碳纳米管负载非晶态镍磷的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在共沉淀法制备的3种镍基催化剂上裂解甲烷制备了碳纳米管,研究结果表明:催化剂的性质对碳纳米管的产率,结构,形貌和物性有重要影响。应用XRD,TEM,BET和TG等表征手段对碳纳米管进行了表征。在Ni-Cu-Al催化体系中加入少量碳酸钠会降低碳纳米管的产率,使竹节状碳纳米管转变成大内径碳纳米管。体系中的碳酸钠对控制碳纳米管的形貌起了重要作用。利用化学气相沉积技术在多孔氧化铝模板上制备了取向碳纳米管阵列。通过控制阳极氧化电压可以调节膜板的孔径,进而可以控制碳管的直径。
     以次磷酸为还原剂,有机胺为pH值调节剂,用诱导——化学还原法制备了非晶态NiP/CNTs催化剂。以苯加氢为探针反应,研究了碳纳米管的不同处理方法以及催化剂的制备条件对非晶态NiP/CNTs催化活性的影响。用XRD,TEM,ICP,TPR,XPS,H_2-TPD和DTA等方法对催化剂进行了表征。讨论了载体——碳纳米管和稀土对非晶态NiP/CNTs催化剂活性和热稳定性的影响。实验结果表明:硝酸氧化和KOH活化均能促进碳纳米管负载非晶态NiP的催化活性。催化剂的制备条件对非晶态NiP/CNTs催化剂活性有一定影响。NiP在载体上具有非晶态结构。合金负载后粒径明显变小,分散度和比表面积有很大提高。非晶态NiP/CNTs催化剂中磷以及碳纳米管都能向镍给出电子,使镍表面富电子状态。富电子状态的镍更易被还原,氢在其上的吸附强度降低。非晶态NiP/CNTs催化剂的苯加氢活性较非晶态NiP合金低,但其比活性更高。这与载体的分散作用、载体与合金问相互作用、非晶态NiP/CNTs催化剂中Ni-H吸附键较弱以及碳纳米管的贮氢性能有关。非晶态NiP合金在碳纳米管上负载后热稳定性增强。这与载体所起的分散作用、传热贮热作用以及载体与合金间的相互作用密不可分。在非晶态NiP/CNTs合金中加入适量的稀土后,催化剂中镍含量、合金体相中的镍含量、催化剂的表面积以及活性镍表面积均有所增加。稀土能以结构效应以及电子效应促进非晶态NiP/CNTs催化剂苯加氢活性的提高。加入大量稀土会掩盖表面镍的活性位,从而导致催化剂活性下降。加入少量稀土改善了催化剂的热稳定性,主要是大尺寸稀土原子部分取代晶格中镍原子,降低了自由体积和原子扩散系数,同时稀土的分散作用有效阻止了镍原子聚集,使得非晶态合金更稳定。
Carbon nanotubes (CNTs) were synthesized from decomposition of methane over three nickel-based catalysts prepared by co-precipitation method. Experimental results showed that the nature of catalysts could affect the yield, microstructures, morphology and properties of CNTs that were characterized by XRD, TEM, BET and TG. The addition of sodium carbonate into Ni-Cu-Al catalyst brought about slight decreases in the yield of CNTs and led to the morphology change from bamboo-shaped CNTs to large-inner-diameter CNTs. The sodium carbonate added in system played an important role in controlling the morphology of CNTs. Chemical vapor deposition technique based on porous anodic aluminum oxide (AAO) template was applied for synthesizing highly aligned carbon nanotube arrays. The channel diameter of AAO, thereby the diameter of CNTs inside the channels, could be easily regulated by altering anodization voltage.
    Amorphous NiP/CNTs catalyst was prepared by induced reduction, in which H_3PO_2 was used as the reducing agent, and amine was used to adjust the pH value of the solution. Benzene hydrogenation was used as a probe reaction for the study of effect of different treatment to CNTs and preparation conditions on catalytic activity of amorphous NiP/CNTs catalyst. Catalysts were characterized by XRD, TEM, ICP, TPR, XPS, H_2-TPD and DTA. The effect of support-CNTs and rare earth elements on catalytic activity and the thermal stability were discussed. Experimental results showed that CNTs oxidized by HNO_3 or activated by KOH resulted in improvements in catalytic activity of amorphous NiP/CNTs catalyst, and preparation conditions could affect its catalytic activity to some extent. NiP supported on CNTs belonged to amorphous structure. The particle size of NiP alloy supported on CNTs became smaller. Its dispersions and the specific surface area increased remarkably. In amorphous NiP/CNTs catalyst, both phosphorus and CNTs could donate electrons to nickel, making Ni electron-rich. The reduction of the electron-rich Ni became easy and the strength of hydrogen adsorptions on it was weakened. The catalytic activity of benzene hydrogenation for NiP/CNTs catalyst was lower than that for amorphous NiP alloy, but its specific activity was higher, which attributed to the dispersing effect of support, the electronic interaction between support and alloy, the relatively weak Ni-H bond and hydrogen-storage ability of CNTs. The amorphous NiP alloy supported on CNTs could improve its thermal stability, owing to the dispersing effect of support, heat sink of the support and interaction between support and alloy. The addition of a small amount of rare earth elements could increase the content of nickel in NiP/CNTs catalyst, the bulk content of nickel, specific area of catalyst as well as activate metal surface area. The small amounts of rare earth elements added in amorphous NiP/CNTs catalyst promoted the catalytic activity of benzene hydrogen because of structure effect and electronic effect. However, higher content of rare earth elements led to the coverage of surface Ni atoms by rare earths, therefore decrease of catalytic activity. The addition of rare earths enhanced the thermal stability of catalyst due to the possibility that a larger atom of rare earths compared with Ni and P partly displaced Ni in the lattice, resulting in less free volume and a lower rate of diffusing, moreover, such addition might prevent the gathering of Ni atom due to the dispersing effect of rare earth.
引文
1 Iijima S. Helical microtubles of graphitic carbon[J]. Nature, 1991,354:56-58.
    2 Li X S, Zhu H W, Ci L J, et al. Hydrogen uptake by graphitized multi-walled carbon nanotubes under moderate pressure and at room temperature[J]. Carbon,2001,39:2077-2079.
    3 Che Guangli, Lakshmi B B, Fisher E R, Martin C R. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 1998, 393:346-349.
