多级孔道沸石材料的制备及催化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沸石具有丰富均一的微孔、较大的比表面积、良好的水热稳定性以及可调的表面性质,广泛应用于吸附、分离和催化等领域。由于沸石孔道狭窄,扩散阻力较大,在涉及大分子或液相反应中不能达到预期的催化效果,主要表现在反应温度偏高,催化剂结焦失活快,在某些反应中还表现为产物选择性下降。
     近年来,以纳米微孔沸石为基础的多级孔道沸石材料成为研究热点,这种材料具有良好的酸性和水热稳定性,并且含有丰富介孔/大孔,微孔扩散通道短,因此有利于分子的吸附和扩散,在扩散控制型或者涉及大分子的催化反应中表现了很好的催化活性和产物选择性,是极有应用价值的催化材料。
     工业上合成的沸石粉体通常需要加入粘结剂成型制成具有一定机械强度和形状的颗粒以适应各种应用。粘结剂的引入会降低有效沸石的含量并部分堵塞沸石孔口,造成吸附能力减弱并引入了扩散限制,导致催化活性和选择性下降。为克服上述问题,很多研究致力于研究具有较高机械强度和多级孔道结构的规整沸石材料,这种材料不但可以方便制备和应用,而且能够加强反应物和产物的扩散进而提高催化效率。无粘结剂沸石作为规整沸石材料的典型代表不含惰性粘结剂,沸石含量较高,具有良好的物理化学性能。具有多级孔道结构的无粘结剂沸石由于改善的扩散性能将可能提供一种高效的沸石催化剂。
     针对沸石材料的发展趋势以及实际应用中面临的问题,本论文重点研究了多级孔道沸石材料(包括小晶粒沸石)的合成和无粘结剂沸石材料的制备,并对制备的沸石材料开展了有针对性的催化反应研究。通过研究拓展了多级孔道沸石材料的制备方法,为高效沸石催化剂的设计合成提供了新的思路。本论文对所开展的研究工作将分为七个章节进行讨论:
     第二章讨论了晶种导向剂法制备纳米ZSM-5沸石,在水热合成体系中添加自制晶种导向剂成功制备了纳米ZSM-5沸石,考察了晶种导向剂、晶化温度和合成体系硅铝比对合成纳米ZSM-5沸石的影响。结果表明在ZSM-5沸石制备体系中添加晶种导向剂可有效降低有机模板剂的使用量,缩短晶化时间,并能得到纳米尺村寸。的ZSM-5沸石,降低晶化温度和合成体系硅铝比有利于减小纳米ZSM-5沸石晶体尺寸。
     第三章研究了定向生长纳米棒构成的多级孔道ZSM-5沸石及其在苯酚烷基化反应中催化性能。在不添加任何介观尺寸模板剂的情况下,采用沸石晶种辅助水热转化成功制备了由纳米棒组成的多级孔道类单晶ZSM-5沸石。研究表明多级孔道类单晶ZSM-5沸石的形成符合非经典的定向聚集晶体生长机理。在苯酚烷基化的催化反应中,制备的多级孔道类单晶ZSM-5沸石材料表现了比常规沸石更为优良的苯酚转化率,对位产物的产率以及良好的稳定性。
     第四章制备了具有多级孔结构和机械强度稳定的规整ZSM-5沸石材料。将含β沸石的硅铝原料成型制备的前躯体进行水热转化,成功制备了一种机械强度很高的具有空心结构的多级孔规整ZSM-5沸石材料。无定型硅铝包覆的β沸石经过水热转化形成了交错生长的ZSM-5沸石,内部的β沸石溶解并输送给外部ZSM-5沸石生长导致生成了ZSM-5沸石颗粒内部的空心结构。所得材料在大分子α-蒎烯的异构化反应中表现了很高的活性。
     第五章讨论了汽相转化法制备无粘结剂小晶粒ZSM-5沸石,以硅藻土为原料混合部分硅溶胶与少量晶种导向剂进行成型,然后进行汽相转化,成功制备了无粘结剂小晶粒ZSM-5沸石。产物的表征结果表明制备的无粘结剂小晶粒ZSM-5成型沸石具有丰富的孔结构,较大的比表面以及较高的机械强度,酸性质可调,具备用作催化剂和吸附剂的基础。
     第六章研究了重质裂解汽油加氢裂解增产BTX芳烃的研究,在这一章中,对重质裂解汽油催化加氢裂解增产BTX芳烃的催化剂进行了系统研究。研制了一种贵金属修饰无粘结剂ZSM-5沸石双功能催化剂,在该反应中具有良好的催化性能,表现了很高的反应活性和产物选择性。该工艺可以加氢处理升级重质裂解汽油生产BTX芳烃、液化石油气(LPG)和少量燃料气。
     第七章研究了基于无粘结剂PtM/ZSM-5催化剂的重整重芳烃催化加氢裂解反应,系统地考察了反应温度、H2/油体积比、反应压力以及空速对重整重芳烃加氢裂解反应的影响规律,优化了反应条件。催化剂稳定性实验表明在优化的反应条件下,C9转化率大于70%,C10+转化率大于50%,BTX(苯,甲苯,乙苯和二甲苯)芳烃产物收率保持在58%以上,且剩余C9重组分中富集了三甲苯,可从中精馏分离三甲苯单体,催化剂稳定性良好。该工艺可实现低值重整重芳烃的转化,增产高附加值的BTX芳烃和三甲苯单体,为大规模处理重整重芳烃提供了
     一种新的工艺路线。
     第八章系统研究了以HZSM-5为催化剂环氧乙烷选择性催化氨化制备乙醇胺的反应行为,建立了酸密度与催化活性、酸强度与选择性间的定量与定性关系。结果表明氢型沸石具有比钠型沸石更好的催化活性,产物的选择性主要取决于ZSM-5沸石的晶粒大小。通过表而硅烷化或负载过渡金属氧化物等修饰方法,可以提高催化剂二乙醇胺产物的选择性。开发了一种La203修饰的无粘结剂小晶粒ZSM-5沸石催化剂,在环氧乙烷液相催化氨化反应中表现了高稳定性、高活性与高选择性。
Zeolite molecular sieves are widely in the fields of adsorption, separation and catalysis due to their uniform and ordered micropores, large specific surface area, high hydrothermal stability and easily adjustable surface characters. However, the intrinsic molecular-sized micropores of zeolite have diffusion limitations on the chemical reaction rate as well as catalytic performance, especially in catalytic reaction of liquid phase or concerning with heavy molecules. In this case, the catalyst presents high reaction temperature and fast deactivation, sometimes low selectivity for aimed products.
     Recently, hierarchical porous zeolite materials based on nanozeolites have been attracted considerable research enthusiasm. Such materials not only inherit excellent acidity and hydrothermal stability of zeolite, but also facilitate the diffusion of reactant/product in bulky molecule-involved and/or diffusion-controlled catalytic reactions due to the insertion of meso- and/or macro-porosity and short microporous diffusion channel. Reasonally, they show unique properties in catalytic reactions, such as preferential selectivity to products, high activity, and long lifetime.
     Zeolite is conventionally obtained in fine powder. As in the case of industrial catalysis, a certain amount of binders are generally used for cementing zeolite crystals into large sticks or granules with mechanical stability. However, the inorganic binders may dilute the active zeolite and partially block the pore system, which give rise to diffusion limitation and inaccessibility of the active species. To overcome these problems, continuous progress is made on the mechanical stable zeolite monoliths with both uniform shape and hierarchical structure. Such monolithic zeolite material facilitates not only practical preparation and application, but also reactant/ product diffusion as well as reaction efficiency. As one of such typical structures, binderless zeolites without inert binders have high zeolite content and show excellent physichemical properties. Furthermore, binderless zeolites with hierarchical porosity of micro/meso/macropores offers perspective as an efficient catalyst in zeolite catalysis for its improved transport properties.
     Based on the research status and problems of zeolite materials, this thesis mainly focuses on the synthesis of hierarchical porous zeolite materials (including nanozeolites) and binderless zeolites. Meanwhile, the catalytic performances of the as-synthesized materials are also involved in the detailed work. Potentially the routes demonstrated in this thesis could expand the methods for fabrication of hierarchical porous zeolite materials and offer new strategies for industrial zeolite catalysts with high activity. The research work is categorized and discussed in seven chapters of this thesis.
     Chapter 2 involves the preparation of nanosized ZSM-5 zeolite using seeding director. In this chapter, nanosized ZSM-5 Zeolite was successfully prepared by hydrothermal synthesis with adding the prepared seeding director. The influences of the seeding director, crystallization temperature and the silica/alumina ratio of the synthesis gel were investigated. It was concluded that using seeding director in the hydrothermal preparation of ZSM-5 zeolite could decrease the template dosage, shorten the crystallization time and gain nanosized ZSM-5 zeolite. The crystal size of the resulted nanosized ZSM-5 zeolite is found to decrease with decreasing crystallization temperature and increasing alumina content in the synthesis gel.
     Chapter 3 discusses the hierarchical structured ZSM-5 zeolite of oriented nanorods and its performance in the alkylation of phenol with isopropanol Hierarchical structured ZSM-5 zeolite of c-axis oriented nanorods has been prepared by a zeolite-seeds assisted hydrothermal synthesis method without adding any type of mesoscale template. The final product has higher mesopore volume and external surface area than the sample prepared conventionally. Due to the shortened microporous channel and opening mesopore, the prepared HZSM-5 catalyst presents high catalytic activity and stability for the alkylation of phenol with isopropanol.
     Chapter 4 studies shape-controlled synthesis of monolithic ZSM-5 zeolite with hierarchical structure and mechanical stability. Columned ZSM-5 zeolite monoliths with hierarchical structure and excellent mechanical strength were successfully prepared by a hydrothermal transformation method. The intra-particle hollow structure formed during hydrothermal synthesis was attributed to the digestion of innerβzeolite accompanying with the growth of ZSM-5 zeolite shell. The obtained hierarchical ZSM-5 zeolite monoliths showed superior catalytic performance inα-pinene isomerization for their proper acidity and good diffusion, compared with the ZSM-5 zeolite sample prepared from the precursor withoutβzeolite.
