稠油井下改质降粘机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以辽河油田超稠油为研究对象,利用CWYF-Ⅰ型高温高压反应釜模拟热采时的井下条件,对稠油改质降粘行为开展了大量的基础实验研究,基于室内研究结果,揭示了改质降粘机理,优选出了降粘体系并用于矿场试验。
     1.研究了高温水作用下改质降粘反应,结果表明,辽河稠油发生水热裂解反应的最佳温度、时间和加水量条件分别是:反应温度240℃,反应时间为24h,加水量为30wt%。水在300℃高温条件下具有溶剂性质,大体上相当于丙酮在25℃的溶剂性质。水既可作酸催化剂,又可作碱催化剂。
     2.研究了外加催化剂作用下改质降粘反应,制备了四种过渡金属盐催化剂,优选出了改质降粘用催化剂油溶性有机镍盐C1。与未添加催化剂相比,在反应温度为240℃,加水量30wt%的体系中,添加0.1wt%的过渡金属有机酸镍催化剂,反应24h,稠油的降粘率可以增加30%左右,沥青质含量下降1.4wt%,胶质含量下降5.0wt%,芳香分含量增加3.5wt%,饱和分含量增加2.9wt%。稠油中C含量降低,H含量增加,H/C提高,而杂原子与C的比值下降。
     3.催化改质降粘反应前后稠油IR谱图表明,催化剂的加入发生了脱羧反应。催化改质降粘反应前后稠油中沥青质TG-DTA说明稠油中沥青质结构发生变化,在催化剂作用下,有一部分沥青质可以转化为烷烃可溶物。外加催化剂在改质降粘反应过程中的作用机理可以概括为,活化反应物,加速加氢反应速率,提高稠油供氢改质的转化率。催化剂与氢分子形成化学吸附键,改变氢分子的裂解途径,降低氢分子与自由基的反应活化能,加速了稠油有机分子加氢裂解反应。
     4.研究了供氢体作用下催化改质降粘反应,选择四氢萘、二氢蒽和甲酸、甲酸甲酯作为供氢体,优选出了甲酸作为供氢用剂,其加入量为7wt%。与未加供氢体的催化改质降粘反应后油样相比,轻组分增多,重组分明显下降。胶质和沥青质含量减小,芳香烃含量增加。稠油的H/C增加,S含量降低,稠油结构发生变化,粘度降低。
     5.供氢改质降粘反应前后稠油中沥青质IR谱图说明,稠油中沥青质在供氢催化改质降粘反应时所发生的化学结构的变化,稠油中沥青质TG-DTA曲线表明,稠油中沥青质耐热性下降。供氢体在改质降粘中作用机理主要是提供易于被夺取的氢,使部分自由基湮灭,降低了体系中自由基的浓度,抑制了缩合生焦反应。
     6.研究了助剂作用下改质降粘反应,选取尿素、碳酸铵和碳酸氢铵作为改质降粘反应用助剂。优选出了尿素作为改质降粘反应助剂,加入助剂尿素质量分数20%。与供氢催化改质降粘反应相比,稠油的平均族组成变化不明显,稠油中C原子含量、H原子含量及S、N、O原子含量基本不变。助剂尿素的加入没有改变稠油的结构,稠油结构的变化主要受改质降粘体系中催化剂、供氢体的影响较大。
     7.助剂作用下供氢催化改质降粘反应前后稠油及其沥青质的红外光谱结构分析表明,稠油IR图官能团吸收峰基本没有变化,助剂的加入基本没有改变稠油及其沥青质结构。饱和烃气相色谱分析表明,稠油中饱和烃经过改质降粘反应后部分长链发生裂解而生成了短链,使轻烃含量增加。稠油中沥青质热分析表明,经过助剂作用下供氢催化改质降粘反应后稠油中沥青质的稳定性下降。核磁共振谱结构分析表明,分析可得:δ_c14.10、δ_c22.67、δ_c28.98、δ_c31.92ppm处为烷基碳。δ_c14.10处的峰归属于与仲碳相连的CH_3碳原子,δ_c19.73处的峰归属于与季碳相连的CH_3碳原子,δ_c22.67、δ_c28.98、δ_c31.92ppm处为-CH_2-碳原子,δ_c128.21ppm处的峰归属于芳香环系内碳原子。反应后气体分析表明,稠油发生了明显的裂解反应。
     8.助剂作用下供氢催化改质降粘后稠油稳定性测试表明,稠油粘度反弹率不到3%。助剂的加入不仅具有一定的降粘作用,而且对供氢催化反应有协同增效作用。
     9.助剂尿素辅助蒸汽驱的作用体现在尿素高温热分解产生的CO_2和NH_3能够快速补充地层能量,而产生的NH_3和原油中的环烷酸、长链脂肪酸等组分发生反应,生成具有表面活性的皂类物质对稠油具有很好的降粘作用。CO_2在油相中溶解使原油体积膨胀、粘度降低,增加液体的内动能;另一部分充满地层孔隙,扩大蒸汽波及面积,有利于原油回采。
     10.揭示了改质降粘反应过程中存在竞争反应,提出了竞争反应简化的化学模型,为深入开展稠油井下改质降粘研究提供了依据。
     11.在辽河油田选择了具有代表性的杜32-53-33、曙1-32-41和齐40-03-18三口试验井进行改质降粘矿场试验,试验周期初期15~20天内,稠油降粘率>70%,且在30天内都保持较高的降粘率>60%。改质降粘处理后的稠油化学组成分析结果表明,采出油族组成中饱和烃、芳香烃含量增加、胶质、沥青质含量降低。进一步证实了井下改质降粘开采稠油技术的可行性。
This paper taking Liaohe oilfield extra heavy oils,under the simulated thermal recovery condition,fundamental experiments were carded out in the high temperature high pressure CWYF-Ⅰtype reactor to study the viscosity reduction upgrading behavior of heavy oil.Based on laboratory results,the mechanism of viscosity reduction upgrading was revealed,the viscosity reduction chemical system was selected optimally and tested on field.