    4 朱艳秋.巴基管及其工程材料的研究[D].北京,清华大学机械工程系,1996.
    5 成会明.碳纳米管——制备、结构、物性及应用[M].化学工业出版社,2002:28-32.
    6 Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes[J]. Nature, 1992,358:220-222.
    7 Colbet P T, Zhang J, Mcclure S M, et al. Growth and sintering of fullerene nanotubes[J]. Science, 1994,266:1218-1233.
    8 Guo T. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chem Phys Lett, 1995, 243: 49-54.
    9 王敏炜,彭年才,李凤仪.化学气相沉积法制各碳纳米管的研究进展[J].现代化工,2002,22(4):18-21.
    10 Hsuw K. Electrolytic formation of carbon nanostructure[J]. Chem Phys Lett, 1996,262(1-2):161-167.
    11 Yamamoto K. New method of carbon nanotubes[J]. Phys Letts A, 1995,197(1):40-44.
    12 N M Rodriguez, Alan Charnbers, R T K Baker. Catalytic engineering of carbon nanostructures[J]. Langmuir, 1995(11): 3862-3866.
    13 马衍梅.催化生长碳纤维的研究[D].天津大学,1999.
    14 陈久岭.甲烷催化裂解生长纳米碳纤维及其应用的基础研究[D].天津大学,1999.
    15 G G Tibbetts, C A Bernardo, D W Gorkiewicz, et al. Role of sulfur in the production of carbon fibers in the vaporphase[J]. Carbon,1994,32(4):569-576.
    16 何农跃,肖鹏峰.Fe/NaY催化合成纳米碳管及对纳米碳管孔径的调变[J].湘潭大学自然科学学报,1999,21(2):34-38.
    17 P Chen, el al. Growth of carbon nanotubes by catalytic decomposition of CH_4 or CO on a Ni-MgO catalyst[J]. Carbon, 1997, 35(10): 1495-1501.
    18 董树荣,徐江平.催化热分解法制备纳米碳管的研究[J].炭素,1998(3):28-33.
    19 Y D Li, J L Chen, L Chang. Catalytic growth of carbon fibers from methane on a nickel-alumina??compsite catalyst prepared from feitknecht compound precursor[J]. Appl Catal A, 1997,163,45-47.
    20 A Govindaraj, E Flahallt, Ch Laurent, et al. An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg_(1-x) M_xAl_2O_4 spinel catalysts[J]. J Mater Res, 1994, 14(6):2567-2576.
    21 N M Rodriguez. A review of catalytically grown carbon nanofibers[J]. J Mater Res, 1993(8): 3233-3250.
    22 王军科,王育煌,翁维正,等.Ni基催化剂上CH_4裂解制备纳米碳管的研究[J].化学学报,1997(55):271-276.
    23 张爱民,莫宏,李屯,等.载铁沸石催化剂合成纳米碳管[J].科学通报,1998,43(18):1946-1950.
    24 V lvanov, J B Nagy, et al. The study of carbon nanotubules produced by catalytic method[J]. Chem Phys Lett, 1994, (223): 329-335.
    25 唐紫超,王育煌,黄荣彬,等.固相酸催化条件下碳纳米管的形成[J].应用化学,1997,14(2):32-35.
    26 H J Dai, Andrew G Rinzler, Pasha Nikolaev, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide[J]. Chem Phys Lett, 1996, 260: 471-475.
    27 Murata, et al. Process for producing hydrogen from hydrocarbon[P]. US:5 650 132, 1997-07-22.
    28 陈萍,张鸿斌,林国栋,等.低温催化裂解烷烃法制备碳纳米管[J].厦门大学学报(自然科学版),1996,35(1):61-66.
    29 陈萍,张鸿斌,林国栋,等.催化裂解CH_4或CO制碳纳米管结构性能的谱学表征[J].高等学校化学学报,1998,19(5):765-769.
    30 K Hernadi, A Fonseca, et al. Production of nanotubes by the catalytic decomposition of different carbon-containing compounds[J]. Appl Catal A, 2000,199:245-255.
    31 Y D Li, J L Chen, Y N Qin, et al. Simultaneous production of hydrogen and nanocarbon from &composition of methane on a nickel-based catalyst[J]. Energy & Fuels,2000,(14):1188-1194.
    32 Nolan, et al. Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon nomoxide and the nanoencapsulates and nanotubes formed thereby [P]. US :5965 267.1999-10-12.
    33 W Teunissen. Tailoring of carbon fiber and carbon coated ferromagnetic catalyst supports[D]. University Utrecht, 2000.
    34 T W Ebberse. Carbon nanotubes[J]. Annu Rev Mater Sci, 1994,24:235-264.
    35 Fan S S, Chapline M G, Granklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science, 1999, 283:512-514.
    36 徐东升,郭国霖,桂琳琳,等.以多孔硅为模板制备取向碳纳米管[J].中国科学(B辑),2000,30(4):289-293.
    37 Xu Dong-sheng, Guo Guo-lin, Gui Lin-lin, et al. Controlling growth and field emission property of??aligned carbon nanotubes on porous silicon substrates[J]. Appl Phys Lett, 1999, 75:481.
    38 王振霖,王太宏.基于阳极氧化法的纳米结构加工和纳米器件的制备[J].微电子技术,2001,29(5):17-20.
    39 苗丕峰.L_2铝H_2SO_4阳极氧化及电解着色的研究[J].四川工业学院学报,1996,15(2):46-50.
    40 王爱华,管荻华,周维亚,等.多孔氧化铝有序膜的制各研究[J].无机化学学报,2002,18(5):447-450.
    41 Yuan Zhi-hao, Huang Hua, Liu Liang, et al. Controlled growth of carbon nanotubes in diameter and shape using template-synthesis method[J]. Chemical Physics Letters, 2001, 345: 39-43.
    42 Sui Y C, Gonzalez-Leon J A, Bermudez A, et al. Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template[J]. Carbon, 2001, 39: 1709-1715.
    43 Sui Y C, Cui B Z, Guardiun R, et al. Growth of carbon nanotubes and nanofibres in porous anodic alumina film[J]. Carbon, 2002, 40: 1011-1016.
    44 Patermarakis G, Moussoutzanis K, Chandrino S J. Preparation of ultra-active alumina of designed porous structure by successive by hydrothermal and thermal treatments of porous anodic Al_2O_3 films[J]. Appl Cat A: Gen, 1999, 180(1/2): 345-358.