     Chapter 5 involves the preparation of binderless utrafine ZSM-5 zeolite monoliths by vapor-phase transformation method. Using vapor-phase transformation method, binderless monoliths of ultrafine ZSM-5 zeolite crystals was prepared by conversion of the preformed bodies of diatomite and silica sol, which mixed with some zeolite seeding directors. The prepared materials possessed enriched porosity, high surface area, good mechanical strength and tunable acidity which was verified by the characterizations. The products have promised applications in catalyst and adsorbent.
     Chapter 6 studies production of BTX aromatics by catalytic hydropyrolysis of heavy pyrolysis gasoline. In this chapter, the catalyst was thoroughly studied for hydro-upgrading pyrolysis gasoline to produce light aromatics and light alkanes. An optimized bifunctional catalyst comprising metallic Pt supported on a binderless ZSM-5 zeolite showed significantly improved catalytic property for this reaction with both excellent stability and activity. The reported catalytic process produces a BTX mixture with low ethylbenzene content, LPG and fuel gas from heavy pyrolysis gasoline.
     Chapter 7 studies the catalytic hydropyrolysis of heavy reformates over binderless Pt/HZSM-5 zeolite. Effects of temperature, ratio of hydrogen to oil, reaction pressure and space velocity of heavy reformates on the reaction were systematically investigated as well as proper process conditions were optimized. At the optimized process conditions, the catalyst possesses very good stability during its life-testing experiment and is able to converted heavy reformats to above 58% yield of BTX aromatics with over 70% conversion of C9 and 50% conversion of C10+, respectively. And the remainder after the separation of BTX aromatics enriched trimethylbenzene (TMB), from which the TMB isomers could be obtained by fractionation. The reported process could convert low valuable heavy reformats to high valuable BTX and TMB aromatics, which offered a new route for treating heavy reformats in large scale.
     Chapter 8 discusses selective amination of ethylene oxide for preparation of ethanolamine over HZSM-5. TPD, FTIR and catalytic performance showed that HZSM-5 was more active than the sodium form. Relative selectivity of product was mainly controlled by the crystal size of ZSM-5. Surface modification such as silyation or rare earth oxide supporting was effective for enhancing the shape selectivity. Finally, La2O3 modified binderless HZSM-5 zeolite in small crystal size was introduced to the amination of EO in liquid phase, which showed a high selectivity of MEA and DEA and a long-term stability.
引文
[1]D. H. Everett, IUPAC Manual of Symbols and Terminology, Appendix 2, Part Ⅰ, Colloid and Surface Chemistry [J]. Pure Appl. Chem.,1972,31:578-680.
    [2]D. W. Breck, Zeolite Molecular Sieves [M]. Wiley, New York,1974.
    [3]G. A. Ozin, A. Kuperman, A. Stein, Advanced Zeolite Materials Science [J]. Angew. Chem. Int. Ed. Engl.,1989.28(3):359-373.
    [4]C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism [J]. Nature,1992,359:710-712.
    [5]K. R. Kloetstra, H. W. Zandbergen, J. C. Jansen, H. van Bekkum, Overgrowth of Mesoporous MCM-41 on Faujasite [J]. Microporous Mater.,1996,6(5-6): 287-293.
    [6]李福祥,吴岚,秦梦,窦涛,钟炳,中孔MCM-41分子筛在微孔沸石ZSM-5上附晶生长的研究[J].燃料化学学报,1998,26(2):102-107.
    [7]A. Karlsson, M. Stocke, R. Schmidt, Composites of Micro- and Mesoporous Materials:Simultaneous Syntheses of MFI/MCM-41 like Phases by a Mixed Template Approach [J]. Microporous Mesoporous Mater.,1999,27(2-3): 181-192.
    [8]郭万平,黄立民,陈海鹰,李全芝,新型MCM-41-β沸石中孔-微孔复合分子筛[J].高等学校化学学报,1999,20(3):356-358.
    [9]L. M. Huang, W. P. Guo, P. Deng, Z. Y. Xue, Q. Z. Li, Investigation of Synthesizing MCM-41/ZSM-5 Composites [J]. J. Phys. Chem. B,2000,104 (13):2817-2823.
    [10]李玉平,李香兰,张瑛,温鹏宇,王晓钟,窦涛,萧墉壮,一种制备MCM-41/Y分子筛复合材料的新方法[J].燃料化学学报,2002,30(2):163-166.
    [11]韩宇,肖丰收.由沸石纳米粒子自组装制备具有高催化活性中心和水热稳定的新型介孔分子筛材料[J].催化学报2003,24(2):149-158.
    [12]李工,阚秋斌,吴通好,章慧杰,含有沸石结构单元体介孔材料的合成及催化性能[J].化学学报,2002,60(5):759-763.
    [13]K. Egeblad, C. H. Christensen, M. Kustova, C.H. Christensen, Templating Mesoporous Zeolites [J]. Chem. Mater.,2008,20 (3):946-960.
    [14]A. J. H. P. van der Pol, A. J. verduyn, J. H. C. van der Hooff, Why Are Some Titanium Silicalite-1 Samples Active and Others not? [J]. Appl Catal A,1992, 92(2):113-130.
    [15]V. P. Shiralkar, P. N. Joshi. M. J. Eapen, B. S. Rao, Synthesis of ZSM-5 with Variable Crystallite Size and Its Influence on Physicochemical Properties [J]. Zeolites,1991,11(5):511-516.
    [16]M. A. Camblorm, A. Corma, A. Martinez, F. A. Mocholi, J. Perez Pariente, Catalytic Cracking of Gasoil:Benefits in Activity and Selectivity of Small Y Zeolite Crystallites Stabilized by a Higher Silicon-to-Aluminium Ratio by Synthesis [J].App. Catal.,1989,55(1):65-74.
    [17]E. F. S. Aguiar, M. L. Murta^Valle, M. P. Silva, D. F. Silva, Influence of External Surface Area of Rare-earth Containing Y Zeolites on the Cracking of 1,3,5-triisopropylbenzene [J]. Zeolites,1995,15(7):620-623.
    [18]S. B. Pu, T. Inui, Influence of Crystallite Size on Catalytic Performance of HZSM-5 Prepared by Different Methods in 2,7-dimethylnaphthalene Isomerization [J]. Zeolites,1996,17(4):334-339.
    [19]M. A. Arribas, A. Martinez, Simultaneous Isomerization of n-heptane and Saturation of Benzene over Pt/Beta catalysts:The Influence of Zeolite Crystal Size on Product Selectivity and Sulfur Resistance [J]. Catal Today,2001,65(2): 117-122.
    [20]M. Yamamura, K. Chaki, T. Wakatsuki, H. Okado, K. Fujimoto, Synthesis of ZSM-5 Zeolite with Small Crystal Size and Its Catalytic Performance for Ethylene Oligomerization [J]. Zeolites,1994,14(8):643-649.
    [21]M. V. Landau, L. Vradman, V. Valtchev, J. Lezervant, E. Liubich, M. Talianker, Hydrocracking of Heavy Vacuum Gas Oil with a Pt/H-beta-Al2O3 Catalyst: Effect of Zeolite Crystal Size in the Nanoscale Range [J]. Ind. Eng. Chem. Res., 2003,42(12):2773-2782.
    [22]王亚军,唐颐,王星东,纳米沸石的合成、性质、组装及应用[J].石油化工,2002,31(3):217-223.
    [23]B. J. Schoeman, J. Sterte, J.-E, Otterstedt, Colloidal Zeolite Suspensions [J]. Zeolites,1994,14(2):110-116.
    [24]M. Tsapatsis, M. Lovallo, T. Okubo, M. E. Davis, Characterization of Zeolite L Nanoclusters [J]. Chem. Mater.,1995,7(9):1734-1741.
    [25]B. J. Schoeman, J. Sterte, J.-E. Otterstedt, The Synthesis of Colloidal Zeolite Hydroxysodalite Sols by Homogeneous Nucleation [J]. Zeolites,1994,14(3): 208-216.
    [26]M. A. Camblor, A. Corma, A. Mifsud, J. Perez-Pariente, S. Valencia, Esterification of Lauricacid with Glycerol Using Modified Zeolites Beta as Catalysts [J]. Stud. Surf Sci. Catal.,1997,105:341-348.
    [27]A. E. Persson, B. J. Schoeman, J Sterte, J.-E. Ottesstedt, The Synthesis of Discrete Colloidal Particles of TPA-silicalite-1 [J]. Zeolites,1994,14(7): 557-567.
    [28]A. E. Persson, B. J. Schoeman, J Sterte. J.-E. Otterstedt, Synthesis of Stable Suspensions of Discrete Colloidal Zeolite (Na, TPA)ZSM-5 Crystals [J]. Zeolites,1995,15(7):611-619.
    [29]L. Tosheva, V. Valtchev, Nanozeolites:synthesis, crystallization mechanism, and applications [J]. Chem. Mater.,2005,17(10):2494-2513.
    [30]H. T. Wang, Z. B. Wang, Y S. Yan, Colloidal Suspension of Template-removed Zeolite Nanocrystals [J]. Chem. Commun.,2000, (23):2333-2334.
    [31]I. Schmidt, C. Madsen, C. J. H. Jacobsen, Confined Space Synthesis. A Novel Route to Nanosized Zeolites [J]. Inorg. Chem.,2000, (39):2279-2283.
    [32]M. Matsukata, M. Ogura, T. Osaki, P. Raja, H. P. Rao, M. Nomura, E. Kikuchi, Conversion of Dry Gel to Microporous Crystals in Gas Phase [J]. Top. Catal., 1999,9(1-2):77-99.
    [33]W. Y. Xu, J. X. Dong, J. P. Li, J. Q. Li, F. Wu, A Novel Method for the Preparation of Zeolite ZSM-5 [J]. J. Chem. Soc., Chem. Commun.,1990, (10): 755-756.
    [34]P. R. Hari, P. Rao, M. Matsukata, Dry-gel Conversion Technique for Synthesis of Zeolite BEA [J]. Chem. Commun.,1996, (12):1441-1442.
