负载金属氧化物和贵金属的分子筛催化剂上重芳烃加氢脱烷基制备BTX研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用催化加氢脱烷基技术将重芳烃转化生成苯、甲苯、二甲苯(合称BTX)等基本石油化工产品,是提高重芳烃利用率的重要途径。本文对负载金属氧化物和贵金属的分子筛催化剂上C9+重芳烃加氢脱烷基制备BTX反应进行了研究。首先对C9+重芳烃加氢脱烷基反应体系进行了热力学分析,然后对用于该反应体系催化剂的分子筛载体HZSM-5和氧化物载体γ-Al2O3进行了比较,在此基础上借助XRD、H2-TPR、N2吸附、NH3-TPD以及吡啶吸附红外光谱等表征手段,系统研究了分子筛载体、活性组分、活性组分负载量、活性组分复合以及浸渍顺序等对催化剂物性结构和催化性能的影响,筛选出催化性能优良的NiO/HMCM-56催化剂。此外,以偏三甲苯为模型反应物,对NiO/HMCM-56上加氢脱烷基反应机理进行了探索性研究。
     热力学分析结果表明,C9+重芳烃加氢脱烷基反应体系中加氢脱烷基反应最易发生,为不可逆反应,其平衡常数远大于异构化反应、烷基转移反应和歧化反应。
     对于C9+重芳烃加氢脱烷基反应,负载于HZSM-5分子筛载体上的金属氧化物催化剂的催化性能优于负载于y-Al2O3载体上的催化剂。
     不同分子筛为载体的NiO和MoO3催化剂的催化性能表明,HMCM-56是适用于C9+重芳烃加氢脱烷基反应的优良载体。对于NiO催化剂,NiO与分子筛载体间的相互作用适中时催化剂具有相对较高的BTX选择性;对于MoO3催化剂,分子筛孔道内与B酸位相互作用的Mo物种的存在极大地降低了反应的BTX选择性。B酸的存在、L酸酸强度的增强、酸量的增加以及比表面积的增大均有助于提高加氢脱烷基反应的C9+芳烃转化率。
     对活性组分的研究结果表明,负载不同金属氧化物的HMCM-56催化剂中,NiO/HMCM-56催化性能最为优异;NiO负载量对NiO/HMCM-56催化性能的影响规律与NiO的加氢功能、催化剂酸性以及NiO在HMCM-56表面的分散状态有关;适宜的NiO负载量为3wt%-6wt%,对于6wt%NiO/HMCM-56催化剂,C9+芳烃转化率可达72.75mol%,BTX选择性为78.51mol%,BTX收率可达57.1lmol%;对于含有贵金属的二元复合活性组分催化剂Re-NiO/HMCM-56,活性组分Re与NiO的复合对催化剂物性结构和催化性能具有显著的影响,而两者浸渍顺序对其影响较小。
     NiO/HMCM-56催化剂上以偏三甲苯为模型反应物的加氢脱烷基反应机理研究结果表明,主反应加氢脱烷基反应由L酸中心催化,按照自由基反应机理进行;歧化反应由B酸中心催化,按照双分子碳正离子反应机理进行;异构化反应由B酸中心催化,按照单分子和双分子碳正离子反应机理进行;加氢裂解反应则经过芳烃在金属中心上苯环加氢生成环烷烃以及环烷烃在B酸和L酸中心上开环裂解生成低碳烷烃两步反应而完成。
Catalytic hydrodealkylation of heavy aromatics to produce benzene (B), toluene (T) and xylenes (X) which are the three basic aromatic starting reactants is an important approach to improve the utilization of heavy aromatics. In this thesis, hydrodealkylation of C9+ heavy aromatics to produce BTX over zeolite-supported metal oxide and noble metal catalysts was studied. Firstly, the thermodynamics analysis for the hydrodealkylation system of C9+heavy aromatics was accomplished. Then the comparation in catalytic performance between HZSM-5-supported metal oxide catalysts andγ-Al2O3-supported metal oxide catalysts applied to this reaction system was carried out. Based on the preferred support type, the effect of zeolite support, active component, loading of active component, recombination of active components and impregnation sequence on physical and structural properties and catalytic performance of the employed hydrodealkylation catalysts was systematically investigated by means of XRD, H2-TPR, N2 adsorption and desorption, NH3-TPD and FTIR spectrum of adsorbed pyridine. And the NiO/HMCM-56 catalyst was developed and selected with its excellent catalytic performance. Moreover,1,2,4-trimethylbenzene was employed as the model reactant and the reaction mechanism of hydrodealkylation of 1,2,4-trimethylbenzene over the NiO/HMCM-56 catalyst was further studied.