    45 李梦轲.在多孔Al_2O_3膜板上制备取向碳纳米管[J].西北师范大学学报(自然科学版),2000,36(1):27-30.
    46 Zhang X Y, Zhang L D, Li G H, et al. Template Synthesis of well-graphitized carbon nanotube arrays[J]. Materials Science and Engineering A, 2001, 308:9-12.
    47 Hornyak G L, Dillon A C, Parilla P A, et al. Template synthesis of carbon nanotubes[J]. Nanostructured Materials, 1999, 12: 83-88.
    48 Zhang X Y, Zhang L D, Zhong M J, et al. Template synthesis of high-density carbon nanotube arrays[J]. Journal of Crystal Growth, 2001,223:306-310.
    49 Kaatz F H, Siegal M P, Overmyer D L, et al. Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition[J]. Materials Science and Engineering C, 2003, 22:141-146.
    50 Planeix J M. Application of carbon nanotubes as supports in heterogeneous catalysis[J]. J Am Chem Soc, 1994, 116: 7935-7936.
    51 Ajavan P M, Ebbesen T W, Ichihashi T, et al. Opening carbon nanotubes with oxygen and implications for filling[J]. Nature, 1993, 362: 522-525.
    52 Tsang S, Harris P J F, Green M L H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide[J]. Nature, 1993,362:520-522.
    53 Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening :and filling carbon nanotubes[J]. Nature, 1994,372:159-162,
    54 杨占红,李新海,李晶,等.碳纳米管纯化技术研究[J].中南工业大学学报,1999,30(4):389-391.55 杨占红,李新海,王红强,等.碳纳米管的提纯-重铬酸钾氧化法[J].化学世界,1999,12:627-630.
    56 Tohji K, Goto T, Takahashi H, et al. Purifying single-walled carbon nanotubes[J]. Nature, 1996, 383:679.
    57 Ago H, Kugler T, Cacialli F, et al. Work functions and surface functional groups of multiwall carbon nanotubes[J]. J Phys Chem B, 1999, 103(38): 8116.
    58 Shelimov K B, Esenaliev R O. Rinzler A G, et al. Purificatition of single-wall carbon nanotubes by ultrasonically assisted filtration[J]. J. Chem Phys Lett, 1998, 282:429.
    59 Chun-Hua Li, Ke-Fu Yao, Ji Liang. Influence of acid treatments on the activity of carbon nanotubes-supported catalysts[J]. Carbon, 2003, 41: 858-860.
    60 金亚旭,刘宗健,陈卫祥,等.纳米碳管负载金属镍催化叶绿素加氢反应[J].物理化学学报,2002,18(5):459-462.
    61 王正元,贾志杰,张增民,等.用红外光谱研究硝酸处理对多壁碳纳米管表面羧基的影响[J].炭素技术,1999,5:14-16.
    62 Marsh H, Yan D S, O Grady T M, Wennerberg A. Formation of active carbons from cokes using potassium hydroxide[J]. Carbon, 1984: 22(6): 603-611.
    63 Ehrburger P, Addoun A, Addoun F, Donnet J B. Carbonization of coals in the presence of alkaline hydroxides and carbonates: formation of activated carbons[J]. Fuel, 1986, 65: 1447-1449.
    64 Otawa T, Nojima Y, Miyazaki T. Development of KOH activated high surface area carbon and its application to drinking water purification[J]. Carbon, 1997, 35(9): 1315-1319.
    65 Lozano-Castello D, Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A. Preparation of activated carbons from Spanish anthracite. I. Activation by KOH[J]. Carbon, 2001, 39(5):741-749.
    66 Ahmadpour A, Do D D. The preparation of active carbons from coal by chemical and physical activation[J]. Carbon,1996,34(4):471-479.
    67 Yoshizawa N, Maruyama K, Yamada Y, Ishikawa E, Kobayashi M, Toda Y, et al. XRD evaluation of KOH activation process and influence of coal rank[J]. Fuel,2002,81 (13): 1717-1722.
    68 Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH-an insight into the chemical activation mechanism[J]. Carbon,2003, 41(2):267-275.
    69 Raymundo-Pinero E, Cazorla-Amoros D, Linares-Solano A, Delpeux S, Frackowiak E, Szostak K, et al. High surface area carbon nanotubes prepared by chemical activation[J]. Carbon, 2002, 40(9): 1614-1617.
    70 Raymundo-Pinero E, Azais P, Cazorla-Amoros D, Linares-Solano A. Szostak K. Study of the activation mechanism of carbon nanotubes by KOH and NaOH[C]. In: Extended Abstracts, Carbon 2003: International Conference, Oviedo, Spain, July 6-10. Spanish Carbon Group, p. 55.71 Qi Jiang, Mei-Zhen Qu, Bo-Lan Zhang, et al. Preparation of activatied carbon nanotubes[J]. Carbon,2002,40:2743-2745.
    72 Q Jiang, Y Zhao. Effects of activation conditions on bet specific surface area of activated carbon nanotubes[J]. Mecroporous and Mesoporous Materials,2004,76:215-219.
    73 V Brotons, B Coq, J M Planeix. Catalytic influence of bimetallic phase for the synthesis of single-wailed carbon nanotubes[J]. J Mol Catal, 1997,397.
    74 吕德义,徐铸德,徐丽萍等.碳纳米管作为载体在邻硝基甲苯多相催化加氢中的应用[J].浙江工业大学学报,2002,30(5):464-466.
    75 Jin Wang, Hong Bo Chen, Hong He, et al. New Rh-ZnO/carbon nanotubes catalyst for methanol synthesis[J]. Chinese Chemical Letters, 2002, 13(12): 1217-1220.
    76 董鑫,张鸿斌,林国栋等.碳纳米管促进Cu-基高效甲醇合成催化剂[J].厦门大学学报(自然科学版),2002,42(2):135-140.
    77 Hong-Bo Chen, Jing-Dong Lin, Yun Cai, et al. Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure[J]. Applied Surface Science,2001,180:328-335.
    78 Yun Cai, Jing Dong Lin, Hong Bo Chen, et al. Novel Ru-K/carbon nanotubes catalyst for ammonia synthesis[J]. Chinese Chemical Letter, 2000, 11(4):373-374.
    79 T V Reshetenko, L B Avdeeva, Z R Ismagilov, et al. Catalytic filamentous carbon as supports for nickel catalysts[J]. Carbon, 2004, 42:143-148.
