filters for trackingapplications[M]. London: Artech House,2004.
    [1] Fuming Sun, Yonghong Ma, Xu E. Maneuvering Target Tracking ApproachesBased on Turning Rate Estimation[J].2009Third International Symposium onIntelligent Information Technology Application, NanChang, China,2009, Nov, pp:213-216.
    [2]何友,修建娟,张晶炜,等.雷达数据处理及应用[M].北京:电子工业出版社,2008.
    [3]周宏仁,敬忠良,王陪德.机动目标跟踪[M].北京:国防工业出版社,1994.
    [4] Vasuhi.S, Vaidehi.V, Rincy.T. IMM estimator for maneuvering target trackingwith Improved Current Statistical Model[J].2011International Conference onRecent Trends in Information Technology (ICRTIT), Chennai, Tamil Nadu,2011,June, pp:286-290.
    [5] Rui Yin, Tao Xu. Adaptive Maneuvering Target Tracking Algorithm Based onCurrent Statistical Model[J].2012Third International Conference on MechanicAutomation and Control Engineering,2012, pp:2428-2431.
    [6] Liang Chen, Xin Gong, Huijing Shi, etc. Maneuvering frequency adaptivealgorithm of maneuvering target tracking[J].2013Fourth International Conferenceon Intelligent Control and Information Processing (ICICIP), Beijing,2013June,pp:455-458.
    [7] Wang Wei, Hou Hong-lu. An improved Current Statistical Model for maneuveringtarget tracking[J]. ICIEA4th IEEE Conference on Industrial Electronic andApplications, Xian,2009, May, pp:4017-4020.
    [8] K.Mehrotra, P.R.Mahapatra. A jerk model to tracking highly maneuveringtargets[J]. IEEE Trans. on Aerospace and Electronic Systems,1991,33(4), pp:1094-1105.
    [9] Mahapatra.K, Mahapatra. Pravas R. A jerk model for tracking highly maneuveringtargets[J]. IEEE Trans. on Aerospace and Electronic Systems,1997,33(4), pp:1094-1105.
    [10] Mahapatra. Pravas R,Mahapatra.K. Mixed coordinate tracking of generalizedmaneuvering targets using acceleration and jerk models[J]. IEEE Trans. onAerospace and Electronic Systems,2000,36(3), pp:992-1000.
    [11]罗笑冰,王宏强,黎湘,等.机动目标跟踪α-Jerk模型[J].信号处理,2007,23(4), pp:481-485.
    [12] Wenfei Gong, Mingdi Yi, Jiaqi Li. An improved highly maneuvering targetmodel and adaptive tracking algorithm[J]. IET International Radar Conference,Guilin, China,2009, April, pp:1-4.
    [13] Ghosh.S, Mukhopadhyay.S. Tracking Reentry Ballistic Targets using Accelerationand Jerk Models[J]. IEEE Trans. on Aerospace and Electronic Systems,2010,47(1), pp:666-683.
    [14]乔向东,王宝树,李涛,等.一种高度机动目标的“当前”统计Jerk模型[J].西安电子科技大学学报,2002,29(4), pp:534-539.
    [15]罗笑冰.强机动目标跟踪技术研究[D].长沙:国防科技大学博士论文,2007.
    [1] St Pierre M, Gingras D. Comparison between the unscented kalman filter and theextended kalman filter for the position estimation module of an integratednavigation information system[J].2004IEEE intelligent vehicles symposium, Italy,IEEE Press,2004, pp:831-835.
    [2] Wan Er ic A, Rudolph van der Menve. The unscented kalman filter for nonlinearestimation[J]. Proc. of IEEE Symposium2000(AS-SPCC),2000, pp:153-158.
    [3] S.J.Julier, J.K.Uhlmann.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3), pp:401-422.
    [4] S.Godsill, A.Doucet, M.West. Methodology for monto-carlo smoothing withapplication to time-varying atuoregresstions[J]. Proc. International symposium onfrontiers of time series modeling,2000, USA.
    [5] S.J.Julier and J.k.Uhlmann.A consistent debiased method for converting betweenpolar and Cartesian coordinate systems[J].The Proc of Aero Sense:The llth IntSymposium on Aerospace/Defense Sensing,Simulation and Controls, Orland,1997, pp:110-121.