     The thermodynamics analysis indicates that the main reactions of hydrodealkylation are irreversible reactions and most liable to occur with their equilibrium constants far greater than those of isomerization, transalkylation and disproportionation among the hydrodealkylation system of C9+heavy aromatics.
     For the hydrodealkylation process of C9+heavy aromatics feedstock employed in this thesis, the catalytic performance of metal oxide catalysts with HZSM-5 zeolite as support is superior to that withγ-Al2O3 as support.
     The catalytic performance of zeolite-supported nickel oxide and molybdenum oxide catalysts indicates that the HMCM-56 zeolite is an excellent support used to hydrodealkylation of C9+heavy aromatics. For zeolite-supported nickel oxide catalysts, the samples with the moderate interaction between NiO and zeolite exhibit the relatively high selectivity. And for zeolite-supported molybdenum oxide catalysts, the presence of the molybdenum species located in the channels of zeolite and associated with Br(?)nsted acid site causes the remarkable reduction of selectivity of BTX. The presence of Br(?)nsted acid sites, the growth of the strength of Lewis acid sites, the increase of acid amount and the accretion of specific surface area can all enhance the conversion of C9+aromatics in hydrodealkylation of heavy aromatics.
     The experimental results about investigation of active components indicate that among the HMCM-56-supported catalysts with different metal oxides as active components in this thesis, the NiO/HMCM-56 catalyst shows the greatest overall catalytic performance. The effect of NiO loading on the catalytic activity of NiO/HMCM-56 is related to the dehydrogenation-hydrogenation function of NiO, the acidity of catalysts and the dispersion state of NiO on the surface of HMCM-56. And the suitable NiO loading is 3wt%-6wt%. For the 6wt% NiO/HMCM-56 catalyst, the conversion of C9+aromatics is 72.75mol%, the selectivity of BTX is 78.51mol% and the yield of BTX is 57.11mol%. For the binary composite catalyst of Re-NiO/HMCM-56 containing noble metal Re, the recombination of Re and NiO active components has a great effect on physical and structural properties and catalytic performance of Re-NiO/HMCM-56, whereas the impregnation sequence of Re and NiO has little effect.
     The reaction mechanism of hydrodealkylation of 1,2,4-trimethylbenzene over the NiO/HMCM-56 catalyst shows that the main reaction of hydrodealkylation is catalyzed by Lewis acid sites and accomplished through a radical mechanism. Disproportionation is catalyzed by Br(?)nsted acid sites and accomplished through a bimolecular carbenium ion chain mechanism while isomerization is catalyzed by Br(?)nsted acid sites and accomplished through monomolecular and bimolecular carbenium ion chain mechanisms. And catalytic hydrocracking requires the hydrogenation of the aromatic ring over metal sites in a first step to produce naphthenes, which rapidly undergo cracking on the Bronsted acid sites and Lewis acid sites to produce light paraffins.
引文
[1]洪仲苓,朱宝康.化工有机原料深加工.北京:化学工业出版社,1997
    [2]赵开鹏,韩松.重整C10芳烃的综合利用(上).石油化工.2000,29(3):214-217
    [3]李雪静.重整芳烃的综合利用.催化重整通讯.2000,4:18-24
    [4]赵开鹏,韩松.C9和C10重芳烃资源综合利用(一).炼油.1998,3(4):16-24
    [5]季钦伦,郑薇,王彭年等.C9、C10芳烃应用(上).化工时刊.1992,7:2-8
    [6]赵茜俊.重质芳烃油的利用途径.石油炼制与化工.1994,25(4):20-25