    [35]S. Inagaki, K. Nakatsuyama, E. Kikuchi, M. Matsukata, Progress of Crystallization into Zeolite Beta in the Absence of Steam [J]. Stud. Surf. Sci. Catal.,2005,158:343-350.
    [36]Y. Y. Hu, C. Liu, Y. H. Zhang, N. Ren, Y. Tang, Microwave-assisted Hydrothermal Synthesis of Nanozeolites with Controllable Size [J]. Microporous Mesoporous Mater.,2009,119(1-3):306-314.
    [37]A. Z. Ruiz, D. Bruhwiler, T. Ban, G. Calzaferri, Synthesis of Zeolite L. Tuning Size and Morphology [J]. Monatsh. Chem.,2005,136(1):77-90.
    [38]S. D. Bhat, P. S. Niphadkar, T. R. Gaydhankar, S. V. Awate, A. A. Belhekar, P. N. Joshi, High Temperature Hydrothermal Crystallization, Morphology and Yield Control of Zeolite Type K-LTL [J]. Microporous Mesoporous Mater., 2004,76(1-3):81-89.
    [39]B. Z. Zhan, M. A. White, K. N. Robertson. T. S. Cameron, M. Gharghouri, A Novel, Organic-additive-free Synthesis of Nanometer-sized NaX Crystals [J]. Chem. Commun.,2001, (13):1176-1177.
    [40]B. Z. Zhan, M. A. White, M. Lumsden, J. Mueller-Neuhaus, K. N. Robertson, T. S. Cameron, M. Gharghouri, Control of Particle Size and Surface Properties of Crystals of NaX Zeolite [J]. Chem. Mater.,2002,14(9):3636-3642.
    [41]张慧宁,王德举,唐颐,谢在库,杨为民,低温水热合成超微NaA沸石[J].日用化学工业,2004,34(4):226-228.
    [42]V. P. Valtchev, L. Tosheva, K. N. Bozhilov, Synthesis of Zeolite Nanocrystals at Room Temperature [J]. Langmuir,2005,21(23):10724-10729.
    [43]R. W. Thompson, Recent Advances in the Understanding of Zeolite Synthesis [M], Molecule Sieves,1998, (1):1-33
    [44]周群,裘式纶,庞文琴,导向剂法合成β沸石的晶化机制研究[J].高等学校化学学报,2000,21(1):1-4.
    [45]G. Reding, T. Maurer, B. Kraushaar-Czarnetzki, Comparing Synthesis Routes to Nano-crystalline Zeolite ZSM-5 [J]. Microporous Mesoporous Mater,2003, 57(1):83-92.
    [46]S. van Donk, A. H. Janssen, J. H. Bitter, K. P. de Jong, Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts [J]. Catal. Rev., 2003,45(2):297-319.
    [47]庞新梅,化学超稳分子筛孔结构的研究[J].石油炼制与化工,1998,29(7):52-55.
    [48]董松涛,李宣文,李大东,石亚华,聂红,康小洪,水热处理USY二次孔形成规律研究[J].物理化学学报,2002,18(3):201-206.
    [49]H. K. Beyer, Dealumination Techniques for Zeolites [M]. Molecular Sieves. Science and Technology, Vol.3, Springer-Verlag, Berlin,2002.
    [50]S. Bernasconi, J. A. van Bokhoven, F. Krumeich, et al. Formation of Mesopores in Zeolite Beta by Steaming a Secondary Pore Channel System in the (001) Plane [J]. Microporous Mesoporous Mater.,2003,66(1):21-26.
    [51]A. de Lucas, P. Canizares, A. Duran, A. Carrero, Dealumination of HZSM-5 Zeolites:Effect of Steaming on Acidity and Aromatization Activity [J]. App. Catal. A,1997,154(1-2):221-240.
    [52]汪树军,梁娟,郭文珪,赵素琴,汪荣慧,ZSM-5沸石骨架铝迁移规律的研究Ⅰ.水热处理条件及沸石硅铝比的影响[J].催化学报,1992,13(1):38-43.
    [53]G. J. Hutchings, A. Burrows, C. Rhodes, C. J. Kiely, R. McClung, Dealumination of Mordenite Catalysts Using a Low Concentration of Steam [J]. J. Chem. Soc., Faraday Trans.,1997,93:3593-3598.
    [54]A. H. Janssen, A. J. Koster, K. P. de Jong, Three-Dimensional Transmission Electron Microscopic Observations of Mesopores in Dealuminated Zeolite Y [J]. Angew. Chem. Int. Ed.,2001.40 (6):1102-1104.
    [55]孙德坤,鲍书林,陈晶,高硅Y沸石的研制及性能Ⅱ.沸石孔结构及吸附性能[J].无机化学学报,1999,15(1):99-103.
    [56]I. I. Ivanova, A. S. Kuznetsov, V. V. Yuschenko, Design of Composite Micro/mesoporous Molecular Sieve Catalysts [J]. Pure Appl. Chem.,2004,76 (9):1647-1658.
    [57]J. C. Groen, L. A. A. Peffer, J. A. Moulijn, J. Perez-Ramirez, Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication:The Role of Aluminium as a Pore-Directing [J]. Chem. Eur. J.,2005,11(17):4983-4994.
    [58]C. M. Zhang, Q. Liu, Z. Xu, K. S. Wan, Synthesis and Characterization of Composite Molecular Sieves with Mesoporous and Microporous Structure from ZSM-5 Zeolites by Heat Treatment [J]. Microporous Mesoporous Mater.,2003, 62(3):157-163.
    [59]C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, Mesoporous Zeolite Single Crystals [J]. J. Am. Chem. Soc.,2000,122(29): 7116-7117.
    [60]I. Schmidt, A. Boisen, E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, A. Carlsson, C. J. H. Jacobsen, Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals [J]. Chem. Mater.,2001,13(12): 4416-4418.
    [61]A. Boisen, I. Schmidt, A. Carlsson, S. Dahl, M. Brorson, C. J. H. Jacobsen, TEM Stereo-imaging of Mesoporous Zeolite Single Crystals [J]. Chem. Commun.,2003, (8):958-959.
    [62]A. H. Janssen, I. Schmidt, C. J. H. Jacobsen, A. J. Koster, K. P. de Jong, Exploratory Study of Mesopore Templating with Carbon during Zeolite Synthesis [J]. Microporous Mesoporous Mater.,2003,65(1):59-75.
    [63]Z. X. Yang, Y. D. Xia, R. Mokaya, Zeolite ZSM -5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template [J]. Adv. Mater.,2004,16(8):727-732.
    [64]Y. S. Tao, H. Kanoh, K. Kaneko, Comment Questions Concerning the Nitrogen Adsorption Data Analysis for Formation of Supermicropores in ZSM-5 Zeolites [J]. Adv. Mater.,2005,17(23):2789-2791.
    [65]Z. X. Yang, Y. D. Xia, R. Mokaya, Reply:Mesoporous Zeolite ZSM-5 Nanocast from Mesoporous Carbon Templates [J]. Adv. Mater.,2005.17(23): 2791-2792
    [66]Y. M. Fang, H. Q. Hu, An Ordered Mesoporous Aluminosilicate with Completely Crystalline Zeolite Wall Structure [J]. J. Am. Chem. Soc.,2006, 128(33):10636-10637.
    [67]Y. S. Tao, H. Kanoh, K. Kaneko, ZSM-5 Monolith of Uniform Mesoporous Channels [J]. J. Am. Chem. Soc.,2003,125(20):6044-6045.
    [68]Y. S. Tao, H. Kanoh, K. Kaneko, Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating [J]. J. Phys. Chem. B,2003,107 (40): 10974-10976.
    [69]Y S. Tao, H. Tanaka, T. Ohkubo, H. Kanoh, K. Kaneko, Pore Structures of ZSM-5 Synthesized in the Mesopore Spaces of a Carbon Aerogel [J]. Adsorpt. Sci. Technol.,2003,21(2):199-203.
    [70]Y. S. Tao, H. Kanoh, Y. Hanzawa, K. Kaneko, Template Synthesis and Characterization of Mesoporous Zeolites [J]. Colloids Surf. A:Physicochem. Eng. Asp.,2004,241 (1-3):75-80.
    [71]Y. S. Tao, H. Kanoh, K. Kaneko, Synthesis of Mesoporous Zeolite A by Resorcinol-Formaldehyde Aerogel Templating [J]. Langmuir,2005,21(2): 504-507.
    [72]Y. S. Tao, Y. Hattori, A. Matumoto, H. Kanoh, K. Kaneko, Comparative Study on Pore Structures of Mesoporous ZSM-5 from Resorcinol-Formaldehyde Aerogel and Carbon Aerogel Templating [J]. J. Phys. Chem. B,2005,109 (1): 194-199.
    [73]Y. S. Tao, H. Kanoh, L. Abrams, K. Kaneko, Mesopore-Modified Zeolites: Preparation, Characterization, and Applications [J]. Chem. Rev.,2006,106(3): 896-910.
    [74]H. T. Wang, Z. B. Wang, L. M. Huang, A. Mitra, B. Holmberg, Y. S. Yan, High-Surface-Area Zeolitic Silica with Mesoporosity [J]. J. Mater. Chem.,2001, (11):2307-2310.
    [75]F. S. Xiao, L. F. Wang, C. Y. Yin, K. F. Lin, Y. Di, J. X. Li, R. R. Xu, D. S. Su, R. Schlogl, T. Yokoi, T. Tatsumi, Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers [J]. Angew. Chem. Int. Ed.,2006, 45(19):3090-3093.
    [76]M. Choi, H. S. Cho. R. Srivastava, C. Venkatesan, D. H. Choi, R. Ryoo, Amphiphilic Organosilane-Directed Synthesis of Crystalline Zeolite with Tunable Mesoporosity [J]. Nat. Mater.,2006,5(9):718-723.
    [77]D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodriguez, A. Peral, Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds [J]. Chem. Mater.,2006,18(10):2462-2464.
    [78]B. T. Holland, Transformation of Mostly Amorphous Mesoscopic Aluminosilicate Colloids into High Surface Area Mesoporous ZSM-5 [J]. Microporous Mesoporous Mater.,2006,89(1-3):291-299.
