戊己丸不同配伍的肠吸收特征及与P-gp相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1实验目的
     中药复方配伍是中医用药的一大特色和优势,了解其配伍规律对临床辨证施治有重要的指导意义。中药复方多以口服形式入药,药物在肠道中的吸收是决定药物生物利用度和影响药物发挥治疗作用的关键因素。本研究以戊己丸为例,利用正交设计的方法,从肠吸收角度,通过监测中药复方组成中药的代表成份小檗碱(Ber)、巴马汀(Pal)、吴茱萸碱(Evo)、吴茱萸次碱(Rut)、芍药苷(Peo),以其数、量、相互比例为着眼点,研究戊己丸不同比例的配伍肠道吸收过程中的动态变化规律,以及组成药物的贡献度、贡献形式等,并以数学方程和图解对其进行描述,借以探讨中药复方的配伍原理以及科学性。
     2实验方法和结果
     2.1戊己丸组方及其配伍的肠外翻吸收研究
     方法:采用L_9(3~4)正交设计表,将戊己丸组方中的黄连、制吴茱萸、炒白芍作为3因素,各因素的3个不同剂量作为实验的水平数,研究戊己丸9个不同配比及其相应的单味药物在肠道中的吸收。采用肠外翻生物模型,以戊己丸中代表成份Ber、Pal、Evo、Rut、Peo为检测对象,用HPLC检测五个成分在单味药中的经时吸收量,用LC-MS同时检测戊己丸配伍中五个代表成份的变化。通过单因素方差分析(ANOVA)、正交设计的方差分析及归一化加权综合评分法对实验结果进行统计分析。
     结果:黄连提取物中Ber和Pal在肠道吸收过程中为零级吸收,其R~2>0.9,在不同剂量时Kα显示两者为被动扩散,各肠段吸收总趋势为空肠>回肠>结肠;制吴茱萸提取物中Evo和Rut在肠道中为零级吸收,R~2>0.9,Evo在小肠各段、Rut在空肠、回肠中均表现为主动转运,Rut在结肠中Kα随剂量增加而增加,表现为被动扩散形式,低剂量时结肠吸收少于空肠、回肠,高剂量时结肠多于空肠、回肠;Peo吸收为零级吸收,R~2>0.9,吸收形式以被动扩散为主,不同肠段的吸收为空肠>回肠>结肠。
     用LC-MS结合快速分离色谱柱,建立同时测定戊己丸中5个性质不同化合物的分析检测方法,实现了在较短时间内(t<3.5min)同时分离目标检测成分;同时对方中5个化学成分均采用ESI正离子模式选择性离子检测法,排除了其他杂质的干扰,方法操作简单、快速、灵敏度高、特异性强、重现性好。正交设计研究显示戊己丸中5个代表成份在不同配伍比例时在肠道的吸收动力学不同。在空肠、回肠、结肠中5个代表成分的最佳吸收组合分别为,Ber(12:6:3、12:6:3、12:2:3),Pal(12:1:12、12:1:12、12:2:12),Evo(6:6:3、6:6:3、6:6:3),Rut(12:6:12、12:6:3、12:6:3),Peo(6:2:6、6:2:6、6:6:6),相同成分在肠道不同部位的吸收趋势大致相同,但不同成分之间的吸收趋势变化较大。用多指标正交实验分析方法进行方剂配伍比例的优选,首先将分散的数据归一化,使其具有可比性。然后针对指标间的重要性差异给出各指标的权重,本实验依据戊己丸组方中的君臣佐使,确定Ber和Pal的权重为6,Evo、Rut和Peo的权重为4,给出综合评分进行正交统计。结果为黄连在各肠段吸收贡献度最大,确定了其君药地位,制吴茱萸和炒白芍次之,为臣药,其吸收最优配伍比例为黄连:制吴茱萸:炒白芍=6:3:6。
     2.2戊己丸单方及优选配伍组方在Caco-2细胞中的吸收研究
     方法:利用Caco-2细胞类似小肠上皮细胞的特性,研究中药提取物及其配伍在细胞中的摄取和转运特征。摄取实验将细胞种于24孔板,加药1h后细胞匀浆,测定细胞内药物含量;转运实验将细胞接种到Millicell小室膜上,待细胞具有极性、分化完成、完整性好后进行转运实验,实验时分别将药物加入AP或BL侧,检测另一端小室内的药物吸收/外排量的变化。
     结果:细胞生长21天碱性磷酸酶活力AP侧为BL侧的2倍以上(P<0.05),说明细胞具有极性,分化完成;荧光素钠Papp值在4.4×10~7cm·sec~(-1),2 h其透过率在0.7%,TEER值达到600Ω·cm~2(7-8 d),证明细胞完整性较好,可以用于转运实验。
     Caco-2细胞实验进一步证明了Ber、Pal、Peo以被动转运为主,P_(b-a)/P_(a-b)比例均在1左右,Evo、Rut以主动转运为主要转运机制,Evo的P_(b-a)/P_(a-b)比例<0.5,Rut的P_(b-a)/P_(a-b)比例<0.8;配伍6:1:6时Ber、Pal、Evo的摄取和外排均有所增加,Ber吸收减少,Rut摄取、吸收和外排均不同程度降低。配伍12:2:3和12:1:12时各代表成份吸收变化趋势大致相似,但在12:1:12配伍中Ber吸收增加、Evo细胞摄取量增多,这可能是引起两个配伍组产生相同药效的同时各有侧重点的原因。
     2.3戊己丸单方与P-gp相互作用研究
     方法:Ver抑制P-gp实验,采用肠外翻法,在肠外加入含有或不含有Ver(100μM)的测试药液,比较Ver对戊己丸组成单方中成分的吸收变化影响;Rho123外排实验,大鼠按实验分组分别给药5天,用肠外翻模型研究对Rho123的外排改变情况。
     结果:Ber、Pal、Evo在加入Ver后,在肠道各段吸收没有明显改变,Pal在加入Ver后吸收略有增加,尤其以结肠和回肠吸收增加较多,Peo在回肠中吸收比不加Ver时有显著增加(P<0.05),空肠和结肠改变不明显。对Rho123外排影响,提前服用Ver后,Rho123的外排显著减少(P<0.01),说明Ver抑制了P-gp,黄连组在空肠中对Rho123的外排也显著减少(P<0.05),回肠中外排有减少趋势。炒白芍组在回肠中Rho123外排显著增加(P<0.01),其余各组对Rho123外排没有明显影响。
     2.4戊己丸单方及不同配伍对MDR1-mRNA表达的影响
     方法:在Caco-2细胞中加入含药培养基培养2d,收集细胞后用Trizol一步法提取总RNA,逆转录合成cDNA,RT-PCR对MDR1-mRNA进行定量分析。
     结果:配伍6:1:6、12:2:3、12:1:12以及相同剂量黄连提取物单味药物均可以降低MDR1-mRNA的表达,制吴茱萸提取物及炒白芍提取物则可以诱导MDR1-mRNA表达,使其表达量增加。
     3结论
     本实验利用肠外翻模型和Caco-2细胞模型,研究戊己丸组方中单味药物和不同配伍下的代表成份吸收变化情况,结果显示戊己丸中代表成份在肠道中的吸收机制不同,不同配伍比例时吸收变化较大,经统计学分析最终得出黄连:制吴茱萸:炒白芍=6:3:6为最佳吸收配比,同时证明了黄连在方中的贡献度最大,确定其君药地位,制吴茱萸和炒白芍次之,为臣药。通过研究戊己丸单方与配伍对P-gp的相互作用,证明戊己丸单方与不同配比可能通过诱导/降低MDR1-mRNA的表达,产生药物间的相互作用,从而引起方中成份吸收的改变。
1 Objective
     The compatibility of prescription in traditional Chinese medicine(TCM) is the special feature and superiority of Chinese Materia Medica,and it is the significance guidance for clinical prescription to understand the rule of compatibility.The oral administration is the main form of Chinese Herbs,and the intestinal absorption is one of the important factors to contribute the bioavailability and the pharmaco- dynamic.According to orthogonal design, Wuji Pill is used as a case to investigate the absorption of the represents compounds in intestinal.Some representative constituents such as berberine,palmatine,evodiamine, rutacarpine and paeoniflorin are monitored.Three index including difference number, difference dose and difference proportion of Wuji Pill are used to describe their dynamic variety regulation and calculate the contribution degree and modality of the prescripted durgs. Some mathematics equations and illustrations are presented to describe all the above results. At last the principle and scientification of the compatibility of prescription in Chinese Materia Medica is discussed.
     2 Method and Result