    [7]赵开鹏,韩松.重整C10芳烃的综合利用(下).石油化工.2000,29(4):298-302
    [8]饶兴鹤.浅析炼油厂重质芳烃油的利用.精细石油化工进展.2001,2(9):20-27
    [9]赵开鹏,韩松.C9和C10重芳烃资源综合利用(二).炼油.1999,4(1):9-20
    [10]符中林.浅谈重芳烃的综合利用.福建化工.2000,4:8-9
    [11]赵开鹏,韩松.C9和C10重芳烃资源综合利用(三).炼油.1999,4(2):20-23
    [12]唐占忠,陈一斋.由C9+重芳烃制取轻芳烃.现代化工.1994,1:20-23
    [13]王秋.重芳烃轻质化工艺研究.辽宁化工.2001,30(4):154-156
    [14]陈一斋,李秀云.由重芳烃制取轻芳烃.辽宁化工.1992,6:41-45
    [15]K. Takatsu, M. Sugimoto. Production of hydrocarbon oil. JP:63156889,1988
    [16]W. W. Kaeding, C. S. Lee. ZSM-5/ZSM-12 catalyst mixture for cracking alkylbenzenes. US:4577050,1986
    [17]W. W. Kaeding, C. S. Lee. ZSM-5/ZSM-12 catalyst mixture for cracking alkylbenzenes. US:4593136,1986
    [18]J. L. Gendler,王加玮.以重芳烃为原料增产苯的热加氢脱烷基技术.石油炼制译丛.1989.7:6-12
    [19]http://www.cbi.com/lummus/process-technology/pdfs/Hydrodealkylation.pdf
    [20]http://www.uop.com/objects/56%20TAC9.pdf
    [21]孔德金,祁晓岚,朱志荣等.重芳烃轻质化技术进展.化工进展.2006,25(9):983-987
    [22]王东辉,孔德金,郭杨龙等.重芳烃轻质化工艺和催化剂研究进展.工业催化.2005,13(10):1-5
    [23]S. H. Oh, S. I. Lee, K. H. Seong, et al. Heavy aromatics upgrading using noble metal promoted zeolite catalyst. Studies in Surface Science and Catalysis.2002,142:887-894
    [24]景振华,桂寿喜,王建伟.HAL型重芳烃轻质化催化剂研究及应用前景.精细与专用化学品.2000,12:20-21
    [25]楼军威.C10+重芳烃的综合利用.浙江化工.2003,34(6):11-13
    [26]程文才,杨德琴,李华英等.重质芳烃加氢脱烷基与烷基转移工艺.CN:1217370, 1999
    [27]祁晓岚,左煜,陈雪梅等.HAT-plus重芳烃轻质化技术.石油学报(石油加工).2008,24(B10):338-341
    [28]王建伟,刘中勋,杜晋轩等.重质芳烃轻质化催化剂及制备方法.CN:1472181,2004
    [29]S. Toppi, C. Thomas, C. Sayag, et al. Kinetics and mechanisms of n-propylbenzene hydrodealkylation reactions over Pt(Sn)/SiO2 and (C1)A12O3 catalysts in reforming conditions. Journal of Catalysis.2002,210:431-444
    [30]S. Toppi, C. Thomas, C. Sayag, et al. On the radical cracking of n-propylbenzene to ethylbenzene or toluene over Sn/Al2O3-Cl catalysts under reforming conditions. Journal of Catalysis.2005,230:255-268
    [31]J. M. Serra, E. Guillon, A. Corma. A rational design of alkyl-aromatics dealkylation-transalkylation catalysts using C8 and C9 alkyl-aromatics as reactants. Journal of Catalysis.2004,227:459-469
    [32]D. C. Grenoble. The chemistry and catalysis of the toluene hydrodealkylation reaction II: kinetic analysis. Journal of Catalysis.1979,56:40-46
    [33]王士文,廖巧丽.C9-C10芳烃临氢脱烷基.石油化工.1996,25(3):203-206
    [34]L. C. Doelp, W. Brenner, A. H. Weiss. Production of xylenes by hydrodealkylation. Industrial and Engineering Chemistry Process Design and Development.1965,4(1): 92-96
    [35]C. Hoang-Van, B. L. Villemin, S. J. Tezchner. Hydrogenolysis of ethylbenzene over a supported nickel catalyst derived from nickel hydroaluminate. Journal of Catalysis.1987, 105:469-477
    [36]A. A. Krichko, M. D. Navalikhina, Yu. I. Petrov, et al. High-temperature hydrogenation of C6-9 aromatic hydrocarbons in the presence of chromium catalysts. Khimiya Tverdogo Topliva.1981,2:70-75
    [37]F. P. Daly, F. C. Wilhelm. Catalyst for the hydrodealkylation of alkylaromatic compounds. US:4451687,1984
    [38]R. Alibeyli, A. Karaduman, H. Yeniova, et al. Development of a polyfunctional catalyst for benzene production from pyrolysis gasoline. Applied Catalysis A:General.2003, 238(2):279-287
    [39]王士文,秦永宁,李炎生等.新型临氢脱烷基制苯催化剂的研制.石油化工.1990,19(5):283-287
    [40]王士文,秦永宁,王洪栋.Cr203聚集状态和助剂CeO2对Cr2O3/Al2O3催化剂性能的影响.催化学报.1992,13(2):103-109