    [79]G. Majano, S. Mintova, O. Ovsitser, B. Mihailova, T. Bein, Zeolite Beta Nanosized Assemblies [J]. Microporous Mesoporous Mater.,2005,80(1-3): 227-235.
    [80]M. A. Camblor, A. Corma, S. Valencia, Characterization of Nanocrystalline Zeolite Beta [J]. Microporous Mesoporous Mater.,1998,25(1):59-74.
    [81]W. Shan, Y. H. Zhang, Y. J. Wang, J. C. Xia, Y. Tang, Synthesis of Meso-/Macroporous Zeolite (Fe,Al)-ZSM-5 Microspheres from Diatomite [J]. Chem. Lett.,2004,33(3):270-271.
    [82]D. T. On, D. Lutic, S. Kaliaguine, An Example of Mesostructured Zeolitic Material:UL-TS-1 [J]. Microporous Mesoporous Mater.,2001,44-45: 435-444.
    [83]A. A. Campos, L. Martins, L. L. de Oliveira, C. R. da Silva, M. Wallau, E. A. Urquieta-Gonzalez, Secondary Crystallization of SBA-15 Pore Walls into Microporous Material with MFI Structure [J]. Catal. Today,2005,107-108: 759-767.
    [84]王星东,王亚军,杨武利,董安钢,任楠,谢在库,唐颐.纳米沸石胶体化学性质的研究[J].化学学报,2003,61(3):354-358.
    [85]Y. J. Wang, Y. Tang, Z. Ni, W. M. Hua, W. L. Yang, X. D. Wang, W. C. Tao, Z. Gao, Synthesis of Macroporous Materials with Zeolitic Microporous Frameworks by Self-Assembly of Colloidal Zeolites [J]. Chem. Lett.,2000, 29(5):510-511.
    [86]A. G. Dong. Y. J. Wang, Y. Tang, N. Ren, Y. H. Zhang, Y. H. Yue, Z. Gao, Zeolitic Tissue through Wood Cellular Templating [J]. Adv. Mater.,2002, 14(12):926-929.
    [87]A. G. Dong, Y. J. Wang, D. J. Wang, W. L. Yang, Y. H. Zhang, N. Ren, Z. Gao, Y. Tang, Fabrication of Hollow Zeolite Microcapsules with Tailored Shapes and Functionalized Interiors [J]. Microporous Mesoporous Mater.,2003,64(1-3): 69-81.
    [88]Y. J. Wang, Y. Tang, A. G. Dong, X. D. Wang, N. Ren, W. Shan, Z. Gao, Self-Supporting Porous Zeolite Membranes with Sponge-Like Architecture and Zeolitic Microtubes [J]. Adv. Mater.,2002,14(13-14):994-997.
    [89]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社,2001.
    [90]J. A. van Bokhoven, M. Tromp, D. C. Koningsberger, J. T. Miller, J. A. Z. Pieterse, J. A. Lercher, B. A. Williams, H. H. Kung, An Explanation for the Enhanced Activity for Light Alkane Conversion in Mildly Steam Dealuminated Mordenite:The Dominant Role of Adsorption [J]. J. Catal.,2001,202(1): 129-140.
    [91]M. Tromp, J. A. van Bokhoven, M. T. Garriga Oostenbrink, J. H. Bitter, K. P. de Jong, D. C. Koningsberger, Influence of the Generation of Mesopores on the Hydroisomerization Activity and Selectivity of n-Hexane over Pt/Mordenite [J]. J. Catal.,2000,190(1):209-214.
    [92]C. H. Christensen, K. Johannsen, I. Schmidt, C. H. Christensen, Catalytic Benzene Alkylation over Mesoporous Zeolite Single Crystals:Improving activity and Selectivity with a New Family of Porous Materials [J]. J. Am. Chem. Soc.,2003,125(44):13370-13371.
    [93]I. Schmidt, A. Krogh, K. Wienberg, A. Carlsson, M. Brorson, C. J. H. Jacobsen, Catalytic Epoxidation of Alkenes with Hydrogen Peroxide over First Mesoporous Titanium-Containing Zeolite [J]. Chem. Commun.,2000, (21): 2157-2158.
    [94]M. Y. Kustova, P. Hasselriis, C. H. Christensen, Mesoporous MEL-Type Zeolite Single Crystal Catalysts [J]. Catal. Lett.,2004,96(3-4):205-211.
    [95]X. T. Wei, P. G. Smirniotis, Synthesis and Characterization of Mesoporous ZSM-12 by Using Carbon Particles [J]. Microporous Mesoporous Mater.,2006, 89(1-3):170-178.
    [96]C. H. Christensen, I. Schmidt, A. Carlsson, K. Johannsen, K. Herbst, Crystals in Crystals-Nanocrystals within Mesoporous Zeolite Single Crystals [J]. J. Am. Chem. Soc.,2005,127(22):8098-8102.
    [97]M. Hartmann, Hierarchical Zeolites:A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport [J]. Angew. Chem. Int. Ed.,2004, 43(44):5880-5882.
    [98]R. Srivastava, M. Choi, R. Ryoo, Mesoporous Materials with Zeolite Framework:Remarkable Effect of the Hierarchical Structure for Retardation of Catalyst Deactivation [J]. Chem. Commun.,2006, (43):4489-4491.
    [99]M. Choi, R. Srivastava, R. Ryoo, Organosilane Surfactant-Directed Synthesis of Mesoporous Aluminophosphates Constructed with Crystalline Microporous Frameworks [J]. Chem. Commun.,2006, (42):4380-4382.
    [100]W. C. Li, A. H. Lu, R. Palkovits, W. Schmidt, B. Spliethoff, F. Schiith, Hierarchically Structured Monolithic Silicalite-1 Consisting of Crystallized Nanoparticles and Its Performance in the Beckmann Rearrangement of Cyclohexanone Oxime [J]. J. Am. Chem. Soc.,2005,127(36):12595-12600.
    [101]贾立胜,田震,无粘结剂A型沸石合成[J].非金属矿,2002,25(6):26-27.
    [102]关伟宏,无粘结剂4A分子筛的制备技术[J].陕西化工,2000,29(1):46-48.
    [103]W. H. Flank, Jr. Fethke, P. Walter, J. Marte, Process for Preparing Molecular Sieve Bodies [P]. US Patent 4818508,1989.
    [104]T. Toshiyuki, Production of Synthetic Zeolite Molded Form [P]. JP01-103917, 1989.
    [105]J. P. Verduijn, Process for Producing Substantially Binder-free Zeolite [P]. US Patent 5665325,1997.
    [106]J. P. Verduijn, P. E. Gellings, Hydrocarbon Conversion Process Using Binderless Zeolite L Catalyst [P]. US Patent 5849967,1998.
    [107]龙英才,一种无粘结剂疏水硅沸石吸附剂及其制备[P].中国专利CN1105906,1995.
    [108]A. G. Dong, Y. J. Wang, Y. Tang, Y. H. Zhang, N. Ren, Z. Gao, Mechanically Stable Zeolite Monoliths with Three-Dimensional Ordered Macropores by the Transformation of Mesoporous Silica Spheres [J]. Adv. Mater.,2002,14(20): 1506-1510.
    [109]A. G. Dong, N. Ren, W. L. Yang, Y. J. Wang, Y. H. Zhang, D. J. Wang, J. H. Hu, Z. Gao, Y. Tang, Preparation of Hollow Zeolite Spheres and Three-Dimensionally Ordered Macroporous Zeolite Monoliths with Functionalized Interiors [J]. Adv. Funct. Mater.,2003,13(12):943-948.
    [110]Y. J. Wang, F. Caruso, Macroporous Zeolitic Membrane Bioreactors [J]. Adv Funct Mater,2004,14(10):1012-1018.
    [Ill]S. Mintova, M. Holzl, V. Valtchev, B. Mihailova, Y. Bouizi, T. Bein, Closely Packed Zeolite Nanocrystals Obtained via Transformation of Porous Amorphous Silica [J]. Chem. Mater.,2004,16(25):5452-5459.
    [112]M. Rauscher, T. Selvam, W. Schwieger, D. Freude, Hydrothermal Transformation of Porous Glass Granules into ZSM-5 Granules [J]. Microporous Mesoporous Mater.,2004,75(3):195-202.
    [113]S. Shimizu, H. Hamada, Synthesis of Giant Zeolite Crystals by a Bulk-material Dissolution Technique [J]. Angew. Chem. Int. Ed.,1999,38(18):2725-2727.
    [114]S. Shimizu, H. Hamada, Direct Conversion of Bulk Materials into MFI Zeolites by a Bulk-material Dissolution Technique [J]. Adv. Mater.,2000,12(18): 1332-1335.
    [115]C. Berger, R. Glaser, R. A. Rakoczy, J. Weitkamp, The Synthesis of Large Crystals of Zeolite Y Re-visited [J]. Microporous Mesoporous Mater.,2005, 83(1-3):333-344.
    [116]R. N. Sanders, S. M. Laurent, Method of Making Zeolite Y [P]. US Patent 4482530,1984.
    [117]S. Ferchiche, J. Warzywoda, Jr. A. Sacco, Direct Synthesis of Zeolite Y with Large Particle Size [J]. Int. J. Inorg. Mater.,2001,3(7):773-780.
    [118]A. Nakahira, S. Takezoe, Y. Yamasaki, Synthesis of Dense Y-Zeolite Bulks with Large Surface Area Using a Hydrothermal Hot-Pressing (HHP) Process [J]. Chem. Lett.,2004,33(10):1400-1401.
    [119]A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, Y H. Zhang, Z. Gao, Hollow Zeolite Capsules:A Novel Approach for Fabrication and Guest Encapsulation [J]. Chem. Mater,2002,14(8):3217-3219.
    [120]Y. J. Wang, Y. Tang, A. G. Dong, X. D. Wang, N. Ren, Z. Gao, Zeolitization of Diatomite to Prepare Hierarchical Porous Zeolite Materials Through a Vapor-Phase Transport Process [J]. J. Mater. Chem.,2002, (12):1812-1818.