     2.1 Research the absorption of Wuji Pill in the single herbs and difference compatibility in the everted gut sacs
     Method:The experiment employs the L_9(3~4) orthogonal design,which the extracts of Rhizoma Coptidis,Evodiae Fructus and Radix Paeoniae Alba are used as three factors and difference dosage as three levels.The absorbance of nine compatibility and corresponding single herbs are studied by the means of the everted gut scas.Five representative composition of Wuji Pill,Ber、Pal、Evo、Rut and Peo,were detected by HPLC(in the single herbs) and LC-MS(in the compatibility of Wuji Pill).The statistics is carried out by One-way ANOVA, the generallinear model and normalization synthetic weighted mark method.
     Resuk:The absorption of Ber and Pal in intestines is the zero order rate process,R~2>0.9. The Ka of Ber and Pal display the passive absorption,and the absorption trend in different intestines is jejunum>ileum>colon.The absorption of Evo and Pal conforms to the zero order rate process,R~2>0.9.The mechanism of absorption of Evo is the active transport in various intestines,and Rut is the active transport in the jejunum and the ileum,and belongs to the positive transport in the colon.The absorption trend is that in low dose level,the colon is lower than the jejunum and ileum,while higher in higher dose.The absorption of Peo is the zero order rate process,R~2>0.9.The Peo display the passive absorption,and the absorption trend in different intestine is jejunum>ileum>colon.
     We established the method of simultaneous determination 5 variety property compounds in Wuji Pill using LC-MS with tacho-isolation colum,and a good separation is obtained between the object composition in 3.5 min.To remove the interference from other materials, the mass scan patterns are all ESI poison mode in 5 compounds.The advantage of our method is simple,fast,sensitivity,specificity and good reproducibility.The absorption dynamics of 5 compounds are distinct in Wuji Pill with the difference compatibility in orthogonal design.In the jejunum,ileum and colon,the optimal absorption compatibility of 5 compounds are as follows:Ber(12:6:3、12:6:3、12:2:3),Pal(12:1:12、12:1:12、12:2:12),Evo(6:6:3、6:6:3、6:6:3),Rut(12:6:12、12:6:3、12:6:3),Peo(6:2:6、6:2:6、6:6:6).It is showed that the same compounds have the similar absorption trend in different intestine,and the different compounds are various in the absorption.The optimal proportion of the prescription compatibility is obtained by employing the multicriteria orthogonal analysis.We first normalize the scattered data to make it comparability,and calculate the index-weight based on monarch,minister,assistant and guide of Wuji Pill.The index-weight of Ber and Pal are six, and Evo、Rut and Peo are four,and then calculate synthetic score to statistic.The result shows the extract of Rhizoma Coptidis made the greatest contribution in different intestine that determine it monarch,and the extract of Evodiae Fructus and that of Radix Paeoniae Alba are lower that make it minister.The optimization of the compatibility is 6:3:6(extractive Rhizoma Coptidis / extractive Evodiae Fructus / extractive Radix Paeoniae Alba).
     2.2 Research the absorption of Wuji Pill in single herbs and the optimization compatibility in the Caco-2 cell monolayers
     Method:the absorption of Caco-2 cell monolayers is similar with the small intestine epithelium,which can investigate the uptake and transport of extract of Chinese herbs and their compatibility.In the uptake experiment,The Caco-2 cells are seeded 24 pore plates,and add the drugs.One hour later,the cells are homogenated and the compounds content in cells are determined.In the transport experiment,the Caco-2 cells are seeded the Millicell,and the cells complete the differentiation and can be used to transport.Add drugs in AP or BL,and detect the receptor compounds.
     Result:The alkaline phosphatase in AP is over double BL at 21 day(P<0.05),which shows the cells already come into being polarity,and complete the differentiation.The Papp of the fluorescein sodium is 4.4×10~(-7) cm·sec~(-1),and the transmissivity is 0.7%in two hours. TEER is over 600Ω·cm~2(7-8 d) that means the good integration and could use for transport experiment.