     1.Results from reaction of viscosity reduction subjected to high temperature water showed that the optimum condition for Liaohe heavy oil to occur aquathermolysis were: reaction temperature 240℃,reaction time 24h,water adding amount 30wt%.Water at high temperature of 300℃owned the property of solvent,which was nearly equivalent to the solvent property of acetone at 25℃.Water could act as both of acid catalyst and alkali catalyst.
     2.Viscosity reduction upgrading reactions with catalyst were investigated.Four kinds of transition metal catalysts were prepared,and oil-soluble organic nickel salt C1 was selected optimally to be used in the viscosity reduction reaction experiments.At the same reaction condition of 240℃,24h and 30wt%water,compared to the reaction without catalyst,the viscosity reduction ratio of oil sample from the reaction with 0.1wt%catalyst C1 increased about 30%,and the Contents of asphaltene and resin decreased 1.4wt%and 5.0wt%relatively,while the aromatic and saturate increased with a value of 3.5wt%and 2.9wt%.The content of element C in the heavy oil reduced,while the value of element H increased,resulting in the increasing of H/C ratio.The ratio of heteroatom to carbon reduced.
     3.IR spectrograms of heavy oils before and after viscosity reduction reaction showed that the introduction of catalyst caused the heavy oil to occur decarboxylation reaction. Structure change of asphaltene was detected from the TG-DTA of asphaltene in heavy oil before and after catalyzed viscosity reduction reaction,part of asphaltene changed into paraffin-soluble matter.The mechanism catalyst played in the viscosity reduction reaction process could be summarized as:activate the reactants,speed up the hydrogenation reaction rate and increase the conversion rate of hydrogenation reaction.Catalyst might form chemisoptive bond with hydrogen molecular,change the fragmentation pathway of hydrogen molecular,reduce the activation energy between hydrogen molecular and free radical,accelerate the hydrocracking of heavy oil organic molecular.
     4.Catalyzed viscosity reduction upgrading reactions with hydrogen donor were investigated.Formic acid was selected optimally from the alternative chemicals of tetrahydronaphthalene,dihydrogenanthracene,formic acid and methylformate,and its dosage was 7wt%.Compared to the oil sample from reaction without hydrogen donor,the light components increased,the heavy components reduced obviously.The contents of asphaltene and resin decreased and that of the aromatic and saturate increased.The value of H/C ratio of heavy oil increased.The content of element S in the heavy oil reduced,the structure of heavy oil changed,viscosity reduced.
     5.IR spectrograms of heavy oils before and after reaction with hydrogen donor showed that the structure of asphaltene in heavy oil changed.TG-DTA curve of asphaltene in heavy oil showed that the thermostability of asphaltene weakened.The mechanism hydrogen donor played in the viscosity reduction reaction process was to supply hydrogen to deactivate part of the free radicals,decreasing its concentration in the reaction system,so as to inhibit the condensation reactions.
     6.Viscosity reduction upgrading reactions with auxiliary agent were investigated.Urea was selected optimally from the alternative chemical auxiliary agents of ammonium carbonate,urea and ammonium hydrocarbonate,and its dosage was 20wt%.Compared to the oil sample from reaction without auxiliary agent,there was no obvious change on group compositions,the contents of atom C,H,S,N and O nearly kept unchanged.As a result,the introduction of urea did not change the structure of heavy oil.The structure was influenced mainly by the catalyst and hydrogen donor.
     7.Infrared spectrum analysis on heavy oil and asphaltene in it before and after viscosity reduction reaction with auxiliary agent showed that there was no significant change on the absorption peak of functional group of heavy oil.Namely,the introduction of auxiliary agent basically did not change the structure of the heavy oil and asphaletne.Gas chromatographic analysis on the saturate indicated that after the reaction,part of the long chain cracked into short chain,increasing the content of light hydrocarbons.Thermal analysis on asphaltene showed that the thermostability of asphaltene in heavy oil after reaction with auxiliary agent weakened.Nuclear magnetic resonance spectra showed that the peaks atδ_c14.10,δ_c22.67,δ_c28.98 andδ_c31.92ppm were ascribed to alkyl carbon;the peak atδ_c14.10 was ascribed to the CH_3 carbon bonding with the secondary carbon atom; the peak atδ_c19.73 was ascribed to the CH_3 carbon bonding with the quaternary carbon atom;the peaks atδ_c22.67,δ_c28.98,δ_c31.92ppm were -CH_2- carbon atom;the peak atδ_c128.21ppm were ascribed to the carbons in the aromatic ring.
     8.Stability test on heavy oil after catalyzed reaction with hydrogen donor and auxiliary agent showed that the viscosity rebounding rate was no more than 3%.The addition of auxiliary agent had not only some degree of viscosity reduction function,but also synergistic interaction to the catalyzed reaction with hydrogen donor.