    [121]W. Y. Dong, Y. J. Sun, H. Y He, Y. C. Long, Synthesis and Structural Characterization of B-A1-ZSM-5 Zeolite from Boron-Silicon Porous Glass in the Vapor Phase [J]. Microporous Mesoporous Mater,1999,32(1-2):93-100
    [122]王德举,刘仲能,赵江,江兴华,无粘结剂小晶粒ZSM-5沸石的制备方法[P].中国专利CN191582,2007.
    [123]F. Crea, R. Aiello. A. Nastro. J. B. Nagy, Synthesis of ZSM-5 Zeolite from Very Dense Systems:Formation of Pelleted ZSM-5 Zeolite from (Na, Li, TPA, Si, Al) Hydrogels [J]. Zeolites,1991,11(5):521-527.
    [124]P. De Luca, F. Crea, R. Aiello, A. Fonseca, J. B. Nagy, Direct Formation of Self-bonded Pellets:During the Synthesis of Mordenite and ZSM-11 Zeolites from Low Water Content Systems [J]. Microporous Mesoporous Mater.,2001, 42(1):37-48.
    [125]S. P. Naik, J. C. Chen, A. S. T. Chiang, Synthesis of Silicalite Nanocrystals via the Steaming of Surfactant Protected Precursors [J]. Microporous Mesoporous Mater.,2002,54(3):293-303.
    [126]L. M. Huang, Z. B. Wang, J. Y. Sun, L. Miao, Q. Z. Li, Y. S. Yan, D. Y. Zhao, Fabrication of Ordered Porous Structures by Self-assembly of Zeolite Nanocrystals [J]. J. Am. Chem. Soc.,2000,122(14):3530-3531.
    [127]B. T. Holland, L. Abrams, A. Stein, Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks [J]. J. Am. Chem. Soc.,1999,121(17): 4308-4309.
    [128]B. J. Zhang, S. A. Davis, N. H. Mendelson, S. Mann, Bacterial Templating of Zeolite Fibres with Hierarchical Structure [J]. Chem. Commun.,2000, (9): 781-782.
    [129]Y. J. Lee, J. S. Lee, Y. S. Park, K. B. Yoon, Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures [J]. Adv Mater,2001, 13(16):1259-1263.
    [130]王德举,朱桂波,张亚红,刘仲能,谢在库,唐颐,无模板剂二次生长法制备可调大孔的沸石泡沫[J].无机材料学报,2005,20(3):635-640.
    [131]L. Tosheva, B. Mihailova, V. Valtchev, J. Sterte, Zeolite Beta Spheres [J]. Microporous Mesoporous Mater.,2001,48(1):31-37.
    [132]V. Valtchev, Silicalite-1 Hollow Spheres and Bodies with a Regular System of Macrocavities [J]. Chem. Mater.,2002,14(10):4371-4377.
    [133]H. T. Wang, L. M. Huang, Z. B. Wang, A. Mitra, Y. S. Yan, Hierarchical Zeolite Structures with Designed Shape by Gel-casting of Colloidal Nanocrystal Suspensions [J]. Chem. Commun.,2001, (15):1364-1365.
    [134]侯梅芳,崔杏雨,李瑞丰,沸石分子筛在气体吸附分离方面的应用研究[J].太原理工大学学报,2001,32(2):135-144.
    [135]李善安,柯跃珍,唐超,赵尔玉,无粘结剂球状A型分子筛制备方法[P].中国专利CN87105499,1988.
    [136]上瑞英,李斌,李善安,黄国雄,沈宏孚,C5/C6烷烃全异构化中型试验[J].石油炼制与化工,1995,26(7):22-28.
    [137]丁云龙,国产5A分子筛小球吸附剂用于液蜡生产[J].石油炼制与化工,2003,34(11):27-30.
    [138]孙尧俊,郭国清,工力平,吴泰琉,龙英才,气相吸附分离间二氯苯[J].石油化工,2000,30(3):178-181.
    [139]郭国清,龙英才,疏水硅沸石吸附分离混合二氯苯静态液相平衡的研究[J].石油化工,2001,31(2):121-125.
    [140]田金星,雷绍民,沸石的吸附、离子交换特性与环境保护,国外建材科技,1995,16(1):46-52.
    [141]S. Sakurada, N. Tagaya, T. Miura, T. Maeshima, T. Hashimoto, Binderless Zeolite Catalysts, Production Thereof and Catalytic Reaction Therewith [P]. US Patent 4977120,1990.
    [142]G. D. Mohr, T. J. Chen, K. R. Clem, M. J. G. Janssen, P. A. Ruziska, J. P. Verduijn, J. M. van den Berge, Hydrocarbon Conversion Process Using a Zeolite Bound Zeolite Catalyst [P]. US Patent 5993642,1999.
    [143]G. D. Mohr, M. J. G. Janssen, Hydrocarbon Conversion Process Using a Zeolite Bound Zeolite Catalyst [P]. US Patent 6039864.2000.
    [144]G. D. Mohr, T. J. Chen, K. R. Clem, M. J. G. Janssen, P. A. Ruziska, J. P. Verduijn, Toluene Disproportionation Process Using a Zeolite Bound Zeolite Catalyst [P]. US Patent 6198013,2001.
    [145]G. D. Mohr, M. J. G. Janssen, Hydrocarbon Conversion Process Using a Zeolite Bound Zeolite Catalyst [P]. US Patent 6458736,2002.
    [146]D. E. Hendriksen, G. D. Mohr, J. P. Verduijn, R. S. Smith, Aromatic Conversion Processes and Zeolite Catalyst Useful Therein [P]. US Patent 6864203,2005.
    [147]G. D. Mohr, K. R. Clem, W. J. Mortier, M. M. Mertens, X. B. Feng, M. H. Anthonis, B. Schoofs, Tailored Zeolite Bound Zeolite Catalysts and Its Use for Hydrocarbon Conversion [P]. US Patent 6858129,2005.
    [148]F. Xu, Y. J. Wang, X. Y. Wang, Y. H. Zhang, Y. Tang, P. Y. Yang, A Novel Hierarchical Nanozeolite Composite as Sorbent for Protein Separation in Immobilized Metal-Ion Affinity Chromatography [J]. Adv. Mater.,2003,15(20): 1751-1753.
    [149]D. J. Wang, Y. H. Zhang, F. Xu, W. Shan, G. B. Zhu, P. Y. Yang, Y. Tang, The Application of Zeolite/Fac Composites in Protein Separation [J]. Stud. Surf. Sci. Catal.,2004,154:2027-233.
    [150]Y. J. Kang, W. Shan, J. Y. Wu, Y. H. Zhang, X. Y. Wang, W. L. Yang, Y. Tang, Uniform Nanozeolite Microspheres with Large Secondary Pore Architecture [J]. Chem. Mater.,2006,18(7):1861-1866
    [1]M. E. Davis, Zeolites and Molecular Sieves:not just Ordinary Catalysts [J]. Ind Eng Chem Res,1991,30(8):1675-1683.
    [2]A. J. H. P. van der Pol, A. J. verduyn, J. H. C. van der Hooff, Why Are Some Titanium Silicalite-1 Samples Active and Others not? [J]. Appl Catal A,1992, 92(2):113-130.
    [3]V. P. Shiralkar, P. N. Joshi, M. J. Eapen, B. S. Rao, Synthesis of ZSM-5 with Variable Crystallite Size and Its Influence on Physicochemical Properties [J]. Zeolites,1991,11(5):511-516.
    [4]M. A. Camblorm, A. Corma, A. Martinez, F. A. Mocholi, J. Perez Pariente, Catalytic Cracking of Gasoil:Benefits in Activity and Selectivity of Small Y Zeolite Crystallites Stabilized by a Higher Silicon-to-Aluminium Ratio by Synthesis [S].App. Catal.,1989,55(1):65-74.
    [5]E. F. S. Aguiar, M. L. Murta^Valle, M. P. Silva, D. F. Silva, Influence of External Surface Area of Rare-earth Containing Y Zeolites on the Cracking of 1,3,5-triisopropylbenzene [J]. Zeolites,1995,15(7):620-623.
    [6]S. B. Pu, T. Inui, Influence of Crystallite Size on Catalytic Performance of HZSM-5 Prepared by Different Methods in 2,7-dimethylnaphthalene Isomerization [J]. Zeolites,1996,17(4):334-339.
    [7]M, A, Arribas, A, Martinez, Simultaneous Isomerization of n-heptane and Saturation of Benzene over Pt/Beta catalysts:The Influence of Zeolite Crystal Size on Product Selectivity and Sulfur Resistance [J]. Catal Today,2001,65(2): 117-122.
    [8]M. Yamamura, K. Chaki, T. Wakatsuki, H. Okado, K. Fujimoto, Synthesis of ZSM-5 Zeolite with Small Crystal Size and Its Catalytic Performance for Ethylene Oligomerization [J]. Zeolites,1994,14(8):643-649.
    [9]M. V. Landau, L. Vradman, V. Valtchev, J. Lezervant, E. Liubich, M. Talianker, Hydrocracking of Heavy Vacuum Gas Oil with a Pt/H-beta-Al2O3 Catalyst: Effect of Zeolite Crystal Size in the Nanoscale Range [J]. Ind. Eng. Chem. Res., 2003,42(12):2773-2782.
    [10]L. Tosheva, V. Valtchev, Nanozeolites:Synthesis. Crystallization Mechanism, and Applications [J]. Chem. Mater.,2005,17(10):2494-2513.
    [11]D. J. Klocke, N. J. Somerdale, Small Crystal ZSM-5, as a Catalyst [P]. US5240892,1993.
    [12]A. E. Persson, B. J. Schoeman,.J Sterte, J.-E. Otterstedt, Synthesis of Stable Suspensions of Discrete Colloidal Zeolite (Na, TPA)ZSM-5 Crystals [J]. Zeolites,1995,15(7):611-619.
    [13]R. Van Grieken, J. L. Sotelo, J. M. Menendez, J. A. Melero, Anomalous Crystallization Mechanism in the Synthesis of Nanocrystalline ZSM-5 [J]. Microporous Mesoporous Mater.,2000,39(1-2):135-147.