     The experiment of Caco-2 cells verified the passive absorption of Ber、Pal、Peo,and the P_(b-a)/P_(a-b) is about 1.Evo and Rut is the positive transport,and the P_(b-a)/P_(a-b) of Evo is lower than 0.5,the P_(b-a)/P_(a-b) of Rut is lower than 0.8.The uptake and excretion of Ber、Pal、Evo in 6:1:6 are increase,and the absorption of Ber is decrease,the uptake、absorption and excretion of Rut are all depress in 6:1:6.Changes of the compatibility in 12:2:3 and 12:1:12 are similar, but the absorption of Ber and the uptake of Evo in 12:1:12 are increase,which can produce the particular theraoeutic based on the same pharmacodynamic.
     2.3 Research the interaction of the single prescription in Wuji Pill with P-glycoprotein
     Method:In the inhibition study with P-gp,the drugs with or without inhibitor verapamil (100μM) are added to the mucosal medium in the everted gut seas,and the represent absorption,in the single prescription in Wuji Pill,are observed to determine the interaction with verapamil.In the excretion study with Rho123,rats are treated with drugs for 5 days,the Rho 123(100μM) is introduced into the everted gut scas,and observate the excretion.
     Result:There is no obviously change in Ber、Pal and Evo after adding verapamil,and increase of Pal in the colon and ileum,while significantly increase of Peo at the ileum(P<0.05).Rho123 is the substrate of P-gp.Ver,the inhibitor of P-gp,can significantly decrease the excretion of Rho123(P<0.01).The extract of Rhizoma Coptidis reduce the excretion of Rho123 in jejunum(P<0.05),and the extract of Radix Paeoniae Alba significantly increase the excretion of Rho123 in ileum(P<0.01).There are no obvious changes in the other groups.
     2.4 Research the effect to MDR1-mRNA with Wuji Pill in the single herbs and the optimization compatibility in the Caco-2 cell monolayers
     Method:Caco-2 cells are cultivated in medium with drugs for 2 days.After collecting cells,RNA is isolated by the method of Trizol one-step,reverse transcription synthesis cDNA, and quantitative assay the MDR1-mRNA by RT-PCR.
     Result:The groups of the extract Rhizoma Coptidis and their compatibility(6:1:6、12:2:3、12:1:12) could reduce the expression of MDR1-mRNA.The extract of Radix Paeoniae Alba could promote the expression of MDR1-mRNA.The extract of Evodiae Fructus in lower dose could induce the expression of MDR1-mRNA,while higher dosage is no entrainment.
     3 Conclusion
     The experiment is to research the intestinal absorption of the represents in the single herbs and the difference compatibility of Wuji Pill in the everted gut sacs and Caco-2 cells monolayers,which to elucidate the regularity and scientification of the compatability of prescription.The mechanism of absorption of the represents in Wuji Pill is different,and they have a great change in the different compatibility.The optimal compatibility in absorption is 6:3:6(extract of Rhizoma Coptidis / extract of Evodiae Fructus / extract of Radix Paeoniae Alba),and the extract of Rhizoma Coptidis make the greatest contribution which is the monarch,and the extract of Evodiae Fructus and the extract of Radix Paeoniae Alba are a bit lower that make them minister.The single drugs and the compatibility of Wuji Pill make the increasing or reducing the expression of MDR1-mRNA that produce the interaction of the different compounds in the intestinal absorption.
引文
1 Caspary WF.Physiology and pathophysiology of intestinal absorption[J].Am J Clin Nutr,1992,55:S299-308.
    2 Amit-Romach E,Reifen R,Uni Z.Mucosal function in rat jejunum and ileum is altered by induction of colitis[J]. Int J Mol Med, 2006,18(4):721-727.
    3 Engman H. Intestinal barriers to oral drug absorption: Cytochrome P450 3A and ABC-transport proteins. Dissertation for the egree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutics, Uppsala University, Uppsala, Sweden, 2003, pp: 7-49.
    4 Hidalgo IJ. Assessing the absorption of new pharmaceuticals[J]. Curr Top Med Chem, 2001,1(5):385-401.
    5 Hayashi M, Tomita M. Mechanistic analysis for drug permeation through intestinal membrane[J]. Drug Metab Pharmacokinet, 2007,22(2):67-77.
    6 Neuhoff S, Ungell AL, Zamora I,et al. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. Pharm Res, 2003,20(8): 1141-1148.
    7 Nellan HN. Paracellular intestinal transport: modulation of absorption[J]. Adv Drug Deliv Rev, 1991, 7(3):339-364.
    8 Gao Y, He L, Katsumi H, et al. Improvement of intestinal absorption of water-soluble macromolecules by various polyamines: Intestinal mucosal toxicity and absorption-enhancing mechanism of spermine[J]. Int J Pharm, 2008,354(1-2):126-134.
    9 Salama NN, Eddington ND, Fasano A. Tight junction modulation and its relationship to drug delivery[J]. Adv Drug Deliv Rev, 2006,58(1): 15-28.
    10 Kondoh M, Yagi K. Progress in absorption enhancers based on tight junction[J]. Expert Opin Drug Deliv, 2007,4(3):275-286.
    11 Shen L, Turner JR. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed[J]. Am J Physiol Gastrointest Liver Physiol, 2006,290(4):G577-582.
    12 Hidalgo IJ, Borchardt RT. Transport of bile acids in a human intestinal epithelial Caco-2 cell line [J]. Biochim Biophys Acta Biomembr, 1990,1035 (1):97-103.
    13 Tsuji A, Tamai I. Carrier-mediated intestinal transport of drugs[J]. Pharm Res, 1996,13:963- 977.
    14 Lee YJ, Chung SJ, Shim CK. Limited role of P-glycoprotein in the intestinal absorption of Cyclosporin A[J]. Biol Pharm Bull. 2005,28(4):760-763.
    15 Shibata N, Inoue Y, Fukumoto K, et al. Evaluation of factors to decrease bioavailability of Cyclosporin A in rats with gentamicin-induced acute renal failure[J]. Biol Pharm Bull. 2004,27(3): 384-391.
    16 Swaan P W. Recent advances in intestinal macromolecular drug delivery via receptor-mediated transport pathways[J]. Pharm Res, 1998,15 (6):826-834.
    17 Van Der Hulst RR, Von Meyenfeldt MF, Van Kreel BK, et al. Gut permeability, intestinal morphology, and nutritional depletion[J]. Nutrition, 1998,14(1): 1-6.
    18 Ding LA, Li JS. Gut in diseases: physiological elements and their clinical significance[J]. World J Gastroenterol, 2003,9(11):2385-2389.
    19 Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein[J]. Clin Pharmacokinet, 2001 ;40(3): 159-168.