     9.The mechanism of urea assisted steam flooding was that the CO_2 and NH_3 generated by the thermal decomposition of urea at high temperature would supply reservoir energy rapidly,and NH_3 would react with the naphthenic acid,long chain fatty acid,etc.in the crude oil,forming surface active soap-like materials,which had positive effect on the viscosity reduction.Part of CO_2 will dissolve in oil,make it swell,reduce its viscosity, increase the internal kinetic energy;other CO_2 will fill the formation pores,enlarge the steam sweep area,which is helpful to recover oil.
     10.It was revealed that there existed competitive reactions in the viscosity reduction reaction process.The simplified chemical model of competitive reaction was brought forward,which provided the basis to study deeply the downhole viscosity reduction upgrading of heavy oil.
     11.Field tests of downhole viscosity reduction upgrading were carried out on three representative oil wells of Du32-53-33,Shul-32-41 and Qi40-03-18 in Liaohe oilfield.In the initial 15 to 20 days of the test period,the viscosity reduction ratio of heavy oil was higher than 70%,and the value kept above 60%within 30 days.Chemical composition analysis on heavy oil after upgrading process indicated that the content of asphaltene and resin decreased and that of the aromatic and saturate increased,which further identified that it was feasible to recover heavy oil by downhole viscosity reduction upgrading technology.
引文
[1]胡见义,牛嘉玉.中国重油和沥青砂资源[J].世界石油工业,1998,5(9):13-19.
    [2]赵炜,张志远.重油—21世纪的重要能源[J].世界石油工业,1999,7(3):46-49.
    [3][美]W E(Bill)Haines主编,金静芷,等译[M].油田化学发展论文集,北京:石油工业出版社,1991:257-267.
    [4]俞理,于大森.产气微生物提高原油采收率微观实验研究[J].油田化学,1994,11(2):149-151.
    [5]胡常忠.稠油开采技术[M].北京:石油工业出版社,1998.
    [6]何生厚,张琪.石油与天然气工程学(油气开采工程)[M].北京:中国石化出版社,2004.
    [7]吴国庆,黄立信,陈善锋.稠油化学吞吐技术研究[J].西安石油学院学报:自然科学版,2000,15(2):29-32.
    [8]陈铁龙.三次采油概论[M].北京:石油工业出版社,2000.
    [9]张锐,薄启亮,刘尚奇,等.稠油开采的前沿技术[J].世界石油工业,1998,5(9):29-35.
    [10]巴伊巴科夫HK,加鲁舍夫AP.热采法在油田开发中的应用[M].北京:石油工业出版社,1992.
    [11]岳清山,王艳辉.火驱采油方法的应用[M].北京:石油工业出版社,2000.
    [12]赵立合,郑锡同.关于稠油改性技术的试验研究[J].冶金能源,1999,18(4):35-39.
    [13]孙仁远.人工振动降粘试验研究[J].石油大学学报,200l,25(4):54-55.
    [14]唐清.ZDT乳化降粘剂在超深井稠油开发中的应用[J].石油钻探技术,2008,36(2):74-76.
    [15]关润伶,朱红,李伟.超稠原油抗盐乳化降粘剂的研制及室内评价[J].精细石油化工进展,2006,7(7):1-4.
    [16]刘国然.稠油乳化降粘技术[J].特种油气藏,1995,2(1):57-61.
    [17]刘峰.超稠油乳化降粘技术试验研究[J].特种油气藏,2005,12(2):82-84.
    [18]尚思贤,赵芳茹,徐多悟,等.克拉玛依浅油层稠油油藏化学降粘辅助吞吐技术的应用[J].石油钻采工艺,2001,23(2):66-68.
    [19]陈艳玲,胡江,张巧莲.垦西特稠油化学降粘机理的研究[J].地球科学-中国地质大学,1998,23(6):605-609.
    [20]张现德.碱性添加剂提高稠油注蒸汽采收率室内研究[J].油田化学,1992,9(4):363-365.
    [21]周光辉,沈德煌,王建设,等.比例物理模型研究碱蒸汽驱提高稠油采收率[J].石 油学报, 1993, 14(3): 59-66.
    [22] Glen Brons.Upgrading of heavy oil with aqueous base treatments: crude oil upgrading from reservoir to refinery presented before the division of petroleum chemistry [J]. Preprints-American Chemical Society.Division of Petroleum Chemistry, 2001,46(2):66-68.
    [23] Hoffman E J.Hydrogen for the enhanced recovery of heavy crudes [J]. Energy Sources, 1989, 11(4):263-272.
    [24] Leaute R P.Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells[P].CA 2058255, 1993.
    
    [25] Magnie R L.Recovery of crude oil utilizing hydrogen[P]. US 4241790,1980.
    [26] Ware C H, Rose L C, Allen J C.Recovery of oil by in situ hydrogenation[P].US 4597441,1986.
    [27] Ware C H, Rose L GRecovery of oil by in-situ combustion followed by in-situ hydrogenation[P] .US 4691771,1987.
    [28] Gregoli A A. Method of in-situ hydrogenation of carbonaceous material[P]. US 4501445,1987.
    [29] Stapp P R. In situ hydrogenation. NIPER-434,National Institute for Petroleum and Energy Research[R] .1989.
    [30] Weissman J G,Kessler R V. Downhole heavy crude oil hydroprocessing[J].Appl. Catal. A. 1996,144:1-16.