    [14]W. P. Zhang, X. H. Bao, X. W. Guo, X. S. Wang, A High-resolution Solid-state NMR Study on Nano-structured HZSM-5 Zeolite [J]. Catal. Lett.,1999,60(1-2): 89-94.
    [15]R. W. Thompson, Recent Advances in the Understanding of Zeolite Synthesis [M]. Molecule Sieves,1998, (1):1-33.
    [16]王德举,唐颐,刘仲能,夏建超,谢在库,陈庆龄,导向剂法转化天然资源选择性制备NaX沸石[J].石油化工,2004,33(2):136-140.
    [17]周群,裘式纶,庞文琴,导向剂法合成p沸石的晶化机制研究[J].高等学校化学学报,2000,21(1):1-4.
    [18]G. Reding, T. Maurer, B. Kraushaar-Czarnetzki, Comparing Synthesis Routes to Nano-crystalline Zeolite ZSM-5 [J]. Microporous Mesoporous Mater.,2003, 57(1):83-92.
    [19]H. T. Wang, Z. B. Wang, L. M. Huang, A. Mitra, B. Holmberg, Y. S. Yan, High-Surface-Area Zeolitic Silica with Mesoporosity [J]. J. Mater. Chem.,2001, 11:2307-2310.
    [20]B. T. Holland, Transformation of Mostly Amorphous Mesoscopic Aluminosilicate Colloids into High Surface Area Mesoporous ZSM-5 [J]. Microporous Mesoporous Mater.,2006,89(1-3):291-299.
    [21]王德举,朱桂波,张亚红,刘仲能,谢在库,唐颐,无模板剂二次生长法制备可调大孔的沸石泡沫[J].无机材料学报,2005,20(3):635-640.
    [22]李钢,郭新闻,王祥生,李光岩,赵琦,包信和,林励吾,钛硅沸石合成中各组分作用研究[J].燃料化学学报,1999,27(6):565-567.
    [23]C. S. Cundy, B. M. Lowe, D. M. Sinclair, The Crystallisation of Zeolitic Molecular Sieves:Direct Measurements of the Growth Behaviour of Single Crystals as a Function of Synthesis Conditions [J].J. Chem. Soc., Faraday Discuss,1993,(95):235-252.
    [1]D. W. Breck, Zeolite Molecular Sieves [M]. Wiley, New York,1974.
    [2]R.M. Barrer, Hydrothermal Chemistry of Zeolites [M]. Academic Press, London, 1982.
    [3]A. Dyer, An Introduction to Zeolite Molecular Sieves [M]. John Wiley & Sons, Chichester, UK,1988.
    [4]G. A. Ozin, A. Kuperman, A. Stein, Advanced Zeolite Materials Science [J]. Angew. Chem. Int. Ed. Engl.,1989,28(3):359-373.
    [5]S. B. Pu, T. Inui, Influence of Crystallite Size on Catalytic Performance of HZSM-5 Prepared by Different Methods in 2,7-dimethylnaphthalene Isomerization [J]. Zeolites,1996,17(4):334-339.
    [6]J. M. Maselli, A. W. Peters, Preparation and Properties of Fluid Cracking Catalysts for Residual Oil Conversion [J]. Catal. Rev. Sci. Eng.1984,26(3-4): 525-554.
    [7]M. A. Arribas, A. Martinez, Simultaneous Isomerization of n-heptane and Saturation of Benzene over Pt/Beta Catalysts:The Influence of Zeolite Crystal Size on Product Selectivity and Sulfur Resistance [J]. Catal. Today,65,2001, 65(2-4):117-122.
    [8]S. Bernasconi, J. A. van Bokhoven, F. Krumeich, G. D. Pirngrubera, R. Prins, Formation of Mesopores in Zeolite Beta by Steaming:A Secondary Pore Channel System in the (001) Plane [J]. Microporous Mesoporous Mater.,2003, 66(1):21-26.
    [9]A. H. Janssen, A. J. Koster, K. P. de Jong, Three-Dimensional Transmission Electron Microscopic Observations of Mesopores in Dealuminated Zeolite Y [J]. Angew. Chem. Int. Ed.,2001,40 (6):1102-1104.
    [10]I. I. Ivanova, A. S. Kuznetsov, V. V. Yuschenko, Design of Composite Micro/mesoporous Molecular Sieve Catalysts [J]. Pure Appl. Chem.,2004,76 (9): 1647-1658.
    [11]J. C. Groen, L. A. A. Peffer, J. A. Moulijn, J. Perez-Ramirez, Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication:The Role of Aluminium as a Pore-Directing [J]. Chem. Eur. J.,2005,11(17):4983-4994.
    [12]C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, Mesoporous Zeolite Single Crystals [J]. J. Am. Chem. Soc.,2000,122(29): 7116-7117.
    [13]I. Schmidt, A. Boisen, E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, A. Carlsson, C. J. H. Jacobsen, Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals [J]. Chem. Mater.,2001,13(12):4416-4418.
    [14]Z. X. Yang, Y. D. Xia, R. Mokaya, Zeolite ZSM -5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template [J]. Adv. Mater.,2004,16(8):727-732.
    [15]Y. M. Fang, H. Q. Hu, An Ordered Mesoporous Aluminosilicate with Completely Crystalline Zeolite Wall Structure [J]. J. Am. Chem. Soc.,2006, 128(33):10636-10637.
    [16]Y. S. Tao, H. Kanoh, K. Kaneko, ZSM-5 Monolith of Uniform Mesoporous Channels [J].J. Am. Chem. Soc.,2003,125(20):6044-6045.
    [17]F. S. Xiao, L. F. Wang, C. Y. Yin, K. F. Lin, Y. Di, J. X. Li, R. R. Xu, D. S. Su, R. Schlogl, T. Yokoi, T. Tatsumi, Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers [J]. Angew. Chem. Int. Ed.,2006,45(19): 3090-3093.
    [18]M. Choi, H. S. Cho, R. Srivastava, C. Venkatesan, D. H. Choi, R. Ryoo, Amphiphilic Organosilane-Directed Synthesis of Crystalline Zeolite with Tunable Mesoporosity [J]. Nat. Mater.,2006,5(9):718-723.
    [19]D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodriguez, A. Peral, Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds [J]. Chem. Mater.,2006,18(10):2462-2464.
    [20]R. Srivastava, M. Choi, R. Ryoo, Mesoporous Materials with Zeolite Framework: Remarkable Effect of the Hierarchical Structure for Retardation of Catalyst Deactivation [J]. Chem. Commun.,2006, (43):4489-4491.
    [21]M. Choi, R. Srivastava, R. Ryoo, Organosilane Surfactant-Directed Synthesis of Mesoporous Aluminophosphates Constructed with Crystalline Microporous Frameworks [J]. Chem. Commun.,2006, (42):4380-4382.
    [22]L. Tosheva, V. Valtchev, Nanozeolites:synthesis, crystallization mechanism, and applications [J]. Chem. Mater.,2005,17(10):2494-2513.
    [23]Y. S. Tao, H. Kanoh, L. Abrams, K. Kaneko, Mesopore-Modified Zeolites: Preparation, Characterization, and Applications [J]. Chem. Rev.,2006,106(3): 896-910.
    [24]K. Egeblad, C. H. Christensen, M. Kustova, C.H. Christensen, Templating Mesoporous Zeolites [J]. Chem. Mater.,2008,20(3):946-960.
    [25]R. Krishna and D. Paschek, Molecular Simulations of Adsorption and Siting of Light Alkanes in Silicalite-1 [J]. Phys. Chem. Chem. Phys.2001, (3):453-462.
    [26]P. Szabelski, J. Narkiewicz-Michalek, W. Rudzinski, Coverage Dependence of Aaromatic Hydrocarbon Diffusion in Silicalite:Predictions of the Three-Site Lattice Model [J]. Appl. Surf. Sci.2002,196(1):191-201.
    [27]S. Nair, M. Tsapatsis, The Location of o- and m-xylene in Silicalite by Powder X-Ray Diffraction [J]. J. Phys. Chem. B,2000,104 (38):8982-8988.
    [28]C. K. Lee, A. S. T. Chiang, Adsorption of Aaromatic Compounds in Large MFI Zeolite Crystals [J]. J. Chem. Soc. Faraday Trans.,1996,92(18):3445-3451.
    [29]王德举,刘仲能,谢在库,汽相转化法制备无粘结剂小品粒ZSM-5沸石[J].无机材料学报,2008,23(3):592-596.
    [30]Cundy C S, Cox P A, The Hydrothermal Synthesis of Zeolites:Precursors, Intermediates and Reaction Mechanism [J]. Microporous Mesoporous Mater., 2005,82(1-2):1-78.
    [31]王德举,李学礼,刘仲能.谢在库,晶种导向剂法制备纳米ZSM-5沸石[J].工业催化,2008,16(4):19-23.
    [32]T. M. Davis, T. O. Drews, H. Ramanan, C. He, J. Dong, H. Schnablegger, M. A. Katsoulakis, E. Kokkoli, A. V. Mccormick, R. L. Penn, M. Tsapatsis, Mechanistic Principles of Nanoparticle Evolution to Zeolite Crystals [J]. Nat. Mater.,2006, (5):400-408.
    [33]S. Kumar, T. M. Davis, H. Ramanan, R. L. Penn, M. Tsapatsis. Aggregative Growth of Silicalite-1 [J]. J. Phys. Chem. B,2007,111(13):3398-3403.
    [34]R. L. Penn, K. Tanaka, J. J. Erbs, Size Dependent Kinetics of Oriented Aggregation [J]. J. Crystal. Growth.,2007,309(1):97-102.
    [35]M. Niederberger, H. Colfen, Oriented Attachment and Mesocrystals:non-Classical Crystallization Mechanisms Based on Nanoparticle Assembly [J]. Phys. Chem. Chem. Phys.,2006,8(28):3271-3287.
    [36]Z. Zhang, H. Sun, X. Shao, D. Li, H. Yu, M. Han, Three-Dimensionally Oriented Aggregation of a Few Hundred Nanoparticles into Monocrystalline Architectures [J]. Adv. Mater.,2005,17(1):42-47.
    [1]D. W. Breck, Zeolite Molecular Sieves [M]. Wiley, New York,1974.