    80 Wei zhong Qian, Tang Liu, Fei Wei, et al. Carbon nanotubes containing iron and molybdenum particles as a catalyst for methane decomposition[J]. Carbon,2003,41:846-848.
    81 李春波,潘伟雄,邱显清.碳纳米管的制备及其在钌络合物催化氧化环己烯中的应用[J].天然气化工,2002,27(5):8-11.
    82 彭峰,吕平,冯景贤.碳纳米管的制备及其用于甲醇气相羰基化催化性能[J].天然气化工,2002,27(6):1-5.
    83 张宇,吴汔昕,张鸿斌等.碳纳米管负载铑催化剂上丙稀氢甲酰化[J].物理化学学报,1997,13(12):1057-1060.
    84 Yu Zhang, Hong-Bin Zhang, Guo-Dong Lin, et al. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst[J]. Applied catalysis A:Gen, 1999. 187:213-224.
    85 Tang Shuihua, Gao Lizhen, Liu Baochun. NO decomposition over carbon nanotubes(CNTs), Rh/CNTs and Rh/Al_2O_3[J]. J of Natural Gas Chemistry, 2001, 10(3):196-202.
    86 J Z Luo, L Z Gao, Y L Leung et al. The decomposition of NO on CNTs and 1 wt% Rh/CNTs [J]. Catalysis Letters, 2000, 66:91-97.87 郑兆勃,非晶态材料引论[M].科学出版社,北京,1987:1-3.
    88 杨建明,吕剑,安忠维.非晶态合金镍系催化剂研究进展[J].工业催化,2000,8(5):18-24.
    89 顺德骥.非晶态材料与应用[J].宝钢技术,1996,4:59-63.
    90 吕志果,郭振美.负载型非晶态合金催化剂研究进展[J].化工进展,21(8):552-555.
    91 张荣斌,石秋杰,李凤仪,罗来涛.非晶态合金催化剂研究进展[J].江西科学,1999,17(3):190-196.
    92 S Molnar, G V Smith, M Bartok. New catalytic materials from amorphous metal alloys[J]. Adv Catal, 1989,36(2):329-367.
    93 王一禾,杨膺善.非晶态合金[M].冶金工业出版社,北京,1985:43-60.
    94 王绪威.非晶态材料及应用[M].高等教育出版社,北京,1992:1-6.
    95 郑兆勃.非晶固体材料引论[M].科学出版社,北京,1987:40-46.
    96 闵恩泽.工业催化剂的研制与开发[M].中国石化出版社,北京,1997,195-207.
    97 闵恩泽,李成岳.绿色石化技术的科学与工程基础[M].中国石化出版社,北京,2002:250-271.
    98 Chen Yi. Chemical preparation and Characterization of metalloid ultrafine amorphous alloy particales[J]. Catal Today, 1998,44:3-16.
    99 J Van Wonterghem, S M Rup, C J W Koch, S W Charles, et al. Formation of ultra-fine amorphous alloys particles by reduction in aqueous solution[J]. Nature, 1986,322:622-623.
    100 Jianyi Shen, Zhiyu Li, Qijie Yan, Yi Chen. Reaction of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles[J]. J Phys Chem. 1993,97:8504-8511.
    101 A Yedra, L Fernandez Barquin, R Garcia Calderon, Q A Pankhurst, J C Gomez Sal. Survey of conditions to produce metal-boron amorphous and nanocrystalline alloys by chemical reduction[J]. J Non-Crystalline Solids, 2001,287:20-25.
    102 D S Xue, F S Li, R J Zhou. Control of boron content in amorphous powder prepared by borohydride reduction[J]. J of Materials Letters, 1990,9:506-508.
    103 沈俭一,李智渝,胡征,洪建明,陈懿.诱导自催化法制备Ni-P超细非晶态合金的动力学研究[J].化学学报,1994,52:858-865.
    104 沈俭一,胡征,张黎峰,陈懿.镍-磷非晶态合金超细颗粒的制备和物性研究[J].化学学报,1994,50:566-570.
    105 Jianyi Shen, Qinghong Zhong, Zhiyu Li, Yi Chen. Chemical reduction for the preparation of Ni-P ultrafine amorphous alloy particles from aqueous solution[J]. Journal of Materials Science Letters, 1996, 15: 715-717.
    106 李智渝,沈俭一.水溶液中制备Ni-P-B超细非晶态和经微粒的化学反应[J].无机化学学报,1998,14(4):396-400.
    107 吴勇,胡征,裴华兴,陈懿.Fe-P-B超细非晶态合金的制备规律及组元间相互作用研究[J].高等学??校化学学报,2000,21(1):10-13.
    108 沈俭一,陈懿.制备超细非晶态合金的反应机理[J].大学化学,1995,10(6):32-37.
    109 沈俭一,张庆红,李智渝,陈懿.超细非晶镍合金的化学制备及类金属元素对性质的影响[J].化学学报,1995,53:1168-1172.
    110 姚凯文,范以宁,陈懿,李新生.Co-B非晶态合金超细微粒催化剂研究[J].催化学报,1995,16(4):253-254.
    111 G V Smith, W E. Brower. Amorphous alloy catalysts[C]. Proc Int Congr Catal, 7th, Tokyo, 1980:355.
    112 唐忠.非晶态合金催化剂用于不饱和化合物加氢的研究进展[J].精细石油化工进展,2000,1(2):23-27.
    113 王一禾,杨赝善.非晶态合金[M].冶金工业出版社,北京,1985:280-286.
    114 G H Wu, B S Liu, J F Deng. A novel Ni-Ru-Pamorpous alloy composite membrane and its performance study[J]. Chem Lett, 1998:889-890.
    115 贺岩峰,关毅,廖巧丽,秦永宁.离子交换树脂负载Ni-B无定型合金催化剂的制备和性能[J].应用化学,1998,15(2):47.
    116 V Kesavan, P S Sivanand, S Chandrasekaran, Y Koltypin, A Gedanken. Catalytic aerobic oxidation of cycloalkanes with nanostructured amorphous metals and alloys[J]. Angew Chem Int Ed, 1999, 38(23):3521-3523.
    117 M Stancheva, S. Manev, D Lazarov, M Mitov. Catalytic activity ofnichel based amorphous alloys for oxidation of hydrogen and carbon monoxide[J]. Appl Catal A, 1996,135:19-24.