    
    [31] Method improves heavy oil recovery//Amer. Oil Gas rep. 1994, 37 (9): 123.
    [32] Campos Rafael E, Hernandez Jose A.In-situ reduction of oil viscosity during steam injection process in EOR[P].US 5314615,1994.
    [33] Akstinat M H. Gas evolution and change of oil composition during steam flooding [J]. petroleum geology,1983,5:363-388.
    [34] Clark P D, Hyne J B.Studies on the chemical reactions of heavy oils under steam stimulation condition[J].AOSTRA J Res,1990,29(6):29-39.
    [35] Hyne J B.Synopsis Report No.50, Aquathermolysis[R].AOSTRA Contracts No.11103103B/C,1986.
    [36] Clark P D, Hyne J B, Tyrer J D.Chemistry of organosulfur compound type occurring in heavy oil sands. 1. High temperature hydrolysis and thermolysis of tetrahydrothiophene in relation to steam stimulation processes[J].Fuel,1983,62(5):959-962. [37] Clark P D,Hyne J B, Tyrer J D.Chemistry of organosulfur compound type occuring in heavy oil sands.2.Influence of pH on the high temperature hydrolysis of tetrahydrothiophene and thiophene[J].Fuel,1984,63(1):125-128.
    [38]Clark P D,Hyne J B,Tyrer J D.Chemistry of organosulfur compound type occurring in heavy oil sands.3.reaction of thiophene and tetrahydrothiophene with vanadyl and nickel salts[J].Fuel,1984,63(6):1645-1649.
    [39]Clark P D,Hyne J B,Tyrer J D.Chemistry of organosulfur compound type occurring in heavy oil sands.4.thehigh temperature reaction of thiophene and tetrahydrothiphene with aqueous Solution of aluminum and first row transition-metal cation[J].Fuel,1987,66(5):1353-1357.
    [40]Clark P D,Hyne J B,Tyrer J D.Chemistry oforganosulfur compound type occurring in heavy oil sands.5.reaction so thiophene and tetrahydrothiophene with aqueous group ⅧB metal Species at high temperature[J].Fule,1987,66(5):1699-1702.
    [41]Hyne J B,Tyrer J D.Use of hydrogen-free carbon monoxide with steam in recovery of heavy oil at low temperatures[P].US 4487264,1984.
    [42]Shore S G,Bricker J C,Nagel A A,et al.Hydride donating properties of[HRu_3(CO)_(11)]~-in the presence of carbon monoxide;chemistry of ruthenium carbonyl anions relevant to the catalysis of the water gas shift reaction[J].J Am Chem Soc,1985,107(2),377-384.
    [43]Fish R H,Komlenic J J.Molecular characterization and profile,identifications of vanadyl compounds in heavy crude petroleums,by liquid chromatography/graphite furnace atomic spectrometry[J].Analytical chemistry,1984,56:511.
    [44]郑焰,梁政,贾朝霞.稠油开采新思路—油层催化裂化技术[J].石油钻采工艺,1997,19(6):77-80.
    [45]钱延龙,廖世健.均相催化进展[M].化学工业出版社,1990:69-632.
    [46]Clark P D,Hyne J B.Steam oil chemical reactions:mechanism for the aquathermolysis of heavy oils[J].AOSTRA J Res,1984:152-20.
    [47]Hyne J B,Greidanus J W,Tyrer J P,et al.Proceedings second international conference on heavy crudes and tar sands[C].UNTAR,McGraw Hill N Y,1986:404.
    [48]Clough Thomas J.Process for recovering hydrocarbon[P].US 4846274,1989.
    [49]Johnson H S,Bright A.Upgrading of heavy hydrocarbonaceous oil using CO and steam[P].CA 1195639,1985.
    [50]Campos R E,Hernandez J A.In-situ reduction of oil viscosity during steam injection process in EOR[P].US 5209295,1993.
    [51]Campos R E,Hernandez J A.In-situ reduction of oil viscosity during steam injection process in EOR[P].US 5314615,1994.
    [52]Rivas O R,Campos R E,Borges L G,et al.Experimenal evaluation of transition metals salt solutions as additives in steam recovery processes[R].SPE18076,1988,539-547.
    [53]Clark P D著.蒸汽吞吐开采中使用化学添加剂改善重油在油藏和地面的流动性 [A].刘文章编译.第四届国际重油及油砂会议论文选译(上册)[C].北京:石油工业出版社,1989:226-235.
    [54]Clark P D,Kirk M J.Studies on the upgrading of bituminous oils with water and transition metal catalysts[J].Energy&Fuels,1994,8(2):380-387.
    [55]范洪富,刘永建,钟立国,等.金属盐对辽河稠油水热裂解反应影响研究[J].燃料化学学报,2001,29(5):430-433.
    [56]闻守斌,刘永建,宋玉旺,等.硅钨酸对胜利油田超稠油的催化降黏作用[J].大庆石油学院学报,2004,28(1):25-27.
    [57]陈勇,陈艳玲,朱明,等.过渡金属的有机酸盐水热裂解降黏反应的催化作用[J].地质科技情报,2005,24(3):75-78.
    [58]樊泽霞,赵福麟,王杰祥,等.超稠油供氢水热裂解改质降黏研究[J].燃料化学学报,2006,34(3):315-318.