    [2]王德举,刘仲能,李学礼,谢在库,介孔沸石材料[J].化学进展,2008,20(05): 637-643.
    [3]M. Choi, H. S. Cho. R. Srivastava, C. Venkatesan, D. H. Choi, R. Ryoo, Amphiphilic Organosilane-Directed Synthesis of Crystalline Zeolite with Tunable Mesoporosity [J]. Nat. Mater.,2006,5(9):718-723.
    [4]C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, Mesoporous Zeolite Single Crystals [J]. J. Am. Chem. Soc.,2000,122(29): 7116-7117.
    [5]S. Bernasconi, J. A. van Bokhoven, F. Krumeich, et al. Formation of Mesopores in Zeolite Beta by Steaming a Secondary Pore Channel System in the (001) Plane [J]. Microporous Mesoporous Mater.,2003,66(1):21-26.
    [6]J. C. Groen, L. A. A. Peffer, J. A. Moulijn, J. Perez-Ramirez, Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication:The Role of Aluminium as a Pore-Directing [J]. Chem. Eur. J.,2005,11(17):4983-4994.
    [7]B. T. Holland, L. Abrams, A. Stein, Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks [J]. J. Am. Chem. Soc.,1999,121(17): 4308-4309.
    [8]Y. J. Wang, Y. Tang, Z. Ni, W. M. Hua, W. L. Yang, X. D. Wang, W. C. Tao, Z. Gao, Synthesis of Macroporous Materials with Zeolitic Microporous Frameworks by Self-Assembly of Colloidal Zeolites [J]. Chem. Lett.,2000, 29(5):510-511.
    [9]K. H. Rhodes, S. A. Davis, F. Caruso, B. J. Zhang, S. Mann, Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks [J]. Chem. Mater.,2000,12(10):2832-2834.
    [10]V. Valtchev, Silicalite-1 Hollow Spheres and Bodies with a Regular System of Macrocavities [J]. Chem. Mater.,2002,14(10):4371-4377.
    [11]D. J. Wang, G. B. Zhu, Y. H. Zhang, W. L. Yang, B. Y. Wu, Y. Tang, Z. K. Xie, Controlled release and conversion of guest species in zeolite microcapsules [J]. New J. Chem.,2005,29(2):272-274.
    [12]X. Y. Chen, M. H. Qiao, S. H. Xie, K. N. Fan, W. Z. Zhou, H. Y. He, Self-Construction of Core-Shell and Hollow Zeolite Analcime Icositetrahedra: A Reversed Crystal Growth Process via Oriented Aggregation of Nanocrystallites and Recrystallization from Surface to Core [J].J. Am. Chem. Soc.,2007,129(43):13305-13312.
    [13]Y. R. Wang, M. Lin, A.Tuel, Hollow TS-1 Crystals Formed via a Dissolution-Recrystallization Process [J]. Microporous Mesoporous Mater., 2007,102(1-3):80-85.
    [14]C. S. Mei, Z. C. Liu, P. Y. Wen, Z. K. Xie, W. M. Hua, Z. Gao, Regular HZSM-5 Microboxes Prepared via a Mild Alkaline Treatment [J]. J. Mater. Chem., 2008,18(29):3496-3500.
    [15]王德举,刘仲能,杨为民,介孔沸石材料,无黏结剂沸石分子筛的制备和应用[J].石油化工2007,36(10):1061-1066.
    [16]王德举,刘仲能,谢在库,汽相转化法制备无粘结剂小晶粒ZSM-5沸石[J].无机材料学报,2008,23(3):592-596.
    [17]Y. J. Lee, J. S. Lee, Y. S. Park, K. B. Yoon, Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures [J]. Adv Mater,2001, 13(16):1259-1263.
    [18]王德举,朱桂波,张亚红,刘仲能,谢在库,唐颐,无模板剂二次生长法制备可调大孔的沸石泡沫[J].无机材料学报,2005,20(3):635-640.
    [19]L. Tosheva, B. Mihailova, V. Valtchev, J. Sterte, Zeolite Beta Spheres [J]. Microporous Mesoporous Mater.,2001,48(1):31-37.
    [20]A. G. Dong, Y. J. Wang, Y. Tang, Y. H. Zhang, N. Ren, Z. Gao, Mechanically Stable Zeolite Monoliths with Three-Dimensional Ordered Macropores by the Transformation of Mesoporous Silica Spheres [J]. Adv. Mater.,2002,14(20): 1506-1510.
    [21]A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, Y. H. Zhang, Y. H. Yue, Z. Gao, Zeolitic Tissue through Wood Cellular Templating [J]. Adv. Mater.,2002,14(12): 926-929.
    [22]W. C. Li, A. H. Lu, R. Palkovits, W. Schmidt, B. Spliethoff, F. Schuth, Hierarchically Structured Monolithic Silicalite-1 Consisting of Crystallized Nanoparticles and Its Performance in the Beckmann Rearrangement of Cyclohexanone Oxime [J]. J. Am. Chem. Soc.,2005,127(36):12595-12600.
    [23]H. T. Wang, L. M. Huang, Z. B. Wang, A. Mitra, Y. S. Yan, Hierarchical Zeolite Structures with Designed Shape by Gel-casting of Colloidal Nanocrystal Suspensions [J]. Chem. Commun.,2001, (15):1364-1365.
    [24]J. C. Groen, T. Bach, U. Ziese. A. M. Paulaime-van Donk, K. P. de Jong, J. A. Moulijn, J. Perez-Ramirez, Creation of Hollow Zeolite Architectures by Controlled Desilication of A1-Zoned ZSM-5 Crystals [J]. J. Am. Chem. Soc., 2005,127(31):10792-10793.
    [25]R. Ravishankar, C.E.A. Kirschhock, B. J. Schoeman, P. Vannopen, P. J. Grobet, S. Storck, W. F. Maier, J. A. Martens, F. C. De Schryver, P. A. Jacobs, Physicochemical Characterization of Silicalite-1 Nanophase Material [J]. J. Phys. Chem. B,1998,102 (15):2633-2639.
    [26]Y. C. Tong, T. B. Zhao, F. Y. Li, Y. Wang, Synthesis of Monolithic Zeolite Beta with Hierarchical Porosity Using Carbon as a Transitional Template [J]. Chem. Mater.,2006,18(18):4218-4220.
    [27]H. T. Wang, Z. B. Wang, L. M. Huang, A. Mitra, B. Holmberg, Y. S. Yan, High-Surface-Area Zeolitic Silica with Mesoporosity [J]. J. Mater. Chem.,2001, 11(9):2307-2310.
    [28]B. T. Holland, Microporous Mesoporous Mater., Transformation of mostly amorphous mesoscopic aluminosilicate colloids into high surface area mesoporous ZSM-5 [J].2006,89(1-3):291-299.
    [29]S. I. Zones, Y. Nakagawa, Boron-Beta Zeolite Hydrothermal Conversions:The Influence of Template Structure and of Boron Concentration and Source [J]. Microporous Mater.,1994,2 (6):557-562.
    [30]R. K. Ahedi, Y. Kubota, Y. Sugi, Hydrothermal Synthesis of [A1]-SSZ-31 from [A1]-BEA Precursors [J]. J. Mater. Chem.,2001,11(12):2922-2924.
    [31]C. Zenonos, G. Sankar, J. Garcia-Martinez, A. Aliev, A. M. Beale, Direct Hydrothermal Conversion of High-Silica Faujausite and Zeolite Beta to ZSM-5 and Its Catalytic Performance [J]. Catal. Lett.,2003,86 (4):279-283.
    [32]Cundy C S, Cox P A, The Hydrothermal Synthesis of Zeolites:Precursors, Intermediates and Reaction Mechanism [J]. Microporous Mesoporous Mater., 2005,82(1-2):1-78.
    [33]B. C. Lipens, J. H. de Boer, Studies on Pore Systems in Catalysts, V. The t Method [J]. J. Catal.1965,4(3):319-323.
    [1]D. W. Breck, Zeolite Molecular Sieves [M]. Wiley, New York,1974.
    [2]M. A. Camblorm, A. Corma, A. Martinez, F. A. Mocholi, J. Perez Pariente, Catalytic Cracking of Gasoil:Benefits in Activity and Selectivity of Small Y Zeolite Crystallites Stabilized by a Higher Silicon-to-Aluminium Ratio by Synthesis [J]. App. Catal.,1989,55(1):65-74.
    [3]V. P. Shiralkar, P. N. Joshi, M. J. Eapen, B. S. Rao, Synthesis of ZSM-5 with Variable Crystallite Size and Its Influence on Physicochemical Properties [J]. Zeolites,1991,11(5):511-516.
    [4]A. J. H. P. van der Pol, A. J. verduyn, J. H. C. van der Hooff, Why Are Some Titanium Silicalite-1 Samples Active and Others not? [J]. Appl Catal A,1992, 92(2):113-130.
    [5]M. A. Arribas, A. Martinez, Simultaneous Isomerization of n-heptane and Saturation of Benzene over Pt/Beta catalysts:The Influence of Zeolite Crystal Size on Product Selectivity and Sulfur Resistance [J]. Catal Today,2001,65(2): 117-122.
    [6]B. T. Holland, L. Abrams, A. Stein, Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks [J]. J. Am. Chem. Soc.,1999,121(17): 4308-4309.
    [7]Y. J. Lee, J. S. Lee, Y. S. Park, K. B. Yoon, Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures [J]. Adv Mater,2001, 13(16):1259-1263.
    [8]V. Valtchev, Preparation of Regular Macroporous Structures Built of Intergrown Silicalite-1 Nanocrystals [J]. J. Mater. Chem.,2002,12(6):1914-1918.
    [9]M. Rauscher, T. Selvam, W. Schwieger, D. Freude, Hydrothermal Transformation of Porous Glass Granules into ZSM-5 Granules [J]. Microporous Mesoporous Mater.,2004,75(3):195-202.
    [10]龙英才,一种无粘结剂疏水硅沸石吸附剂及其制备[P].CN1105906,1995.
    [11]A. Nakahira, S. Takezoe, Y. Yamasaki, Synthesis of Dense Y-Zeolite Bulks with Large Surface Area Using a Hydrothermal Hot-Pressing (HHP) Process [J]. Chem. Lett.,2004,33(10):1400-1401.