    118 H Yamashita, M Yoshikawa, T Funabiki, S Yoshida. Catalysis by amorphous metal alloys V Hydrogenation of carbon monoxide over amorphousNi_(76)P_(19)La_3 ribbon alloy[J]. J Catal, 1986, 99: 375-382.
    119 李同信,张秀峰,李合秋,靳常德,蒋育林,崔建彤,王大庆.非晶态超微离子镍合金催化剂的研究,Ⅰ Ni-B合金的制备及表征[J].催化学报,1995,16(4):299-303.
    120 李同信,张秀峰,李合秋,靳常德,蒋育林,崔建彤,王大庆.非晶态超微离子镍合金催化剂的研究,Ⅱ Ni-B催化剂对苯加氢反应动力学的研究[J].催化学报,1995,16(5):399-401.
    121 H M Wang, Z B Yu H, Y Chen, J Yang, J F Deng High activity ultrafine Ni-Co-B amorphous alloy powder for the hydrogenation of benzene [J]. Appl Catal A, 1995, 129: 1143-1149,
    122 Z B Yu, M H Qiao, H X Li, J F Deng. Preparation of amorphous Ni-Co-B alloys and the effect of cobalt on their hydrogenation activity[J]. Appl Catal A, 1997, 163:1-13.
    123 石秋杰,陈昭萍,罗来涛,李凤仪,王祥生.海泡石对非晶态NiB催化剂的改性研究[J].物理化学学报,2000,16(6):501-506.
    124 李凤仪,张荣斌,李海龙,石秋杰.载体对非晶态NiB合金催化性能影响的比较[J].燃料化学学报,2001,29(增刊):215-217.125 R B Zhang, F Y Li, Q J Shi, L T Luo. The effects of rare earths on supported amorphous NiB/Al_2O_3 catalysts[J]. Appl Catal A, 2001,205:279-284.
    126 韦世强,李忠瑞,张新夷,陈昌荣,刘文汉,胡天斗,谢亚宁,刘涛,王小光.超细Ni-B非晶态合金的退火晶化及其催化性能[J].科学通报,2000,45(18):1941-1944.
    127 陈昌荣,卞国柱,姜明,万小红,李忠瑞,韦世强.微量铈对Ni-P非晶态合金催化剂的苯加氢性能及热稳定性的影响[J].催化学报,1999,20(6):659-663.
    128 S H Xie, M H Qiao, H X Li, W J Wang, J F Deng. A novel Ru-B/SiO_2 amorphous catalyst used in benzene-selective hydrogenation[J]. Appl Catal A, 1999,176:129-134.
    129 杨军,崔黎丽,邓景发.纳米Ni-B非晶态合金的催化性能研究[J].高等学校化学学报,1994,14:1848-1850.
    130 李炳诗,杨军,邓景发.非晶态Ni-B催化剂的加氢性能研究[J].石油化工,1994,23(12):791-794.
    131 J F Deng, H Y Chen. A novel amorphous Ni-W-Palloy powder and its hydrogenation activity[J]. J Mater Sci Lett, 1993,12:1508-1510.
    132 W J Wang, M H Qiao, H X Li, J F Deng. Amorphous NiP/SiO_2 aerogel: its preparation, its high thermal stability and its activity during the selection hydrogenation of cyclopentadience to cyclopetene[J]. Appl Catal A, 1998,166:243-247.
    133 W J Wang, M H Qiao, J Yang, S H Xie, J F Deng. Selective hydrogenation of cyclopentadiene to cyclopetene over an amorphous NiB/SiO_2 catalyst[J]. Appl Catal A, 1997,163:101-109.
    134 W J Wang, M H Qiao, H X Li, J F Deng. Partial hydrogenation of cyclopetadiene over amorphous NiB alloy on α-Alumina and titania-modified α-Alumina[J]. J Chem Technol Biotechnol, 1998,72:280-285.
    135 W J Wang, M H Qiao, H X Li, W L Dai, J F Deng. Study on the deactivation amorphous NiB/SiO_2 catalyst during the selective hydrogenation of cyclopentadiene to cyclopetene[J]. Appl Calal A, 1998,168:151-157.
    136 W J Wang, H X Li, S H Xie, Y J Li, J F Deng. Regeneration at room temperature for amorphous NiB/SiO_2 catalyst deactivated in cyclopentadiene hydrogenation[J]. Appl Catal A, 1999,184:33-39.
    137 W J Wang, H X Li, J F Deng, Regeneration of amorphous NiB/SiO_2 catalysts deactivated in cyclopentadiene hydrogenation[J]. J Chem Technol Biotechnol, 2000, 75: 147-151.
    138 J F Deng, X P Zhang, N Z Min. Amorphous nickel-phosphorus alloy deposited on a support and its hydrogenation activity[J]. Appl Catal A, 1988,37,339-343.
    139 宗保宁,闵恩泽,董树忠,邓景发.非晶态金属合金作催化剂材料的研究Ⅰ Ni-P非晶态合金对苯乙烯加氢活性的研究[J].化学学报,1989,47:1052-1055.
    140 张西平,刘定江,邓景发.负载型Co-P/SiO_2非晶态催化剂的研究[J].催化学报,1990,11(3):173-179.141 宗保宁,闵恩泽,朱永山.预处理条件对Ni-Y-P非晶态合金液相加氢性能的影响[J].催化学报,1992,13(4):296-299.
    142 宗保宁,张迪倡,金泽明.Ni-Ce-P非晶态合金晶化前后的结构及苯乙烯液相加氢活性[J].石油学报(石油加工),1993,9(2):102-106.
    143 宗保宁,闵恩泽,朱永山.预处理对Ni-Ce-P非晶态合金液相加氢活性的影响[J].化学学报,1991,49:1056-1061.
    144 宗保宁,闵恩泽,朱永山.Ni-Sm-P非晶态合金的液相加氢性能[J].催化学报,1992,13(3):216-219.
    145 H X Li, H Li, W J Wang, J F Deng. Crystallization deactivated of NiP-SiO_2 amorphous catalyst and the stabilizing effect of silica support on the Ni-P amorphous structure[J]. J Catal, 2000, 194 :211-221.
    146 唐忠,张帆,陶庭树,冯仰渝.Ni-Cu-B非晶态合金催化剂对双烯选择性加氢性能的研究[J].石油化工,2000,29:954-956.