    [59]范洪富,刘永建,赵晓非,等.国内首例井下水热裂解催化降黏开采稠油现场试验[J].石油钻采工艺,2001,23(3):42-44.
    [60]梁文杰.重质油化学[M].北京:石油大学出版社,2000:253-255.
    [61]Ovallos C,Vallejos C,Vasquez T.Downhole upgrading oil extra heavy crude oil using hydrogen donor and methane under steam injection conditions[J].Petroleum science and technology,2003,21(1/2):255-274.
    [62]Xia T X,Greaves M.Downhole upgrading Athabasca tar sand bitumen using THAI-SARA analysis[R].SPE 69693,2001.
    [63]Patel K M,Bekker A Y,Murthy A K S,et al.Process for production of hydrogenated light hydrocarbons by treatment of heavy hydrocarbons with water and carbon monoxide[P].US 4675097,1987.
    [64]Edward Houde,Gregory Thompson.The Aquaconversion TM process-A new approach to residue processing[M].1998,NPRA,AM-98-09.
    [65]Enomoto Heiji,Tohoku Electric Power Co Inc,Onoda Cement Co Ltd.Reforming of heavy oil[P].JP 05071574,1993.
    [66]Richard P D,William C M,Murray R G.Thermal cracking of athabasca bitumen:influence of steam on reaction chemistry[J].Energy&Fuels,2000,14(3):671-676.
    [67]Fan H F,Liu Y J,Zhong L G.Studies on the synergetic effects of mineral and steam on the composition changes of heavy oils[J].Energy&Fuels,2001,15(6):1475-1479.
    [68]Sundaram M S,Steinberg M.Direct use of methane in coal liquefaction[P].US 4687570,1987.
    [69]Ovalles C,Hamana A,Bolivar R,et al.Process for treating heavy crude oil[P].US 5269909,1993.
    [70]Ovalles C,Filgueiras E,Morales A,et al Use of a dispersed iron catalyst for upgrading extra-heavy crude oil using methane as source of hydrogen[J].Fuel,2003,8(82):887-892.
    [71]Ovalles C,Antonia H,Rojas I,et al.Upgrading of extra-heavy crude oil by direct use of methane in the presence of water[J].Fuel,1995,8(74):1162-1168.
    [72]Vallejos C,Vasquez T,Ovalles C,et al.Process for the downhole upgrading of extra heavy crude oil[P].US 5891829,1999.
    [73]Bianco A D,Garuti G,Pirovano C,et al.Thermal cracking of petroleum residues:3.Technical and economic aspects of hydrogen donor visbreaking[J].Fuel,1995,74(5):756-760.
    [74]李博.辽河油田催化供氢稠油改质的实验[J].大庆石油学院学报,2004,4(28):24-26.
    [75]Ovalles C.Extra-heavy crude oil downhole upgrading process using hydrogen donor under steam injection conditions[R].SPE69692,2001.
    [76]陈尔跃,刘永建,闻守斌.甲苯在强化辽河油田稠油催化降黏中的作用[J].大庆石油学院学报,2005,6(29):38-39.
    [77]Hewgill G S,Kalfayan L G.Enhanced oil recovery technique using hydrogen precursors[P].US 5105887,1992.
    [78]Curran G P,Struck R T,Gorin E.Mechanism of Hydrogen-transfer process to coal and coal extract[J].Ind.Eng.Chem.Proc.Des.Dev,1967,6(2):166-173.
    [79]Huffman W J,Garner D N,Parker H W.Conversion of coal with methanol as reactant.“Coal Processing Technology”.A Chemical Engineering Progress Technical Manual,American Institute of Chemical Engineers,New York[M].1975,2:76.
    [80]Ross D S,Blessing J E.Isopropyl alcohol as a coal liquefaction agent[C].173rd national meeting of the American chem.Soc,Div.Fuel.Chem.Preprints.1977,22(2):208.
    [81]SY/T5119-1995,岩石可溶有机物和原油族组分柱层析分析方法[S].北京:中国石油天然气总公司,1995.
    [82]董喜贵.石油分散系统的结构稳定性以及复合驱配方研究[D].杭州:浙江大学2005.
    [83]王子军.石油沥青质的化学和物理Ⅲ(沥青质化学结构的研究方法)[J].石油沥青,1995,9(4):32-38.
    [84]Roger M A,Application of organic facies to hydrocarbon source rock evaluation[C].Preprint of the 10th World Petroleum Congress,1979.
    [85]蒂索B P.胶质和沥青质的地球化学[A].邬立言,杨翠定.国际重油和渣油性质分析鉴定会论文选[C].北京:石油工业出版社,2-10.
    [86]Yen T F.Preprints,Am.Chem.Soc.Div.Petrol.Chem,.1972,17(4),F102
    [87]Speight J.G.The chemistry and technology of petroleum[M].Marcel Dekker,Inc.,New York,1980.
    [88]Strausz O P,Mojelsky T W,Faraji F,et al.Additional structural details on Athabasca asphaltene and their ramifications[J].Energy & Fuels,1999,13(1):207-227.
    [89]Bergmann U,Mullins O,Cramer S P.X-ray Raman spectroscopy of carbon in asphaltene:light element characterization with bulk sensitivity[J].Anal.Chem.,2000,72(11):2609-2612.
    [90]Schabron J F,Speight J G.The solubility and three-dimensional structure of asphaltenes[J].Petroleum Science and Technology,1998,16(3&4):361-375.