    [6] S.J.Julier, J.K.Uhlmann.Reduced sigma point filters for the propagation of meansand covariance through nonlinear transformations[J].Proc of American ControlConf, Jefferson City,2002, pp:887-892.
    [7] Van Tho Dang. An adaptive kalman filter for radar tracking application[J].MRRS-2008symposium proceedings of IEEE,2008, pp:261-264.
    [8] Sage A, Husa G W. Adaptive filtering with unknown prior statistics[J].Proceedings of joint automatic control conference, Boulder, USA: Americansociety of mechanical engineers,1969, pp:760-769.
    [9] P.Tichavsky, C.H.Muravchik, A.Zakai. Posterior Cramer-Rao bounds fordiscrete-time nonlinear filtering[J]. IEEE Trans.on Signal Processing,1998,46,pp:1386-1396.
    [10] Branko Ristic. Beyond the kalman filter: particle filters for trackingapplications[M]. London: Artech House,2004.
    [1] St Pierre M,Gingras D. Comparison between the unscented kalman filter and theextended kalman filter for the position estimation module of an integratednavigation information system[J].2004IEEE intelligent vehicles symposium, Italy,2004, pp:831-835.
    [2] Wan Er ic A, Rudolph van der Menve. The unscented kalman filter for nonlinearestimation[J]. Proc. Of IEEE Symposium2000(AS-SPCC),2000, pp:153-158.
    [3] S.J.Julier, J.K.Uhlmann.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3), pp:401-422.
    [4] S.Godsill, A.Doucet, M.West. Methodology for monto-carlo smoothing withapplication to time-varying atuoregressions[M]. Proc. International Symposium onProntiers of Time Series Modelling,2000.
    [5] Bruno Marcelo G.S. Imoroved sequential mote carlo filtering for ballistic targettracking[J]. IEEE Trans.on Aerospace and Electronic Systems,2005,41(3), pp:1103-1108.
    [6] Bruno Marcelo G.S. Improved particle filters for ballistic target tracking[J]. Procof IEEE international conference on acoustics, speech and signal processing,Canada,2004,2, pp:705-708.
    [7] Geroge M.S, Chen Guanrong, Wang Jianrong. Tracking an incoming ballisticmissile using an extended interval kalman filter[J]. IEEE Trans.on Aerospace andElectronic Systems,1997,35(2), pp:394-409.
    [8] ZHANG Jun-gen, JI Hong-bing. Modified iterated extended kalman filter basedmulti-observer fusion tracking for IRST[J]. Journal of System Engineering andElectronics,2010,32(3), pp:504-507.
    [9] SHI Yon g, HAN Chong-zhao. Adaptive UKF method with application to targettracking[J]. Acta Automatic sinica,2011,37(6), pp:755-759.
    [10] Hector Garcia de Marina, Fernando J.Pereda, Jose M.Giron-Sierra, etc. UAVattitude estimation using unscented kalman filter and TRIAD[J]. IEEE Trans.onIndustrial Electronics,2012,25(11), pp:4465-4474.
    [11] WU Qingya, SHAN Jiayuan, NI Shaobo. Application of adaptive unscentedkalman filter for angular velocity calculation in GRSINS[J]. Proc of2012Intrnational conference on modeling, identification and control,2012, June,pp:1305-1310.
    [12] Edmund Brekke, Oddvar Hallingstad, Hohn Glattrtre. Improved target trackinginhte presence of wakes[J]. IEEE Trans.on Aerospace and Electronic Systems,2012,48(2), pp:1005-1017.
    [13] P.K.Dash, H.Hasan, B.K.Panigrahi. Adaptive complex unscented kalman filter forfrequency estimation of time-varying signals[J]. IET science, measurement andtechnology,2010,4(2), pp:93-103.
    [14] HUANG Xianlin, WANG Zhenkai. Adaptive unscented kalman filter in inertialnavigation system alignment[J]. The2nd international conference on intelligencontrol and information processing,2011, June, pp:25-28.
    [15] B. Ristic, A. Farina, D. Benvenuti,etc. Performance bounds and comparison ofnonlinear filters for tracking a ballistic object on re-entry[J]. IEE Proc.Radar SonarNavig,2003,150(2), pp:65-70.
    [16] Branko Ristic. Beyond the kalman filter: particle filters for trackingapplications[M]. London: Artech House,2004.