    [41]王士文,秦永宁,王洪栋.Cr2O3/Al2O3催化剂中的载体效应.石油化工.1991,20(8): 540-544
    [42]王士文,秦永宁,赵玉娟.Cr2O3/Al2O3催化剂半导性对催化性能的影响.催化学报.1993,14(3):179-184
    [43]王士文,秦永宁,李炎生.临氢脱烷基废Cr2O3/Al2O3催化剂再生处理的研究.精细石油化工.1991,(3):28-31
    [44]王士文,秦永宁,王学正等.C9-C10芳烃脱烷基制二甲苯的探索研究.精细石油化工.1992,(2):30-33
    [45]王士文,廖巧丽,秦永宁.新型C9-C10芳烃脱烷基催化剂的研究.石油化工.1995,24(12):849-851
    [46]石德先,赵震,徐春明等.CrOx/SiO2催化剂对Cl0+芳烃加氢脱烷基反应的催化性能.催化学报.2005,26(7):582-586
    [47]A. Khattab Samir, I. Roushdy Mohamed, M. Ayoub Samira. Microcatalytic conversion of C9-C10 aromatic fraction of El-Alamein Egyptian crude oil. Egyptian Journal of Chemistry.1980,21(4):287-293
    [48]A. Ozawa, T. Kubota, H. Mie, et al. Dealkylating heavy aromatic hydrocarbons. JP: 51029131,1976
    [49]A. H. Wu, C. A. Drake. Hydrocarbon conversion catalyst composition and processes therefor and therewith. US:5789642,1998
    [50]A. H. Wu, C. A. Drake. Catalyst composition and processes therefor and therewith. US: 5714659,1998
    [51]A. H. Wu, C. A. Drake. Hydrodealkylation of C9+ aromatic compounds. US:5763721, 1998
    [52]A. H. Wu, C. A. Drake, R. J. Melton. Catalyst composition and processes therefor and therewith. US:5714660,1998
    [53]G Bjornson. Catalyst for hydrodealkylation process. US:4331566,1982
    [54]T. Tsutsui, K. Osamu. Hydrodealkylation of alkylaromtic compounds. US:5053574, 1991
    [55]S. A. Tabak, R. A. Morrison. Manufacture of benzene, toluene and xylene. US:4341622, 1982
    [56]P. A. Howley, S. S. Shih. Catalytic hydrodealkylation of aromatics. US:5001296,1991
    [57]T. E. McMinn, D. A. Stachelczyk. Heavy aromatics conversion catalyst composition and processes therefor and therewith. US:2005065017,2005
    [58]A. H. Wu, C. A. Drake. Hydrodealkylation catalyst composition and process therewith. US:5698757,1997
    [59]A. H. Wu, C. A. Drake. Catalyst composition and processes therefor and therewith. US: 5907074,1999
    [60]Cong-Yan Chen, S. I. Zones, A. Rainis, et al. Process for converting heavy hydrocarbon feeds to high octane gasoline, BTX and other valuable aromatics. US:6900365,2005
    [61]R. Ichioka, S. Yamakawa, H. Okino. Process for producing xylene. US:5847256,1998
    [62]H. Kato, H. Tanaka, K. Iwayama, et al. Catalyst composition for transalkylation of alkylaromatic hydrocarbons and process for production of xylene. EP:0816311,1998
    [63]R. Ichioka, S. Yamakawa, H. Okino, et al. Process for producing aromatic compounds by dealkylation, transalkylation or disproportionation. US:6040490,2000
    [64]V. Arca, A. B. Boscoletto, P. Crocetta. Catalytic compositions for the highly selective hydrodealkylation of alkylaromatic hydrocarbons. US:2009272672,2009
    [65]V. Arca, A. B. Boscoletto. Process for the selective catalytic hydrodealkylation of alkylaromatic hydrocarbons. US:2007203378,2007
    [66]G L. Rabinovich, V. B. Chizhov. Transformations of C9 aromatic hydrocarbons in the presence of hydrogen on a polyfunctional molybdenum-mordenite catalyst. Neftekhimiya.1983,23(3):353-360
    [67]A. K. Ghosh. Zeolite catalyst with enhanced dealkylation activity and method for producing same. US:6096938,2000
    [68]J. M. Serra, E. Guillon, A. Corma. Optimizing the conversion of heavy reformate streams into xylenes with zeolite catalysts by using knowledge base high-throughput experimentation techniques. Journal of Catalysis.2005,232:342-354