    [91]Acevedo S,Escobar G,Ranaudo M N,et al..Observations about the structure and dispersion of petroleum asphaltenes aggregates obtained from dialysis fractionation and characterization[J].Energy & Fuels,1997,11:774-778.
    [92]Mujica V,Nieto P,Puerta L,et al.Caging of molecules by asphaltenes.A model for free radical preservation in crude oils[J].Energy & Fuels,2000,14(3):632-639.
    [93]Murgich J,Abanero J A,Strausz O P.Molecular recognition in aggregates formed by asphaltene and resin molecules from the Athabasca oil sand[J].Energy&Fuels,1999,13(2):278-286.
    [94]Hayashi J,Aizawa S,Kumagai H,et al.Evaluation of macromolecular structure of a brown coal by means of oxidative degradation in aqueous phase[J].Energy&Fuels,1999,13:69-76.
    [95]Hayashi J,Chiba T.Quantitative description of oxidative degradation of brown coal in aqueous phase on the basis of Bethe Lattice statistics[J].Energy&Fuels,1999,13(6):1230-1238.
    [96]GB/T19143-2003,岩石有机质中碳、氢、氧元素分析方法[S].北京:中华人民共和国国家质量监督检验检疫总局,2003.
    [97]GB387-1990,深色石油产品硫含量测定法(管式炉法)[S].北京:国家技术监督局,1990.
    [98]GB/T 2540-1981(1988),石油产品密度测定法(比重瓶法)[S].北京:国家标准总局,1981.
    [99]GB/T 18609-2001,原油酸值的测定电位滴定法[S].北京:中华人民共和国国家质量监督检验检疫总局,2001.
    [100]谢晶曦.红外光谱在有机化学和药物化学中的应用[M].北京:科学出版社,1987.
    [101]Yen T F.Long-chain alkyl subtituents in native asphaltic molecules[J].Nature,Phy.Sci.,1971,233(37):36.
    [102]Brown J K,Ladner W R.A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy Ⅱ.A comparison with infra-red measurement and the conversion to carbon structure[J].Fuel,1960,39:87-96.
    [103]Williiams R B.Characterization of hydrocarbons in petroleum by nuclear magnetic resonance.Symposium on composition of Petroleum Oils[J].ASTM,Spec.Tech.Publ,1958:224.
    [104]Yen T F,Wen H W and Chilingar G V.A study of the structure of petroleum asphaltenes and related substances by proton nuclear magnetic resonance[J].Energy Scources,1984b,7(3):275-304.
    [105]Strausz O P,Mojelsky T W,Lown E M et al.Structural features of Boscan and Duri asphaltenes[J].Energy Fuels,1999b,13:228-247.
    [106]沈其丰,徐广智.~(13)C-核磁共振及其应用[M].北京:化学工业出版社,1986.
    [107]秦冰.稠油乳化降粘剂结构与性能关系的研究[D].北京:石油化工科学研究院,2001.
    [108]Siskin M,Brons G,Katritzky A R.Aqueous organic chemistry.1.Aquathermolysis:comparison with thermolysis in the reactivity of aliphatic compounds[J].Energy&Fuels,1990,4(5):475-482.
    [109]王大军,傅乐峰,郑柏存.用于稠油井下催化改质的催化剂[P].CN 1843622A,2006.
    [110]傅乐峰,郑柏存.一种井下稠油水热裂解催化降粘用的催化剂[P].CN 1915488A,2005.
    [111]邹长军,黄志宇,罗平亚.乙酰丙酮钼环糊精包合物的制备法及在稠油降粘中的应用[P].CN 1948349A,2007.
    [112]陈艳玲,王元庆,夏菲.一种含有两亲结构的稠油水热催化裂解降粘剂的制备方法[P].CN 1948349A,2007.
    [113]邹长军.表面活性剂包裹乙酰丙酮钼催化剂的制备方法及其应用[P].CN 101007286A,2007.
    [114]Hyne J B.重油的水热解[A].王鸿勋译,国际重质原油开采会议论文选集,第一版[M].北京:石油工业出版社,1986年.
    [115]Hepler L G,Chu Hsi主编,梁文杰等译,李奉孝等校.AOSTRA油砂、沥青、重质油技术手册,第一版[M].东营:石油大学出版社,1992.
    [116]李奉孝,王鸿勋主编,赵兰玉副主编.AOSTAR大学研究报告译文汇编(一),沥青化学,第一版[M].山东:石油大学出版社,1991.
    [117]李奉孝,王鸿勋主编,赵兰玉副主编.AOSTAR大学研究报告译文汇编(二),沥青化学,第一版[M].山东:石油大学出版社,1991.
    [118]Weissman,Jeffrey G.Review of processes for down-hole of catalytic upgrading of heavy crude oil[J].Fuel Processing Technology,1997,50:199-213.
    [119] Bearden R, Aldridge C L.Poole M C. at al. Process for hydroconversion of heavy hydrocarbonaceous feed[P].EP0549257,1993.
    [120] A Del Bianco,Panariti N, Carlo S di, Beltrame P L,et al. New developments in deep hydroconversion of heavy oil residues with dispersed catalysts,2: Kinetic aspects of reaction[J].Energy&Fuels. 1994, 8:593-597.
    [121] Gatsis J G. Method of preparing a catalyst for the hydroconversion of asphaltene-containing hydrocarbonaceous charge stocks[P].US 4943548,1990.