    147 马爱增.负载型Ni-B非晶态合金催化剂的表征及催化活性[J].催化学报,1999,20(6):603.
    148 马爱增,陆婉珍,闵恩泽.含金属添加剂的负载型NiB非晶态合金催化剂的结构及催化性能[J].石油化工,2000,9(3):179-183.
    149 马爱增,陆婉珍,闵恩泽.非晶态合金催化剂对乙烯加氢中微量乙炔的选择加氢[J].石油学报(石油加工),1996,12(1):29-37.
    150 马爱增.NiP非晶态合金的负载方法及催化剂的结构与催化性能[J].分子催化,1999,13(5):345.
    151 S Yoshida, H Yamashita, T Funabiki, T Yonezawa. Catalysis by amorphous metal alloys. Part 1 Hydrogenation of olefins over amorphous Ni-P and Ni-B alloys [J]. J Chem Soc, 1984, 80: 1435-1446.
    152 Y N Fan, Z Hu, J Y Shen, Q J Yan, Y Chen. Surface state and catalytic activity of ultrafine amorphous NiB alloy particles prepared by chemical reduction[J]. J Mater Sci Lett, 1993, 12:596-597.
    153 H X Li, W J Wang, B N Zong, E Z Min, J F Deng. Skeletal Ni-P amorphous alloy(R-Ni-P) as a hydrogenation catalyst[J]. Chem Lett, 1998: 371-372.
    154 盛春,周诗瑶,李和兴,邓景发.NiP/SiO_2催化剂晶化过程及其加氢活性研究[J].物理化学学报,1998,14(2):164-168.
    155 H X Li, W Li Dai, C Sheng, S Y Zhou, J F Deng. Modification on Ni-P amorphous catalyst with SiO_2 and Pd[J]. Chem Lett,1997:133-134.
    156 慕旭宏,王宣,宗保宁,舒兴田,闵恩泽.非晶态合金催化剂用于葡萄糖加氢制山梨醇的研究[J].精细化工,1999,16:41-44.
    157 乔明华,谢颂海,戴维林,邓景发.超细NiWB合金的制备及葡萄糖加氢性能的研究[J].化学学报,2000,58(7):904-908.
    158 H X Li, H Li, M H Wang. Glucose hydrogenation over promoted Co-B amorphous alloy catalysts[J]. Appl. Catal A, 2001,207:129-137.
    159 H X Li, W J Wang, J F Deng. Glucose hydrogenation to sorbitol over a skeletal Ni-P amorphous alloy??catalysts(Raney Ni-P)[J]. J Catal, 2000,191:257-260.
    160 W S Xia, Z Hu, Y S Jiang, Y Chen. A theoretical study on interaction between the components of amorphous alloy Fe(or Ni)-P-B system[J]. J Mol Struct, 1996,366:259-263.
    161 H X Li, X F Chen, M H Wang, Y P Xu. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over an ultrafine Co-B amorphous alloy catalyst[J]. Appl Catal A, 2002, 225:117-130.
    162 杨军,邓景发,董树忠.非晶态金属合金作催化剂材料的研究Ⅲ Ni-Fe-P非晶态合金对CO加氢活性的研究[J].化学学报,1991,49:833-848.
    163 王鹏,仇立平,邢蓉.钐对NiB/SiO_2非晶态合金催化剂的催化性能及表面性质的影响[J].稀土,1998,20(2):45-49.
    164 Zhang Rongbin, Li Fengyi, Ning Zhang, et al. Benzene hydrogenation over amorphous NiB/bebtonite catalyst and promoting effect of Nd[J]. Appl Cat A, 2003,239:17-23.
    165 Yongjiang Hou, Yaquan Wang, Fe He, et al. Effects of lanthanum addition on NiB/γ-Al_2O_3 amorphous alloy catalysts used in anthraquinone hydrogenation[J]. Appl Catal A, 2004, 259: 35-40.1 Hernadi K, Fonseca A, Janos B Nagy, et al. Production of nanotubes by the catalytic decomposition of different carbon-containing compound[J]. Appl Catal A, 2000, 199:245-255.
    2 S Takenaka, S Kobayash, H Ogihara, K Otsuka. Ni/SiO_2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber[J]. J Catal, 2003, 217(1):79-87.
    3 Avdeeva L B, Goncharova O V, Kochubey D I, Zaikovskii V I, Plyasova L M, Novgorodov B N, Shaikhutdinov S K. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. Ⅱ.Evolution of the catalysts in reaction[J], Appl Catal A, 1996, 141: 117-129.
    4 Zaikovskii V I, Avdeeva L B, Goncharova O V, A V Ziborov, L M Plyasova, Kochubey D I, Novgorodov B N. Proc Ⅷ Soviet-French Seminar on catalysts, institute of catalysis, Novosibirsk, 1990:183.
    5 Shaikhutdinov S K, Avdeeva L B, Goncharova O V, Kochubey D I, Novgorodov B N, Plyasova L M. Coprecipitated Ni-Al and Ni-Cu-Al catalysts for methane decomposition and carbon deposition. I. Genesis of calcined and reduced ctalysts [J]. Appl Catal A, 1995,126:125-139.
    6 Shaikhutdinov S K, Zaikovskii V I, Avdeeva L B. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. Ⅲ. Morphology and surface structure of the carbon filaments[J]. Appl Catal A, 1996,148:123-133.
    7 Tang C C, Ding X X, Gan Z W, Gao J M, Huang X T, Qi S R, Fan S S. Synthesis of carbon nanotubes using supported catalysts modified by lanthanum species[J]. Carbon, 2002, 40:2495-2505.
    8 Yongdang Li, Jiuling Chen, Liu Chang. Catalytic growth of carbon fibers from methane on a nickel-alumina composite catalyst prepared from Feitknecht compound precursor[J]. Appl Catal A, 1997, 163:45-57.
    9 A Fischer, R Hosemann, W Vogel, J Koutecky, J Pohl, M Ralek, Proceedings of The 7th International Congress on Catalysis, Tokyo, 1980, p:341.
    10 Khulbe K C, Mann R S, Nature of Ni-Cu alloys and their role in chemical reactions[J]. Catal Rev Sci??Eng, 1982,24(3):311-328.
    11 Jiuling Chen, Yongdan Li, Yanmei Ma, Yongning Qin, Liu Chang, Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions[J]. Carbon, 2001, 39:1467-1475.