    20 Tran CD, Timmins P, Conway BR, et al. Investigation of the coordinated functional activities of cytochrome P450 3A4 and P-glycoprotein in limiting the absorption of xenobiotics in Caco-2 cells[J]. J Pharm Sci, 2002,91 (1): 117-128.
    21 Arias IM, Gatmaitan Z, Mazzanti R, et al. Structure and function of P-glycoprotein in the normal liver and intestine[J]. Princess Takamatsu Symp, 1990,21:229-239.
    22 Sugiura T, Tashiro T, Yamamori H, et al. Effects of total parenteral nutrition on endotoxin translocation and extent of the stress response in burned rats[J]. Nutrition, 1999,15(7-8):570-575.
    23 Kompan L,Kremzar B,Gadzijev E,et al.Effects of early enteral nutrition on intestinal prmeability and the developrment of multiple organ failure after multiple injury[J].Intensive Care Med,1999,25(2):157-161.
    24 Nadler EP,Ford HR.Regulation of bacterial translocation by nitric oxide[J].Pediatr Surg Int,2000,16(3):165-168.
    25 MacFie J.Enteral versus parenteral nutrition:the significance of bacterial translocation and gut-barrier function[J].Nutrition,2000,16(7-8):606-611.
    26 Coulter WA,McGimpsey JG,Coffey A,et al.Dental anxiety and the absorption of orally administered erythromycia stearate[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod,1995,80(6):660-665.
    27 van Wyk M,Sommers DK,Moncrieff J.Influence of cisapride,metoclopramide and loperamide on gastric emptying of normal volunteers as measured by means of the area under the curve of the cumulative fraction absorbed-time profiles of paracetamol[J].Methods Find Exp Clin Pharmacol,1992,14(5):379-382.
    28 Bardelmeijer HA,Ouwehand M,Beijnen JH,et al.Efficacy of novel P-glycoprotein inhibitors to increase the oral uptake of paclitaxel in mice[J].Invest New Drugs,2004,22(3):219-229.
    29 Lipinski CA,Lombardo F,Dominy BW,et al.Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J].Adv Drug Deliv Rev,2001,46(1-3):3-26.
    30 Lipinski CA.Drug-like properties and the causes of poor solubility and poor permeability[J].J Pharmacol Toxicol Methods,2000,44(1):235-249.
    31 盛朝晖.口服缓控释剂的临床评价[J].中国医院药学杂志,2005,25(6):558-559.
    32 Tubic M,Wagner D,Spahn-Langguth H,et al.Effects of controlled-release on the pharmacokinetics and absorption characteristics of a compound undergoing intestinal efflux in humans[J].Eur J Pharm Sci,2006,29(3-4):231-239.
    33 刘明杰,林琳,王钊.肠道细菌对天然药物代谢的研究进展Ⅰ.中国现代应用药学杂志,2001,18(2):90-91.
    34 刘明杰,林琳,王钊.肠道细菌对天然药物代谢的研究进展Ⅱ.中国现代应用药学杂志,2001,18(4):257-260.
    35 孙艳,李雪驼,殷素兰.肠道内微生态环境对中草药体内代谢的影响.中草药,2001,32(4):375-377
    36 Said HM.Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins[J].Annu Rev Physiol,2004,66:419-446.
    37 Sun D,Lennemas H,Welage LS,et al.Comparison of human duodenum and Caco-2 gene expression profiles for 120 000 gene sequences tags and correlation with permeability of 26 drugs[J].Pharm Res,2002,19:1400-1416.
    38 Ingels F,Deferme S,Delbar N,et al.Implementation of the Caco-2 cell culture model as a predictive tool for the oral absorption of drugs.In-house evaluation procedures[J].J Pharm Belg,2002;57(6):153-158.
    39 Soldner A,Benet LZ,Mutschler E,et al.Active transport of the angiotensin-Ⅱ antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and Caco-2 cell monolayers[J].Br J Pharmacol,2000,129(6):1235-1243.
    40 Hidalgo IJ.Assessing the absorption of new pharmaceuticals[J].Curt Top Med Chem,2001,1:385-401.
    41 Ohta KY,Inoue K,Hayashi Y,er al.carried- mediated transport of glycerol in the perfused rat small intestine[J].Biol Pharm Bull,2006,29(4):785-789.
    42 聂淑芳,潘卫三,杨星钢等.对大鼠在体肠单向灌流技术中重量法的评价[J].中药新药杂志,2005,14(10):1176-1179.
    43 Lennernas H,Ahrenstedt O,Hallgren R,et al.Reginal jejunal perfusion,a new in vivo approach to study oral drug absorption in man[J].Pharm Res,1992,9:1243.
    44 Pang KS,Cherry WF,Ulm EH.Disposition of enalapril in the perfused rat intestine-liver preparation:absorption,metabolism and first-pass effect[J].J Pharmacol Exp Ther,1985,233(3):788-795.
    45 Wen Y,Remmel RP,Zimmerman CL.First-pass disposition of(-)-6-aminocarbovir in rats.I.Prodrug activation may be limited by access to enzyme[J].Drug Metab Dispos,1999,27(1):113-121.
    46 Hirayama H,Xu X,Pang KS.Viability of the vascularly perfused,recirculating rat intestine and intestine-liver preparations[J].Am J Physiol,1989,257(2 Pt 1):G249-258.
    47 Jeffrey P,Tucker GT,Bye A,et al.The site of inversion of R(-)-ibuprofen:studies using rat in-situ isolated perfused intestine/liver preparations[J].J Pharm Pharmacol,1991,43(10):715-720.
    48 Barthe L,Woodley J,Houin G.Gastrointestinal absorption of drugs:methods and studies[J].Fundam Clin Pharmacol,1999,13(2):154-168.
    49 Kilic FS,Batu O,Sirmagul B,et al.Intestinal absorption ofdigoxin and interaction with nimodipine in rats[J].Pol J Pharmacol,2004,56:137-141.
    50 Nathalie B,Stephanie S,Daniel A.Effect of efavirenz on intestinal p-glycoprotein and hepatic p450function in rats[J].J Pharm Pharmaceut Sci,2005,8(2):226-234.
    51 Leppert PS,Fix JA.Use of everted intestinal rings for in vitro examination of oral absorption potential[J].J Pharm Sci,1994,83:976-981.
    52 杨振,秦环龙.Ussing chamber在肠道屏障功能研究中的进展.肠外与肠内营养,2006,13(4):233-236.