    [12]A. G. Dong, Y. J. Wang, Y. Tang. Y. H. Zhang, N. Ren, Z. Gao. Mechanically Stable Zeolite Monoliths with Three-Dimensional Ordered Macropores by the Transformation of Mesoporous Silica Spheres [J]. Adv. Mater.,2002,14(20): 1506-1510.
    [13]A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, Y. H. Zhang, Y. H. Yue, Z. Gao, Zeolitic Tissue through Wood Cellular Templating [J]. Adv. Mater.,2002,14(12): 926-929.
    [14]S. Mintova, M. Holzl, V. Valtchev, B. Mihailova, Y. Bouizi, T. Bein, Closely Packed Zeolite Nanocrystals Obtained via Transformation of Porous Amorphous Silica [J]. Chem. Mater.,2004,16(25):5452-5459.
    [15]王德举,朱桂波,张亚红,刘仲能,谢在库,唐颐,无模板剂二次生长法制备可调大孔的沸石泡沫[J].无机材料学报,2005,20(3):635-640.
    [16]W. Y. Xu, J. X. Dong, J. P. Li, J. Q. Li, F. Wu, A Novel Method for the Preparation of Zeolite ZSM-5 [J]. J. Chem. Soc., Chem. Commun.,1990, (10): 755-756.
    [17]M. W. Anderson, S. M. Holmes, N. Hanif, C. S. Cundy, Hierarchical Pore Structures Through Diatom Zeolitization [J]. Angew. Chem. Int. Ed.,2000, 39(15):2707-2710.
    [18]Y. J. Wang, Y. Tang, A. G. Dong, X. D. Wang, N. Ren, Z. Gao, Zeolitization of Diatomite to Prepare Hierarchical Porous Zeolite Materials Through a Vapor-Phase Transport Process [J]. J. Mater. Chem.,2002, (12):1812-1818.
    [19]D. J. Wang, Y. Tang, A. G. Dong, Y. H. Zhang, Y. J. Wang, Hollow Cancrinite Zeolite Spheres in situ Transformed from Fly Ash Cenosphere [J]. Chinese Chem. Lett.,2003,14(12):1299-1302.
    [1]粱受天,C9馏分的综合利用[J].石油化工,1987,16(3):199-205.
    [2]王建强,赵多,刘仲能,谢在库,裂解碳九加氢利用技术进展[J].化学进展,2008,27(9):1311-1315.
    [3]唐占忠,陈一斋,由重芳烃制取轻芳烃[J].辽宁化工,1992,(6):41-45.
    [4]石云革,柏晓红,800kt/a乙烯改扩建中甲苯脱烷基制苯的探讨[J].炼油与化工,2004,15(4):8-9,14.
    [5]薛璋,宝钢Litol法与K.K法粗苯加氢的对比[J].燃料与化工,2006,37(3):32-36.
    [6]S. Choi, S. H. Oh, Y. S. Kim, K. H. Seong, B. S. Lim, J. H. Lee, APUSM Technology for the Production of BTX and LPG from Pyrolysis Gasoline Msing Metal Promoted Zeolite Catalyst [J]. Catal. Surv. Asia.,2006,10(2):110-116.
    [7]王德举,刘仲能,赵江,江兴华,无粘结剂小晶粒ZSM-5沸石的制备方法[P].中国专利,CN1915820,2005.
    [8]S Toppi, C Thomas, C Sayag, D. Brodzki, F. L. Peltierb, C. Travers, G. Djega-Mariadassou, Kinetics and Mechanisms of n-Propylbenzene Hydrodealkylation Reactions over Pt(Sn)/SiO2 and (Cl-)Al2O3 Catalysts in Reforming Conditions [J]. J. Catal.,2002,210(2):431-444.
    [9]S Toppi, C Thomas, C Sayag, D. Brodzki, K. Fajerwerg, F. L. Peltier, C. Travers, G. Djega-Mariadassou, On the Radical Cracking of n-Propylbenzene to Ethylbenzene or Toluene over Sn/Al2O3-Cl Catalysts under Reforming Conditions [J]. J. Catal.,2005,230(2):255-268.
    [10]J. M. Serra, E. Guillon, A. Corma, Optimizing the Conversion of Heavy Reformate Streams into Xylenes with Zeolite Catalysts by Using Knowledge Base High-Throughput Experimentation Techniques [J].J. Catal.,2005,230 (2): 342-354.
    [11]S Toppi, C Thomas, C Sayag, D. Brodzki, F. L. Peltier, C. Travers, G. Djega-Mariadassou, Proposal for a Common Reactive Adsorbate for Ethylbenzene and Indenic Compounds in the Conversion of n-Propylbenzene over a Precooked Silica-supported Platinum Catalyst [J].J. Catal.,2003,218(2): 411-418.
    [1]唐卫东.连续重整重芳烃综合利用工艺的探讨[J].石油炼制与化工,2006,37(11):35-39.
    [2]孔德金,祁晓岚,朱志荣,杨为民,谢在库,重芳烃轻质化技术进展[J].化工进展,2006,25(9):983-987.
    [3]张卫江,王文喜,曲红梅,孙兴华,王凤东,均三甲苯生产与分离技术新进展[J].化学工业与工程,2002,19(3):265-210.
    [4]符中林,浅谈重芳烃的综合利用[J].福建化工,2000,(4):8-9.
    [5]王德举,李学礼,刘仲能,裂解汽油重质馏分轻质化增产BTX芳烃技术进展[J].上海化工,2008,33(2):18-21.
    [6]J. M. Serra, E. Guillon, A. Corma, Optimizing the Conversion of Heavy Reformate Streams into Xylenes with Zeolite Catalysts by Using Knowledge Base High-Throughput Experimentation Techniques [J]. J. Catal.,2005,230 (2): 342-354.
    [7]王德举,刘仲能,谢在库,汽相转化法制备无粘结剂小晶粒ZSM-5沸石[J].无机材料学报,2008,23(3):592-596.
    [8]孙韬,丁瑛,赵开鹏,混合三甲苯制均三甲苯联产均四甲苯[J].石油炼制,1990,(5):25-29.
    [9]Tsoung Y Yan. Pseudocumene and mesitylene production and coproduction thereof with xylene [P]. US Patent 5004854,1991.
    [10]王德举,王辉,冯汝明等.裂解汽油加氢裂解催化剂再生性能的研究[J].石油化工,2010,39(增刊):182-183.
    [1]M. Frauenkron, J. P. Melder, G. Ruider, R. Rossbacher, H. Hoke, Ullmann's Encyclopedia of Industrial Chemistry [M]. Published online 15 Sept.2001,1-30.
    [2]A.L. Kohl, R. Nielsen, Gas Purification [M].5th ed., Gulf Publishing Co., Houston 1997.
    [3]D. G. Weaver, J. L. Smart, Ethylene Oxide Derivatives. Glycols and Ethanolamines [J]. Ind. Eng. Chem.,1959,51(8):894-900.
    [4]A. M. Eastham, B. deB Darwent, P. E. Beaubien, The Chemistry of Ethylene Oxide:Ⅱ. The Kinetics of the Reaction of Ethylene Oxide with Amines in Aqueous Solution [J]. Can. J. Chem.,1951,29(7):575-584.
    [5]A.M. Eastham, B. deB Darwent, The Chemistry of Ethylene Oxide:Ⅲ. Reaction of Ethylene Oxide in Amine Solution [J]. Can. J. Chem.,1951,29(7):585-596.
    [6]S. J. Washington, T. F. Grant, Selective Production of Diethanolamine [P]. US Patent 5224763,1994.
    [7]R.M. Diguilio, M.W. Mckinney, Selective Production of Diethanolamine [P]. US Patent 6075168,2000.
    [8]T. Setoyama, Acid-Base Bifunctional Catalysis:An Industrial Viewpoint [J]. Catal. Today,2006,116 (2):250-262.
    [9]H. Tsuneki, M. Kirishiki, T. Oku, Development of 2,20-Iminodiethanol Selective Production Process Using Shape-Selective Pentasil-Type Zeolite Catalyst [J]. Bull. Chem. Soc. Jpn.,2007,80(6):1075-1090.
    [10]C. Jones, M. R. Edens, J. F. Lochary, Kirk-Othmer Encyclopedia of Chemical Technology [M].2004,17:122.
    [11]J. W. Holubka, R. D. Bah, J. L. Andres, Theoretical Study of the Reactions of Ethylene Oxide and Ammonia:A Model Study of the Epoxy Adhesive Curing Mechanism [J]. Macromolecules 1992,25(3):1189-1192.
    [12]H. Tsuneki, A. Moriya, H. Baba, Process for Producing Dialkanolamines [P]. US Patent 6169207,2001.
    [13]H. Tsuneki, Development of Diethanolomine Selective Production Process [J]. Shokubai,2005,47:196-200.
    [14]冯汝明,刘仲能,顾荣,曹勇,谢在库,环氧乙烷胺化制乙醇胺[J].化学进展,2009,21(0708):1636-1643.
    [15]A. Chauvel, B. Delmon, W.F. Holderich, New Catalytic Processes Developed in Europe during the 1980s [J]. Appl. Catal. A,1994,115(2):173-217.
    [16]D. R. Corbin, S. Schwarz, G. C. Sonnichsen, Methylamines Synthesis:A Review [J]. Catal. Today,1997,37(2):71-102.
    [17]L. Vamling, L. Cider, Comparison of Some Solid Catalysts for the Production of Ethanolamines from Ammonia and Ethylene Oxide in the Liquid Phase [J]. Ind. Eng. Chem. Prod. Res. Dev.,1986,25 (3):424-430.
    [18]H. Tsuneki, Analysis and Modeling of Deactivation of Zeolite Catalyst for Diethanolamine Production [J]. KAGAKU KOGAKU RONBUNSHU,2008,34(1): 119-124.
    [19]D. J. Wang, Z. N. Liu. J. Zhao, X. H. Jiang, Process for Producing Binder-free ZSM-5 Zeolite in Small Crystal Size [P]. US Patent 20070042900,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700