    12 Weizhong Qian, Tang Liu, Fei Wei, Zhanwen Wang, Dezeng Wang, Yongdan Li. Carbon nanotubes with large cores produced by adding sodium carbonate to the catalyst[J]. carbon, 2003,41:2653-2689.
    13 Weizhong Qian, Fei Wei, Tang Liu, Zhanwen Wang. What Causes the carbon nanotubes collapse in a chemical vapor deposition process[J]. Journal of Chemical Physics, 2003, 118(2):878-882.
    14 Q Liang, L Z Gao, Q Li, S H, Tang, B C Liu, Z L Yu, Carbon nanotube growth on Ni-particles prepared in situ by reduction of La2NiO4[J]. Carbon, 2001, 39:897-903.
    15 Pan Z W, Xie S S, Chang B H, Sun L F, Zhou W Y, Wang G, Direct growth of aligned open carbon nanotubes by chemical vapor decomposition[J]. Chem Phys Lett,1999, 299:97-102.
    16 Amelinckx S, Zhang X B, Bernaerts D, Zhang X F, Ivanov V, Nagy J B. A formation mechanism for catalytically grown helix-shaped graphite nanotubes[J]. Science, 1994, 265:635-639.
    17 Kong J, Cassel Am, Dai H J. Chemical vapor decomposition of methane for single-walled carbon nanotubes[J]. Chem. Phys Lett, 1998,292:567-574.
    18 Kovalevski V V, Safronov A N, Pyrolysis of hollow carbons on melted catalyst[J]. Carbon, 1998,36(7): 963-968.
    19 Marina A E, Omitry Y E, Andrey L C, Gennady G K, Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction condition on the yield of carbon and morphology of carbon filaments[J]. J of Catal, 2001,201:183-197.
    20 H Li, Q Liang, L Z Gao, et al. Catalytic production of carbon nanotubes by decomposition of CH_4 over the pre-reduced catalysts LaNiO_3, La_4Ni_3O_(10), La_3Ni_2O_7 and La_2Ni_3O_4 [J]. Catalysis Letters, 2001,74(3-4): 185-188.1 杨全红.纳米碳管的表面、孔隙及其与贮氢性的关系[D].博士后工作报告,沈阳:中国科学院金属研究所,2001.
    2 Chunhua Li, Kefu Yao, Jiliang. Influence of acid treatments on the activity of carbon nanotubes-supported catalysts[J]. Carbon, 2003,41:858-860.
    3 Qi Jiang, Meizhen Qu, Bolan Zhang, Zuolong Yu. Preparation of activated carbon nanotubes[J].carbon, 2002,40:2743-2745.
    4 E Raymundo-Pinero, D Cazorla-Amoros, A Linares-Solano, S Delpeux, E Frackowiak, K Szostak, F Beguin. High surface area carbon nanotubes prepared by chemical activation[J]. Carbon,2002, 40:1597-1617.
    5 G Maurin, I Stepanek, P Bernier, et al. Segmented and opened multi-walled carbon nanotubes[J]. Carbon, 2001,39:1273-1278.6 Hiroki Ago, Thomas Kugler, Franco Cacialli, et al. Work functions and surface functional groups of multiwall carbon nanotubes[J]. J Phys Chem. B, 1999, 103: 8116-8121.
    7 金亚旭,刘宗健,陈卫祥等.纳米碳管负载金属镍催化叶绿素加氢反应[J].物理化学学报,2002,18(5):459-462.
    8 王正元,贾志杰,张增民等.用红外光谱研究硝酸处理对多壁碳纳米管表面羧基的影响[J].炭素技术,1999,5:14-16.
    9 曹茂盛,刘海涛,李辰砂,陈玉金,马文有.碳纳米管表面处理技术的研究[J].中国表面工程,2002,4:32-36.
    10 王美佳,刘敏,王连英,徐金杰,白玉白,李铁津,李镇文,翟美臻.功能化多壁碳纳米管的光电性质[J].应用化学,2003,20(4):318-322.
    11 王红娟,彭峰,邝志敏,黎志欣,朱汉财.羧基化碳纳米管的酯化与酰氯化修饰研究[J].炭素技术,2004,23(6):10-12.
    12 Marsh H, Yan D S, O Grady T M, Wennerberg A. Formation of active carbons from cokes using potassium hydroxide[J]. Carbon, 1984,22(6):603-611.
    13 Ahmadpour A, Do Dd. The preparation of active carbons from coal by chemical and physical activation[J]. Carbon, 1996,34(4):471-479.
    14 Yoshizawa N, Maruyama K, Yamada Y, Ishikawa E, Kobayashi M, Toda Y, et al. XRD evaluation of KOH activation process and influence of coal rank[J]. Fuel, 2002,81 (13): 1717-1722.
    15 M A Lillo-Rodenas, D Cazorla-Amoros, A Linares-Solano. Understanding Chemical reactions between carbons and NaOH and KOH-An insight into the chemical activation mechanism[J]. Carbon, 2003,41:267-275.
    16 Macia-Agullo J A, Moore B C, Cazorla-Amoros D, Linares-Solano A. Chemical activation by KOH and NaOH of carbon materials with different crystallinity[J]. In: Extended Abstracts. Carbon 2003: International Conference, Oviedo, Spain, July, 6-10. Spanish Carbon Group, 2003: 197.
    17 Seong-Ho Yoon, Seongyop Lim, Yan Song, Yasunori Ota, Wenming Qiao,Atsushi Tanaka, Isao Mochida. KOH activation of carbon nanofibers[J]. Carbon, 2004,42:1723-1729.
    18 E G Galpern, I V Stankevich, A L Chistykov, L A Chernozatonski. Chem. Phys Lett, 1993,213:345.1 Hu Z, Shen J Y, Fan Y N, et al. Formation of ultrafine amorphous alloy particles with unique size by autocatalytic method[J]. J Materl Sci Lett, 1993, 12(13): 1020-1021.
    2 Shen J Y, Zhang Q H, Li Z Y, et al. Chemical reaction for the preparation of Ni-P ultrafine amorphous alloy particles from aqueous solution[J]. J Materl Sci Lett, 1996, 15(8):715-717.
    3 Deng J F, Zhang X P, Min E Z. Amorphous nickel-phosphorus alloy deposited on a support and its hydrogenation activity[J]. Appl Catal A, 1989,37:339-343.