    53 Ferrec EL,Chesne C,Artusson P,et al.In vitro models of the intestinal barrier[R].The repart and Recommendations of ECVAM wordshop,2000,649-668.
    54 Matsumoto M,Matsukawa N,Mineo H,et al.A soluble flavonoid-glycoside,alphaG-rutin,is absorbed as glycosides in the isolated gastric and intestinal mucosa[J].Biosci Biotechnol Biochem,2004,68(9):1929-1934.
    55 Bajor A,Kilander A,Fae A,et al.Normal or increased bile acid uptake in isolated mucosa from patients with bile acid malabsorption[J].Eur J Gastroenterol Hepatol,2006;18(4):397-403.
    56 Heylings JR.Gastrointestinal absorption of paraquat in the isolated mucosa of the rat.Toxicol Appl Pharmacol,1991,107(3):482-493.
    57 杨海涛,王广基.Caco-2单层细胞模型及其在药学中的应用[J].药学学报,2000,35(10):797-800.
    58 D'Souza VM,Shertzer HG,Menon AG.,et al.High glucose concentration in isotonic media alters Caco-2 cell permeability[J].AAPS PharSci,2003,5(3):E24.
    59 Shao J,Kaushal G.Normal flora:Living vehicles for noninvasive protein drug delivery[J].Int J Pharm,2004,286(1-2):117-124.
    60 Artursson P,Karlsson J.Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial(Caco-2) cells[J].Biochem Biophys Res Commun,1991,175(3):880-885.
    61 Pranav S,Viral J,Tamishraha B,et al.Role of Caco-2 Cell Monolayers in Prediction of Intestinal Drug Absorption[J].Biotechnol Prog,2006,22:186-198.
    62 Raeissi SD,Hidalgo IJ,Segura-Aguilar J,et al.Interplay between CYP3A-mediated metabolism and polarized efflux of terfenadine and its metabolites in intestinal epithelial Caco-2(TC7) cell monolayers[J].Pharm Res,1999,16(5):625-632.
    63 Luo FR, Paranjpe PV, Guo A, et al. intestinal transport of irinotecan in Caco-2 cells and MDCK Ⅱ cells overexpressing efflux transports PGP, cMOT, and MRP1[J]. Drug Metabolism and Disposition, 2002, 30(7):763-770.
    64 Irvine JD, Takahashi L, Lockhard K, et al. MDCK(Madin-Darby canine kidney)cells: a tool for membrane permeability screening[J]. J Pharm Sci, 1999,88:28-33.
    65 Balimane PV, Chong S, Patel K, et al. Peptide transporter substrate identification during permeability screening in drug discovery: comparison of transfected MDCK-hPepT1 cells to Caco-2 cells[J]. Arch Pharm Res, 2007,30(4):507-518.
    66 Bertelsen KM, Greenblatt DJ, von Moltke LL. Apparent active transport of MDMA is not mediated by P-glycoprotein: a comparison with MDCK and Caco-2 monolayers[J]. Biopharm Drug Dispos. 2006,27(5): 219-227.
    67 El Yazidi-Belkoura I, Legrand D, et al. The binding of lactoferrin to glycosaminoglycans on enterocyte-like HT29-18-C1 cells is mediated through basic residues located in the N-terminus[J]. Biochim Biophys Acta, 2001,1568(3): 197-204.
    68 Hilgendorf C, Spahn-Langguth H, Regardh CG, et al. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: Permeability via diffusion, indise- and outside-directed carrier-mediated transport[J]. J Pharm Sci, 2000,89:63-75.
    69 Tsuji A. Impact of transporter-mediated drug absorption, distribution, elimination and drug interactions in antimicrobial chemotherapy[J]. J Infect Chemother, 2006,12(5):241-250.
    70 Kunta JR, Sinko PJ. Intestinal drug transporters: in vivo function and clinical importance [J]. Curr Drug Metab,2004,5(1):109-124.
    71 Kramer R, Weber TK, Arceci R, et al. Inhibition of N-linked glycosylation of P-glycoproptein by tunicamycin results in a reduced multidrug resistance phenotype[J]. Br J Cancer, 1995, 71(4):670-676.
    72 Torok M, Gutman H, Friket G, et al. Sister of P-gp expression in different tissues[J].Biochem Pharmacol, 1999,57(7):833-835.
    73 Chiou WL, Chung SM, Wu TC. Apparent lack of effect of P-glycoprotein on the gastrointestinal absorption of a substrate, tacrolimus, in normal mice[J]. Pharm Res, 2000,17(2): 205-208.
    74 Walle UK, Walle T. Taxol transport by human intestinal epithelial Caco-2 cells[J]. Drug Metab Dispos, 1998,26(4):343-346.
    75 Sun J, Deguchi Y, Chen J, et al. Evaluating interactions of amphoteric molecules with phospholipid membrane using immobilized artificial membrane chromatography[J]. Pharmazie, 2002,57(7):497-498.
    76 Naruhashi K, Tamai I, Inoue N, et al. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats[J]. Antimicrob Agents Chemother, 2002,46(2):344 -349.
    77 Loo TW, Clarke DM. Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil[J]. J Biol Chem, 2001,276(18): 14972-14979.
    78 Loo TW, Bartlett MC, Clarke DM. Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. Direct evidence for the substrate-induced fit mechanism for drug binding[J]. J Biol Chem, 2003,278(16):13603-13606.
    79 Mertens-Talcott SU, De Castro WV, Manthey JA, et al. Polymethoxylated flavones and other phenolic derivates from citrus in their inhibitory effects on P-glycoprotein-mediated transport of talinolol in Caco-2 cells[J]. J Agric Food Chem, 2007,55(7):2563-2568.
    80 Raad I, Terreux R, Richomme P, et al. Structure-activity relationship of natural and synthetic coumarins inhibiting the multidrug transporter P-glycoprotein[J]. Bioorg Med Chem, 2006,14(20): 6979-6987.
    81 Shitan N, Tanaka M, Terai K, et al. Human MDR1 and MRP1 recognize berberine as their transport substrate[J]. Biosci Biotechnol Biochem, 2007,71(1):242-245.
    82 Hugger ED, Novak BL, Burton PS, et al. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro[J]. J Pharm Sci, 2002, 91(9): 1991-2002.
    83 Hugger ED, Audus KL, Borchardt RT, et al. Effects of poly (ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers[J]. J Pharm Sci, 2002,91(9): 1980-1990.