    [69]郝玉芝,李砚青,程宝玉等.重质芳烃轻质化催化剂及轻质化方法.CN:1117404,1996
    [70]郝玉芝,桂寿喜,李砚青等.重质芳烃轻质化催化剂及轻质化产物的分离方法.CN:1270989,2000
    [71]王建伟,刘中勋,梁战桥等.重质芳烃催化脱烷基催化剂及制备方法.CN:1472182,2004
    [72]程文才,杨德琴,李华英等.用于重质芳烃加氢脱烷基与烷基转移的催化剂.CN:1217371,1999
    [73]郭宏利,杨德琴,邹薇.碳九及其以上重质芳烃脱烷基与烷基转移催化剂.CN:101045208.2007
    [74]靳焘,夏道宏,项玉芝,周玉路.分子筛催化C9芳烃脱烷基的研究.应用化工.2009,38(1):90-94
    [75]时钧,汪家鼎,余国琮等.化学工程手册(上).北京:化学工业出版社,1996
    [76]刘红星.β沸石上甲苯歧化与C9芳烃烷基转移反应特性与动力学研究.华东理工大学硕士学位论文,1999
    [77]M. M. J. Treacy, J. B. Higgins. Collection of simulated XRD powder patterns for zeolites, 4th Edition. New York:Elsevier,2001
    [78]宋继梅,胡媛,宋娟等.水溶液中相转化制备六方相三氧化钼及其电化学嵌锂性质.安徽大学学报.2007,32(2):75-78
    [79]刘薇,徐奕德.用FT-IR技术研究Mo/HZSM-5分子筛的骨架结构.催化学报.1998,19(4):339-343
    [80]李斌,李景林,梁宇宁.Mo/HZSM-5分子筛的表征和液相催化酯化活性.广西大学学报.1999,24(1):57-60
    [81]王军威,张志新,王心葵.Mo/HZSM-5催化剂上丙烷芳构化反应.催化学报.2000,21(2):133-137
    [82]B. Pawelec, R. Mariscal, R. M. Navarro, et al. Simultaneous 1-pentene hydroisomerisation and thiophene hydrodesulphurisation over sulphided Ni/FAU and Ni/ZSM-5 catalysts. Applied Catalysis A:General.2004,262:155-166
    [83]A Funez, A. Lucas De, P. Sanchez, et al. Hydroisomerization in liquid phase of a refinery naphtha stream over Pt-Ni/H-beta zeolite catalysts. Chemical Engineering Journal.2008, 136:267-275
    [84]P. Arnoldy, J. C. M. De Jonge, J. A. Moulijn. Temperature-programmed reduction of MoO3 and MoO2. The Journal of Physical Chemistry.1985,89(21):4517-4526
    [85]刘红梅,徐奕德.甲烷无氧芳构化反应催化剂Mo/HZSM-5的H2-TPR研究.催化学报.2006,27(4):319-323
    [86]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学.北京:科学出版社,2004
    [87]杨宇,吴绯,马建新.载体对镍催化剂催化乙醇水蒸气重整制氢反应性能的影响.催化学报.2005,26(2):131-137
    [88]D. C. Grenoble. The chemistry and catalysis of the toluene hydrodealkylation reaction I: the specific activities and selectivities of group VIIB and group VIII metals supported on alumina. Journal of Catalysis.1979,56:32-39
    [89]G. Li, L. Hu, J. M. Hill. Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation. Applied Catalysis A:General. 2006,301:16-24
    [90]W. Shan, M. Luo, P. Ying, et al. Reduction property and catalytic activity of Ce1-xNixO2 mixed oxide catalysts for CH4 oxidation. Applied Catalysis A:General.2003,246:1-9
    [91]V. Nieminen, N. Kumar, J. Datka, et al. Active copper species in 1-butene skeletal isomerization:comparison between copper-modified MCM-41 and beta catalysts. Microporous and Mesoporous Materials.2003,60:159-171
    [92]W. O. Haag, R. M. Dessau. Proceedings of the 8th International Congress on Catalysis, Dechema, Berlin.1984,2:305
    [93]S. M. Csicsery. Shape-selective catalysis in zeolites. Zeolites.1984,4:202-213
    [94]J. Cejka, B. Wichterlova. Acid-catalyzed synthesis of mono-and dialkyl benzenes over zeolites:active sites, zeolite topology and reaction mechanisms. Catalysis Reviews.2002, 44(3):375-421
    [95]M. Guisnet, N. S. Gnep, S. Morin. Mechanisms of xylene isomerization over acidic solid catalysts. Microporous and Mesoporous Materials.2000,35-36:47-59
    [96]G G. Juttu, R. F. Lobo. Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Microporous and Mesoporous Materials.2000,40:9-23
    [97]吴通好,许宁. MCM-22族分子筛的结构及催化性能.化学通报.2004,67:1-21
    [98]A. Corma, A. V. Orchilles. Current views on the mechanism of catalytic cracking. Microporous and Mesoporous Materials.2000,35-36:21-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700