    [17] XIE Xian-ming, PI Yi-ming, PENG Bao. Phase unwrapping:an unscented particlefiltering approach[J]. Acta Electronica sinica,2011,39(3), pp:705-709
    [18] SUN Yao, ZHANG Qing, WAN Lei. Small autonomous underwater vehiclenavigation system based on adaptive UKF algorithm[J]. Acta Automatic sinica,2011,37(3), pp:342-353.
    [19] XU Xiao-lai, LEI Ying-jie, XIE Wen-biao. Self-organising intuitionistic fuzzyneural nerworks based on UKF[J]. Acta Electronica sinica,2009,37(8), pp:638-645.
    [20] LIN Liang-kui, XU Hui, LONG Yun-li, etc. An algorithm of cluster tracking formidcourse ballistic object group by infrared multi-sensor based on probabilityhypothesis density filtering[J]. Acta optica sinica,2011,32(2), pp:1-8.
    [1] S. Ghosh, S.Mukhopadhyay. Tracking Reentry Ballistic Targets using Accelerationand Jerk Models[J]. IEEE Trans.on Aerospace and Electronic Systems,2011,47(1),pp:666-683.
    [2] Haoqin Shi, Deyun Zhou, Chuxin Chen. A novel adaptive filtering algorithm formaneuvering target tracking[J]. International symposium on instrumentation&measurement,sensor nerwork and automation,2012, pp:209-213.
    [3] Taek Lyul Song, Darko Musicki. Adaptive clutter measurement density estimationfor improved target tracking[J]. IEEE Trans.on Aerospace and ElectronicSystems,2011,47(2), pp:1158-1465.
    [4] E.Brekke, O.Hallingstad, H.Glattetre. Improved target tracking in the presence ofwakes[J]. IEEE Trans.on Aerospace and Electronic Systems,2012,48(2), pp:1005-1016.
    [5]张丕旭,石章松,刘忠.一种新的机动目标跟踪算法[J].系统仿真学报,2010,22(3), pp:577-583.
    [6]巫春玲,韩崇昭.一种新的自适应机动目标跟踪算法[J].系统仿真学报,2010,22(9), pp:2164-2167.
    [7] N.Nadarjah, R.Tharmarasa, M.Mcdonald, etc. IMM forward filtering andbackward smoothing for maneuvering target tracking[J]. IEEE Trans.on Aerospaceand Electronic Systems,2012,48(3), pp:2673-2678.
    [8] X.R Li, Y.Bar-Shalom. Multiple-model estimation with variable structure–Part I[J].IEEE Trans. on Automatic Control,1996,41(4), pp:478-493.
    [9] X.R Li. Multiple-model estimation with variable structure–Part II:Model-setadaptation[J]. IEEE Trans. on Automatic Control,2000,45(11), pp:2047-2060.
    [10] X. R Li, X. R Zhi, Y. M Zhang.Multiple-model estimation with variablestructure–Part III:Model-group switching algorithm[J].IEEE Trans. on Aerospaceand Electronic Systems,1999,35(1),pp:225-241.
    [11] X. R Li, Y. M Zhang, X. R Zhi. Multiple-model estimation with variablestructure–Part IV:Design and evaluation of model-group switching algorithm[J].IEEE Trans. on Aerospace and Electronic Systems,1999,35(1), pp:242-254.
    [12] X. R Li, Y. M Zhang. Multiple-model estimation with variable structure–PartV:Likely-model set algorithm[J]. IEEE Trans. on Aerospace and ElectronicSystems,2000,36(2), pp:448-466.
    [13] X. R Li, V. P. Jilkov, JiFeng Ru. Multiple-Model Estimation with VariableStructure-Part VI: Expected-ModeAugmentation[J]. IEEE Trans.on Aerospace andElectronic Systems,2005,41(3), pp:853-867.
    [14]罗笑冰,王宏强,黎湘.模型转移概率自适应的交互式多模型跟踪算法[J].电子与信息学报,2005,27(10), pp:1539-1541.
    [15] Van Tho Dang. An adaptive kalman filter for radar tracking application[J].MRRS-2008symposium proceedings of IEEE,2008, pp:261.264
    [16] X.Fu, Y.J ia, J.Du, etc. New interacting multiple model algorithms for the trackingof the manoeuvring target[J]. IET Control Theory Appl.,2010,4(10), pp:2184-2194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700