    84 Arima H, Yunomae K, Hirayama F, et al. Contribution of P-glycoprotein to the enhancing effects of dimethyl-beta-cyclodextrin on oral bioavailability of tacrolimus[J]. J Pharmacol Exp Ther, 2001,297(2): 547-555.
    85 谭伟欣,黄永明,刘金文. MRP1介导的多药耐药及其逆转剂的研究进展[J]. 广东医学,2006,27(9):1418-1420.
    86 Yokooji T, Murakami T, Yumoto R, et al. Site-specific bidirectional efflux of 2,4-dinitrophenyl -S-glutathione, a substrate of multidrug resistance-associated proteins, in rat intestine and Caco-2 cells[J]. J Pharm Pharmacol, 2007,59(4):513-520.
    87 Kim MK, Shim CK. The transport of organic cations in the small intestine: current knowledge and emerging concepts[J]. Arch Pharm Res, 2006,29(7):605-616.
    88 Muller J, Lips KS, Metzner L, et al. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT)[J]. Biochem Pharmacol, 2005,70(12): 1851-1860.
    89 Watanabe K, Sawano T, Terada K, et al. Studies on intestinal absorption of sulpiride (1): carrier-mediated uptake of sulpiride in the human intestinal cell line Caco-2[J]. Biol Pharm Bull, 2002, 25(7):885-890.
    90 Watanabe K, Sawano T, Endo T, et al. Studies on intestinal absorption of sulpiride (2): transepithelial transport of sulpiride across the human intestinal cell line Caco-2[J]. Biol Pharm Bull, 2002,25(10): 1345-1350.
    91 Zwart R, Verhaagh S, Buitelaar M, et al. Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice[J]. Mol Cell Biol, 2001,21(13):4188-4196.
    92 Walters HC, Craddock AL, Fusegawa H, et al. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3[J]. Am J Physiol Gastrointest Liver Physiol, 2000,279(6): G1188-G1200.
    93 Dresser GK, Bailey DG, Leake BF, et al. Fruit juices inhibit organic anion transporting polypepetide-mediated drug uptake to decrease the oral availability of fexofenadine[J]. Clin Pharmacol Ther, 2002,71(1): 11-20.
    94 Takaishi N, Yoshida K, Satsu H, et al. Transepithelial transport of alpha-lipoic acid across human intestinal Caco-2 cell monolayers[J]. J Agric Food Chem, 2007,55(13):5253-5259.
    95 Ashida K, Katsura T, Motohashi H, et al. Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells[J]. Am J Physiol Gastrointest Liver Physiol, 2002,282(4): G617-G623.
    96 Pan X, Terada T, Okuda M, et al. Altered diurnal rhythm of intestinal peptide transporter by fasting and its effects on the pharmacokinetics of ceftibuten[J]. J Pharmacol Exp Ther, 2003,307(2):626-632.
    97 Naruhashi K, Sai Y, Tamai I, et al. Pept1 mRNA expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine[J]. Pharm Res, 2002,19(10):1417-1423.
    98 Berlioz F, Maoret JJ, Paris H, et al. Alpha(2)-adrenergic receptors stimulate oligopeptide transport in a human intestinal cell line[J].J Pharmacol Exp Ther,2000,294(2):466-472.
    99 Tsuda M,Terada T,Irie M,et al.Transport characteristics of a novel peptide transporter 1 substrate,antihypotensive drug midodrine,and its amino acid derivatives[J].J Pharmacol Exp Ther,2006,318(1):455-460.
    100 Li F,Hong L,Mau CI.Transport of levovirin prodrugs in the human intestinal Caco-2 cell line[J].J Pharm Sci,2006,95(6):1318-1325.
    101 Jain R,Duvvuri S,Kansara V,et al.Intestinal absorption of novel-dipeptide prodrugs of saquinavir in rats[J].Int J Pharm,2007,336(2):233-240.
    102 Westphal K,Weinbrenner A,Giessmann T,et al.Oral bioavailability of digoxin is enhanced by talinolol:evidence for involvement of intestinal P-glycoprotein[J].Clin Pharmacol Ther,2000,68(1):6-12.
    103 Westphal K,Weinbrenner A,Zschiesche M,et al.Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings:a new type of drug/drug interaction[J].Clin Pharmacol Ther,2000,68(4):345-355.
    104 Perloff MD,Stormer E,von Moltke LL,et al.Rapid assessment of P-glycoprotein inhibition and induction in vitro[J].Pharm Res,2003,20(8):1177-1183.
    105 Maeng HJ,Yoo HJ,Kim IW,et al.P-glycoprotein-mediated transport of berberine across Caco-2 cell monolayers[J].J Pharm Sci,2002,91(12):2614-2621.
    106 Yu XY.Lin SG,Zhou ZW,et al.Role of P-glycoprotein in the intestinal absorption of tanshinone IIA,a major active ingredient in the root of Salvia miltiorrhiza Bunge[J].Curr Drug Metab,2007,8(4):325-340.
    107 Tian X,Yang X,Wang K,et al.The effiux of flavonoids morin,isorhamnetin-3-O-rutinoside and diosmetin-7-O-beta-D-xylopyranosyl-(1-6) -beta-D-glucopyranoside in the human intestinal cell line caco-2[J].Pharm Res,2006,23(8):1721-1728.
    108 Akao T,Hanada M,Sakashita Y,et al.Effiux of baicalin,a flavone glucuronide of Scutellariae Radix,on Caco-2 cells through multidrug resistance-associated protein 2[J].J Pharm Pharmacol,2007,59(1):87-93..
    109 Pal D,Mitra AK.MDR- and CYP3A4-mediated drug-herbal interactions[J].Life Sci,2006,8(18):2131-2145.
    110 Fuchikami H,Satoh H,Tsujimoto M,et al.Effects of herbal extracts on the function of human organic anion-transporting polypeptide OATP-B[J].Drug Metab Dispos,2006,34(4):577-582.
    1 袁久荣,魏英勤,袁浩.RT-HPLC法同时测定黄连中四种原小檗碱型生物碱的含量[J].世界科学技术--中医药现代化,2006,8(6):36-39.
    2 王敏,李翔,王洪.反相离子对高效液相色谱法测定黄柏及其颗粒中小檗碱和巴马汀的含量[J].第二军医大学学报,2005,26(2):195-197.
    3 王小逸,史亦丽,曾衍钧.小檗碱的研究进展[J].中国新药杂志,2003,12(7):523-525.