    [122] Gatsis J G. Method of preparing a catalyst for the hydroconversion of asphaltene-containing hydrocarbonaceous charge stocks[P].US 4954473,1990.
    [123] Galiasso R,Saazar J A,Morales A, et al. Hydroconversion of heavy crudes with high metal and asphaltene content in the presence of soluble metallic compounds and water[P]. US 4592827,1986.
    [124] Utz B R, Cugini A V,Frommell E A. Dispersed-phase calalysts in coal liquefaction[C]. ACS Div. Fuel Chem. Preprints. 1989, 34: 1313-1430.
    [125] Dadyburjor D B,Stewart W R,Stiller A H,et al. Coal-Liquefaction catalysts from ferric sulfide disproportionation[C]. ACS Div. Fuel. Chem. Preprints. 1993,38:39-45.
    [126] Dadyburjor D B,Stewart W R,Stiller A H,et al. Disproportionatedferric sulfide catalysts for coal liquefaction[J]. Energy&Fuels. 1994,8:19-23.
    [127] Cobolos 5, Wu Q, Andre O A, et al. Correlation between hydrodesulphurization activity and reducibility of unsupported MoS2-based catalysts promoted by group Ⅷ metals[J]. J.Chem. Faraday Trans. 1. 1986,82:2423-2434.
    [128] Eltzner W, Breysse M, Lacroix M, et al. Inorganic chemistry approach to the preparation of sulfided "mixed-phase" hydrotreating catalysts using thiometalates as precursors[J]. Polyhedron, 1986, 5:203-210.
    [129] Chen H H,Montgomery D S, Strausz O P. Hydrocracking of athabasca bitumen using oil-soluble organometallic catalysts.part Ⅰ :the influence of temperature and pressure on catalyst activity[J].AOSTRA Journal of Research. 1988,4:45-47.
    [130] Chen H H, Montgomery D S,Strausz O P. Hydrocracking of athabasca bitumen using oil-soluble organometallic catalysts.part Ⅱ : comparison of metal naphthenates and metal acetylacetonates with nickel carboxylate as oil-soluble liquid-phase hydrocracking catalysts[J].AOSTRA Journal of Research. 1988, 4:143-152.
    [131] Chen H H, Montgomery D S, Strausz O P. Hydrocracking of Athabasca bitumen using oil-soluble organometallic catalysts.Part Ⅲ: Optimization of Liquid-Phase Hydrocracking conditions for mixtures of nickel and molybdenum naphthenates and coking studies on the hydrocracked product[J].AOSTRA Journal of Research.1988,5:33-48.
    [132]Moll N G.,Quarderer G J.Emulsion catalyst for hydrogenation processes[P].US 4136013,1979.
    [133]Moll N G,Quarderer G J.Emulsion catalyst for hydrogenation processes[P].US 4172814,1979.
    [134]Po-liang,Chao H,Weller S W.Coal liquifaction with encapsulated catalyst[J].Ind Eng Chem Proc Des Dev.,1983,22:660-662.
    [135]赵法军,刘永建,赵国,等.注蒸汽条件下供氢催化改质稠油及其沥青质热分解性质[J].化工进展,2008,27(9):1453-1459.
    [136]赵法军,刘永建,闻守斌,等.稠油水热裂解催化剂研究进展[J].油田化学,2006,23(3):277-282.
    [137]赵法军,刘永建,赵田红,等.利用供氢体对稠油进行水热裂解催化改质的研究进展[J].油田化学,2006,23(4):379-384.
    [138]刘永建,赵法军,赵国,等.稠油的甲酸供氢催化水热裂解改质实验研究[J].油田化学,2008,25(2):133-136.
    [139]陈艳玲,王元庆,夏菲.一种含有两亲结构的稠油水热催化裂解降粘剂的制备方法[P].CN1944572A,2006.
    [140]金军,王好平.杂多酸盐催化剂、该催化剂的生产工艺及其应用[P].CN 1231943A,1999.
    [141]范洪富,李忠宝.离子液体[bmim]Br·FeCl_3改质稠油实验研究[J].石油与天然气化工,2007,36(6):475-477.
    [142]范洪富,李忠宝,马军.离子液体在石油工业中的应用研究进展[J].油田化学,2007,24(3):283-286.
    [143]范洪富,李忠宝,梁涛.离子液体催化改质稠油实验研究[J].燃料化学学报,2007,35(1):32-35.
    [144]邹长军,刘超,罗平亚.离子液体介质中沥青砂中重组分降解过程研究[J].化工学报,2004,55(12):2095-2098.
    [145]张贵才,潘斌林,葛际江,等.辽河稠油蒸汽吞吐条件下降粘规律研究[J].油田化学,2007,24(1):19-23.
    [146]韩梅,李清彪,景萍,等.有机镍催化剂对稠油的降粘作用[J].化学反应工程与工艺,2007,23(2):183-186.
    [147]Meng Xianghai,Xu Chunmin,Gao Jinsen,et al.Studies on catalytic pyrolysis,reaction behaviors and mechanistic pathways.AppliedCatalysisA:General,2005,294:168-176.
    [148]景萍,李清彪,韩梅,等.Ni~(2+)和Sn~(2+)改性的SO_4~(2-)/ZrO_2固体超强酸催化剂对稠油的降粘性能[J].石油化工,2007,36(3):237-241.