    4 Hexing Li, Weijiang Wang,Hui Li,Jingfa Deng. Crystallization deactivation of Ni-P/SiO_2 amorphous catalyst and the stabilizing effect of silica support on the Ni-P amorphous structure[J]. J of Catalysis, 2000, 194: 211-221.
    5 盛春,周诗瑶,李和兴,邓景发.Ni-P/SiO_2催化剂晶化过程及其加氢活性研究[J].物理化学学报,1998,14(2):164-168.
    6 马爱增.NiP非晶态合金的负载方法及催化剂的结构与催化性能[J].分子催化,1999,13(5):345-349.
    7 胡征,范以宁,陈懿,姜欣华.粒度均匀镍磷非晶态超细微粒的制备和表征[J].物理化学学报,1993,9(1):5-7.
    8 沈俭一,李智渝,胡征,洪建明,陈懿.诱导自催化法制备Ni-P超细非晶态合金的动力学研究[J].化学学报,1994,52:858-865.
    9 沈俭一,胡征,张黎峰,陈懿.镍-磷非晶态合金超细颗粒的制备和物性研究[J].化学学报,1994,50:566-570.
    10 Jianyi Shen, Qinghong Zhong, Zhiyu Li,Yi Chen. Chemical reduction for the preparation of Ni-P ultrafine amorphous alloy particles from aqueous solution[J]. Journal of Materials Science Letters, 1996, 15:715-717.
    11 陈昌荣,卞国柱,姜明,李忠瑞,韦世强.Ni-P非晶态合金催化剂的制备、结构和性能[J].物理化学学报,1999,15(12):1119-1122.
    12 马延风.镍系非晶态合金的制备方法与性能研究[D].南开大学博士研究生毕业学位论文,2003,4.
    13 闫洪.现代化学镀镍和复合镀新技术[M].国防工业出版社,北京,1999.
    14 沈俭一,张庆红,李智渝,陈懿.超细非晶镍合金的化学制备及类金属元素对性质的影响[J].化学学报,1995,53:1168-1172.
    15 Zoltan Konya, Istvan V, Janos K, Arnold Farkas, Albert Oszko, Imre K. XPS study of multiwall carbon??nanotube synthesis on Ni-, V-, And Ni-, V-ZSM-5catalysts. Applied Catalysis A: Gen, 2004, 260: 55-61.
    16 T I T Okpalugo, P Papakonstantinou, H Murphy, J Mclaughlin, N M D Brown. High resolution XPScharacterization of chemical functionalised MWCNTs and SWCNTs[J]. Carbon, 2005, 43: 153-161.
    17 Okamoto Y, Nitta Y, Imanaka T. Surface characterization of nickel boride and nickel phosphide catalysts by X-ray photoelectron spectroscopy[J]. J Chem. Soc Faraday Trans, 1979, 75(8): 2027-2039.
    18 Wagner C D, Riggs W M, Davis L E, Moulder J F, Meilenberg G E, Handbook Of X-Ray Photoelectron Spectroscopy[M], Perkin-Elmer Corporation, Physical Electronic Division, Eden Prairie, Minnesota, 1979.
    19 Madhu Menon, Antonis N Andriotis, George E Froudakis. Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls[J]. Chemical Physics Letters,2000, 320: 425-434.
    20 li H, Li H X, Dai W L, Deng J E XPS studies on surface electronic characterization of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties[J]. Appl Surf Sci, 1999, 152(1-2): 25-34.
    21 Yamashita H, Yoshikawa M, Funabiki T, Yoshida S. Catalysis by amorphous metal alloys V Hydrogenation of carbon monoxide over amorphous Ni_(78)P_(19)La_3 ribbon alloy[J]. J Catal, 1986, 99(2): 375-382.
    22 Yoshida S, Yamashita H, Funabiki T. Catalysis by amorphous metal alloys. Part 1. Hydrogenation of olefins over amorphous Ni-P And Ni-B alloys[J]. J Chem. Soc Faraday Trans 1, 1984, 80, 1435-1446.
    23 Hexing L, Weijiang W, Hui L, Jingfa D. Crystallization deactivation of Ni-P/SiO_2 amorphous catalyst and the stabilizing effect of silica support on the Ni-P amorphous structure[J]. J Catal, 2000, 194: 211-221.
    24 Ivkov J, Babic E. J Phys F: Met Phys, 1985, 15: 1161.
    25 方志刚,沈百荣,陆靖,范康年,邓景发.NiP非晶态合金中电子转移问题得DFT研究[J].化学学报,1999,57:1246-1251.
    26 成会明.纳米碳管制备、结构、物性及应用[M].化学工业出版社,2002年8月:343-348.1 Yamashita H, Yoshikawa M, Funabiki T, Yoshida S. Catalysis by amorphous metal alloy V. Hydrogenation of carbon monoxide over amorphous Ni78P19La13 ribbon alloy[J]. J Catal, 1986, 99(2): 375-382.
    2 宗保宁,闵恩泽,朱永山.预处理条件对Ni-Y-P非晶态合金液相加氢性能的影响[J].催化学报,1992,13(4):296-299.
    3 宗保宁,张迪倡,金泽明.Ni-Ce-P非晶态合金晶化前后的结构及苯乙烯液相加氢活性[J].石油学报(石油加工),1993,9(2):102-106.
    4 宗保宁,闵恩泽,朱永山.预处理对Ni-Ce-P非晶态合金液相加氢活性的影响[J].化学学报,1991,49:1056-1061.
    5 宗保宁,闵恩泽,朱永山.Ni-Sm-P非晶态合金的液相加氢性能[J].催化学报,1992,13(3):216-219.
    6 杜先智,丁香芬,张亚增.稀土镍磷非晶态合金的诱导共沉积及其缺陷[J].稀土,1997,18(3):44-47.
    7 Zhang Rongbin, Li Fengyi, Shi Qiujie, Luo Laitao. The effects of rare earths on supported amorphous NiB/Al_2O_3 catalysts[J]. Appl Catal A, 2001, 205(1-2): 279-284.
    8 Yongjiang Hou, Yaquan Wang, Fei He, Wanliang Mi, Zhenhuo Li, Zhentao Mi, Wei Wu, Enze Min. Effects of lanthanum addition on Ni-B/γ-Al_2O_3 amorphous alloy catalysts used in anthraquinone hydrogenation[J]. Appl Catal A, 2004, 259: 35-40.
    9 D Turnbull, M H Cohen. J Chem. Phys, 1970, 52: 3038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700