    4 姚保泰,吴敏,王博.小檗碱诱导人胃癌细胞凋亡与调控基因表达的实验研究[J].成都中医药大学学报,2005,28(1):39-41.
    5 刘泽,蔡少平.小檗碱抑制结肠癌细胞中COX-2表达作用的研究[J].中国新药杂志,2004,13(9):796-799.
    6 庞志功,汪宝琪,姜洪涛.小檗碱的药物代谢动力学[J].分析科学学报,1997,13(1):51-53.
    7 盛美萍,孙淇,王宏.盐酸小檗碱在Beagle狗静脉注射和口服药动学研究[J].中国药理学通报,1993,9(1):64-67.
    8 赵玉男,邢东明,杜力军等.解热药YL2000中小檗碱在正常和发热大鼠体内的药物动力学比较[J].中国药理学通报,2003,19(10):1170-1173.
    9 余琛,张慧,潘俊芳等.健康人口服盐酸黄连素片剂后的尿药分析与药物代谢初步研究[J].中国临床药理学杂志,2000,1(1):36-39.
    10 鲍天冬,董宇,朱晓新等.高校液相色谱法同时测定制吴茱萸及其提取物中吴茱萸碱、吴茱萸次碱和吴茱萸内酯含量[J].中国实验方剂学杂志,2007,13(6):1-3.
    11 Rang WQ,Du YH,Hu CP,et al.Protective effects of evodiamine on myocardial ischemia-reperfusion injury in rats[J].Planta Med,2004;70(12):1140-1143.
    12 Lee SH,Son JK,Jeong BS,et al.Progress in the studies on rutaecarpine[J].Molecules,2008,13(2):272-300.
    13 Fei XF,Wang BX,Li TJ,et al.Evodiarnine,a constituent of Evodiae Fructus,induces anti-proliferating effects in tumor cells[J].Cancer Sci,2003,94(1):92-98.
    14 王晓虎,吴巍巍,刘保林等.吴茱萸次碱对胃肠道运动影响的实验研究[J].中国临床药理学与治疗学,2005,10(10):1104-1107.
    15 Liao CH.Pan SL,Teng CM,et al.Antitumor mechanism of evodiamine,a constituent of Chinese herb Evodiae fructus,in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo [J].Carcinogenesis,2005,26(5):968-975.
    16 栾连军,裘国丽,程翼宇.吴茱萸碱和吴茱萸次碱在家兔体内的药动学研究[J].中国药学杂志,2006,41(1):48-50.
    17 杨煜,吕文伟,宋瑛士等.白芍总苷抗血栓形成作用[J].中草药,2006,37(7):1066-1068.
    18 Liu HQ.Zhang WY,Luo XT,et al.Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine Al receptor[J].Br J Pharmacol,2006,148(3):314-325.
    19 Watanabe H.Candidates for cognitive enhancer extracted from medicinal plants:paeoniflorin and tetramethylpyrazine[J].Behav Brain Res,1997,83(1-2):135-141.
    20 Tabata K,Matsumoto K,Murakami Y,et al.Ameliorative effects of paeoniflorin,a major constituent of peony root,on adenosine Al receptor-mediated impairment of passive avoidance performance and long-term potentiation in the hippocampus[J].Biol Pharm Bull,2001,24(5):496-500.
    21 Wu H,Wei W,Song L,et al.Paeoniflorin induced immune tolerance of mesenteric lymph node lymphocytes via enhancing beta 2-adrenergic receptor desensitization in rats with adjuvant arthritis[J].Int Immunopharmacol,2007,7(5):662-673.
    22 胡南,许惠玉,陈志伟,等.芍药苷的药理学研究进展[J].齐齐哈尔医学院学报,2007,18(9):1093-1095.
    23 Liu ZQ,Jiang ZH,Liu L,et al.Mechanisms responsible for poor oral bioavailability of paeoniflorin:Role of intestinal disposition and interactions with sinomenine[J].Pharm Res,2006,23(12):2768-2780.
    24 Hsiu SL,Lin YT,Wen KC,et al.A deglucosylated metabolite of paeoniflorin of the root of Paeonia lactiflora and its pharmacokinetics in rats[J].Planta Med,2003,69(12):1113-1118.
    25 Heikal OA,Akao T,Takeda S,et al.Pharmacokinetic study of paeonimetabolin I,a major metabolite of paeoniflorin from paeony roots[J].Biol Pharm Bull,1997,20(5):517-521.
    26 戴开金,罗佳波,谭晓梅,等.葛根芩连汤不同配伍对葛根素含量的影响[J].中草药,2003,34(6):506-508.
    27 谭晓梅,戴开金,罗佳波,等.葛根芩连汤不同配伍对黄芩苷含量的影响[J].中草药,2003,34(7):598-600.
    28 戴开金,罗佳波,吴昭晖,等.配伍对葛根芩连汤中甘草酸含量的影响[J].中草药,2003,34(12):1084-1087.
    29 吴昭晖,奚林明,戴开金,等.配伍对葛根芩连汤中小檗碱含量的影响[J].中草药,2004,35(1):33-35.
    30 钟志勇,龚奥娣,韩坚,等.用多指标正交设计合并线性回归法探讨芍药甘草汤的最佳配比[J].中药药理与临床,2005,21(6):7-10.
    31 贺丰,罗佳波.麻黄汤中臣、佐、使药对君药中麻黄碱的人体内过程的影响[J].中草药,2005,36(9):1313-1316.
    32 贺丰,罗佳波.麻黄汤中臣佐使药对君药中伪麻黄碱的人体药代学的影响[J].中国中药杂志,2005,30(18):1454-1457.
    33 吴禾,刘晔,姜华.紫外分光光度法测定灵芝及调脂灵中总灵芝酸的含量[J].解放军药学学报,2006,22(1):74-76.
    34 Li X,Xiao H,Liang X,et al.LC-MS/MS determination of naringin,hesperidin and neohesoeridin in rat serum after orally administrating the decoction of bulpleurum falcatum L and Fractus aurantii[J].J Pharmaceut Biomed,2004,34(1):159-166.
    35 祝晨陈,郑志华,陈知良,等.HPLC/MS法测定大黄酸在大鼠的血药浓度[J].中药材,2002,25(9):646-649.
    36 沈岚,徐德生,冯怡,等.液质联用研究麦角皂苷肠溶微球在大鼠体内的相对生物利用度[J].中草药,2005,36(5):683-686.