    [149]Gr(?)aves M,Saghr A M,Xia T X.THAI-New air injection technology for heavy oil recovery and in-situ upgrading[J].JCPT,2001,40(3):38-47.
    [150]李伟,朱建华.利用稠油降粘剂和环己烷水热裂解改质辽河超稠油[A].第三届全国化学工程与生物化工年会论文摘要集(上)[C].2006.
    [151]李伟,朱建华,齐建华.纳米Ni催化剂在超稠油水热裂解降粘中的应用研究[J].燃料化学学报,2007,35(2):177-179.
    [152]Ramirez-Garnica M A,Mamora D D,Nareset H R,et al.Increase heavy-oil production in combustion tube experiments through the use of catalyst[R].SPE107946,2007.
    [153]Nares H R,Schacht-Hern(?)ndez P,Ram(?)rez-Garnica M A,et al.Heavy-crude-oil upgrading with transition metals[R].SPE107837,2007.
    [154]Jackson Cindy.Upgrading a heavy oil using variable frequency microwave energy[R].SPE78982,2002.
    [155]Gr(?)aves M,Ren S R,Xia T X.New air injection technology for ior operations in light and heavy oil reservoirs[R].SPE57295,1999.
    [156]Nares H R,Schacht-Hern(?)ndez P,Ram(?)rez-Garnica M A.Upgrading heavy and extraheavy crude oil with ionic liquid[R].SPE108676,2007.
    [157]Gr(?)aves M,Xia T X,Ayasse C.Underground upgrading of heavy oil using thai-"Toe -to-Heel Air Injection"[R].SPE97728,2005.
    [158]Xia T X,Gr(?)aves M.Downhole upgrading athabasca tar sand bitumen using THAI-SARA Analysis[R].SPE69693,2001.
    [159]Xia T X,Gr(?)aves M.Upgrading Athabasca tar sand using toe-to-heel air injection[R].SPE65524,2000.
    [160]Mokrys I J,Butler R M.In-situ upgrading of heavy oils and bitumen by propane deasphalting:the vapex process[R].SPE25452,1993.
    [161]Behdad Moini,Apostolos Kantzas,Pedro Pereira,et al.Catalytic down-hole upgrading of heavy oil[A].The 2006 Annual Meeting,Catalysis and Reaction Engineering Division,2006:476.
    [162]Behdad Moini,Apostolos Kantzas,Pedro Pereira,et al.Catalytic down-hole upgrading of heavy oil and oil sand[P].WO/2008/058400,2008.
    [163]Russell C A,Snape C E,Meredith W,et al.The potential of bound biomarker profiles released from catalytic hydropyrolysis to reconst ruction basin charging history for oils[A].Absteract for 21th Int Meeting on Organic Geochemistry[C].Krakow,2003:160-161.
    [164]李庶峰,沐宝权,刘晨光.用甲烷作氢源改质重质油的探索[J].石油与天然气化工,2002,31(3):138-139.
    [165]颜从杭.减粘裂化原料特性的表征[J].石油学报(石油加工),1991,7(1):9.
    [166]田中浩一,入江胜利.用于石油化学加工的防垢剂[P].CN 1102848A,1994.
    [167]Choi Byung C,Malladi Madhava,Gmss Benjamin.Process for Visbreaking Resids in The Presence of Hydrogen-Donor Materials[P].CA 1254529,1989.
    [168]李博.辽河油田催化供氢稠油改质的实验[J].大庆石油学院学报,2004,4(28):24-26.
    [169]孙柏军,阕国和.孤岛减压渣油供氢剂临氢减粘裂化的研究[J].石油炼制,1991,2(22):54-59.
    [170]张会成,邓文安,阙国和.胜利渣油在供氢剂和溶剂下的热裂化特性研究[J].石油学报(石油加工),1997,13(6):17-22.
    [171]Murphy J R.预测催化裂化各变数相互影响的方法[J].李树均译.石油炼制译丛,1985,16(10):7.
    [172]陈尔跃,刘永建,闻守斌.甲苯在强化辽河油田稠油催化降粘中的作用[J].大庆石油学院学报,2005,6(29):38-39.
    [173]金军,王好平.杂多酸盐催化剂、该催化剂的生产工艺及其应用[P].CN 1231943,1999.
    [174]David K L,Warren K M,Thomas N,et al.Highly oxidation resistant inorganic-porphyrin analogue polyoxometalate oxidation catalysts.1.The synthesis and characterization of aqueous-soluble potassium salts of α_2-P_2W_(17)O_(61)(M~(n+)·OH_2)~((n-10)) and organic solvent soluble tetra-n-butylammonium salts of α_2-P_2W_(17)O_(61)(M~(n+)·Br)~((n-11))(M=Mn~(3+),Fe~(3+),Co~(2+),Ni~(2+),Cu~(2+))[J].J Am Chem Soc,1991,113:7209-7221.
    [175]Hill G R,Anderson L L,Wiser W H,et al.Project Western Coal-Conversion of Coal into Liquids[R].Final Report to OCRR & D Rep,No.18,University of Utah Contract №.14-01-0001-271,August 1970.
    [176]Neavel R C,Liquefaction of coal in hydrogen-donor and non-donor vehicles[J].Fuel,1976,3(55):237.
    [177]朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社,2005.
    [178]姜嘉陵,施晓乐,房惠春.单家寺热采原油性质的研究[A].姚远勤.稠油热采技术论文集[M].北京:石油工业出版社,1993:32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700