    37 王亚丽,梁逸曾,陈练,等.当归活性成分的血清药物化学研究[J].现代中药研究与实践.2004,18(增):75-79.
    38 王阶,郭丽丽,王永炎,等.方剂配伍理论研究方法及研究前景[J].世界科学技术--中医药现代化,2006,8(1):1-5.
    39 王阶,郭丽丽,王永炎.中药方剂有效成(组)分配伍研究[J].中国中药杂志,2006,13(6):5-9.
    40 彭明兴,吴永江,陈翼宇.黄连与吴茱萸配伍时黄连中主要化学成分溶出率变化规律[J].中国中药杂志,2003,28(7):629-632.
    41 潘浪胜,徐晓梅,吕秀阳,等.黄连与吴茱萸分煎后配伍时主要组分含量变化规律研究[J].中国药学杂志,2005,40(4):258-261.
    42 杨威,金香兰,于友华,等.黄连与吴茱萸配伍比例与功能关系的相关性分析[J].中国中医基础医学杂志,2003,9(11):849-851.
    43 李盛青,黄兆胜,黄耀权,等.黄连与吴茱萸不同比例组成的方剂的不同药理作用研究[J].广州中医药大学学报,2002,19(1):48-51.
    1 Ishida K,Takaai M,Hashimoto Y.Pharmacokinetic analysis of transcellular transport of quinidine across monolayers of human intestinal epithelial Caco-2 cells[J].Biol Pharm Bull,2006,29(3):522-526.
    2 Konishi Y,Kubo K,Shimizu M.Structural effects of phenolic acids on the transepithelial transport of fluorescein in caco-2 cell monolayers.Biosci Biotechnol Biochem,2003,67(9):2014 -2017.
    3 Da Violante G,Zerrouk N,Richard I,et al.Short term Caco-2/TC7 cell culture:comparison between conventional 21-d and a commercially available 3-d system.Biol Pharm Bull.2004,27(12):1986-1992.
    4 Okamura A,Emoto A,Koyabu N,et al.Transport and uptake of nateglinide in Caco-2 cells and its inhibitory effect on human monocarboxylate transporter MCT1[J].British Journal of Pharmacology,2002,137(3):391-399.
    5 Yamashita S,Furubayashi T,Kataoka M,et al.Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells[J].Eur J Pharm Sci,2000,10(3):195-204.
    6 Vachon PH,Beaulieu JF.Transient mosaic patterns of morphological and functional differentiation in the Caco-2 cell line[J].Gastroenterology,1992,03(2):414-423.
    7 Shah P,Jogani V,Bagchi T,et al.Role of Caco-2 cell monolayers in prediction of intestinal drug absorption[J].Biotechnol Prog,2006,22(1):186-198.
    8 杨海涛,王广基.Caco-2单层细胞模型及其在药学中的应用[J].药学学报,2000,35(10):797-800.
    9 Shitan N,Tanaka M,Terai K,et al.Human MDR1 and MRP1 recognize berberine as their transport sbustrate[J].Biosci Biotechnol Biochem,2007,71(1):242-245.
    10 Maeng HJ,Yoo HJ,Kim IW,et al.P-glycoprotein-mediated transport of berberine across Caco-2 cell monolayers[J].J Pharm Sci,2002,91(12):2614-2621.
    1 Berruet N,Sentenac S,Auchere D,et al.Effect of efavirenz on intestinal p-glycoprotein and hepatic p450 function in rats[J].J Pharm Pharmacent Sci,2005,8(2):226-234.
    2 Yumoto R,Murakami T,Nakamoto Y,et al.Transport of rhodamine 123,a P-glycoprotein substrate,across rat intestine and Caco-2 cell monolayers in the presence of Cytochrome po450 3A-related compounds[J].J Pharmacol Exp Ther,1999,289(1):149-155.
    3 Hochman JH,Chiba M,Yamazaki M,et al.P-glycoprotein-mediated effiux of indinavir metabolites in Caco-2 cells expressing Cytochrome P450 3A4[J].J Pharmacol Exp Ther,2001,298(1):323-330.
    4 王冰,潘彦舒,李彭涛.血脑屏障上的药物转运体P-糖蛋白[J].现代生物医学进展,2007,7(1):115-119.
    5 Ogihara T,Kamiya M,Ozawa M,et al.What kinds of substrates show P-glycoprotein- dependent intestinal absorption? Comparison of Verapamil with vinblastine[J].Drug Metab Pharmacokinet,2006,21(3):238-244.
    6 Mertens-Talcott SU,De Castro WV,Manthey JA,et al.Polymethoxylated flavones and other phenolic derivates from citrus in their inhibitory effects on P-glycoprotein-mediated transport of talinoloi in Caco-2cells[J].J Agric Food Chem,2007,55(7):2563-2568.
    7 Raad I,Terreux R,Richomme P,et al.Structure-activity relationship of natural and synthetic coumarins inhibiting the multidrug transporter P-glycoprotein[J].Bioorg Med Chem,2006,14(20):6979-6987.
    8 Shitan N,Tanaka M,Terai K,et al.Human MDR1 and MRPI recognize berberine as their transport substrate[J].Biosci Biotechnol Biochem,2007,71(1):242-245.
    9 Pachot JI,Botham RP,Haegele KD.Experimental estimation of the role of P-glycoprotein in the pharmacokinetic behaviour of telithromycin,a novel ketolide,in comparison with roxithromycin and other macrolides using the Caco-2 cell model[J].J Pharm Pharmaceut Sci,2003,6(1):1-12.
    10 Veau C,Faivre L,Tardivel S,et al.Effect of interleukin-2 on intestinal P-glycoprotein expression and functionality in mice[J].J Pharmacol Exp Ther,2002,302(2):742-750.
    11 Sun J,He ZG,Cheng G,et al.Multidrug resistance P-glycoprotein:crucial significance in drug disposition and interaction[J].Med Sci Monit,2004,10(1):RA5-14.
    12 Maeng HJ,Yoo HJ,Kim IW,et al.P-glycoprotein-mediated transport of berberine across Caco-2 cell monolayers[J].J Pharm Sci,2002;91(12):2614-2621.
    13 山本英.小柴胡汤对Caco-2细胞MDR1-mRNA转录量及药物转运活性的影响[J].国外医学·中医中药分册,2005,27(5):315-316.
    14 Nishimura N.Effects of Chinese herbal medicines on intestinal drug absorption[J].The Pharmaceutical Society of Japan,2005,125(4):363-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700