原位晶化材料合成及加氢裂化催化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原位晶化催化材料合成制备的核心就是将分子筛合成与原位生长概念相结合,将一种最重要的石油裂解分子筛Y沸石晶粒直接生长在基质上而得到的催化材料。本文从传统原位FCC催化剂制备特点出发,针对现有原位晶化工艺的不足,进一步依据加氢裂化催化剂的应用要求,分别提出了各种改进性和独创性的原位催化材料合成概念和技术方案。首先,不仅实现了廉价煤系高岭土原位合成的工业化可行路线,而且通过合成条件和参数优化实现了快速原位合成,将现有长达近30h的晶化时间能缩短到12h甚至6h;其次,将一系列分子筛合成与创新的广义原位生长概念相结合,通过扩大基质选择范围提出金属原位复合方法并制备了一系列多元改性载体或原位分子筛材料,包括涉及多孔无定形材料的固相原位合成方式,也包括将稀土、钛、锌、锆等结构性或电子性助剂原位引入形成多元原位复合材料的方法,如一种锌改性原位催化材料,原位负载量高达3.5%时结晶度高仍可达56%;同时应用原位自转晶方式通过异种分子筛转化得到了具有独特形貌、孔结构及催化特质的新材料,方法涉及无外加硅源或外加固相硅源的高岭土原位合成以及独特的介孔材料自转晶原位合成,特别地,后者是在不同方法制备的螺旋和纳米粒状形貌介孔分子筛基础上,利用介孔材料自转晶得到了接近纳米大小品粒和孔容比传统法高出60%的新型高硅B分子筛。
     通过本文新型原位合成法,制备了在形态和性能上都有别于传统分子筛的原位晶化材料,同时各种表征手段和分析也显示了其晶粒变小、孔径增大的趋势,且形态和酸度特征上也表现了与传统分子筛的差异化,而这些特征经过论证都更有利于应用在处理重要质大分子原料的加氢裂化催化剂上,例如100~200hm的小晶粒、40%甚至60%以上的集中的4~20nm中孔分布、更高的B/L酸比例等。在这些新型原位晶化催化材料的基础上,也基于拓展原位催化概念应用范围的需要,本文强化了新型原位催化材料在工业催化应用特性的研究,尤其是跳出原位晶化FCC催化剂范畴,转向代表清洁化生产的加氢裂化催化剂领域,进一步研究完善加氢裂化催化剂设计内涵并实践了新型原位概念的加氢裂化催化剂开发。实验结果表明,原位分子筛材料不仅表现了具有更高本征催化效率的特点,而且突出表现了优异的开环裂解性能,所涉及的所谓原位型加氢裂化催化剂能获得比常规催化剂低2~3个单位的低BMCI值尾油。低尾油BMCI值尾油是需求量很大的优质制乙烯原料,而炼厂加工重质高芳烃劣质原料比例的增加也越来越需要开环性能更优异的分子筛材料,因此原位型催化材料的研究不仅为未来加氢裂化催化剂应用发展提供了一个全新的材料平台,也为加氢裂化催化剂的发展进步拓展了一个新的空间。
This dissertation focus on the research and development of an in-situ synthesis catalytic material which is important in the field of petroleum cracking. Such special material is featured for which a famous FAU zeolite, Y type zeolite, crystallized in hydrothermal condition and directly grows on the surface of a kind of matrix. Referring to characteristic of traditional in-situ synthesis FCC catalyst and concerning about the shortcomings of present in-situ synthesis technology while basing on the requirements of hydrocracking catalyst, this research presents a series of modified schemes or novel methods according innovative in-situ synthesis concept. Firstly, while a low-cost industrial in-situ Y zeolite can be produced by the use of various cheap coal series kaolin matrix, a fast in-situ synthesis technology by optimizing preparation condition or parameters can be realized with crystallization time declining from present about 30h to less 12h or even more 6h. Secondly, by combining zeolite synthesis with expanding in-situ concept, a series of new multi-component zeolites can be prepared by in-situ compounding referring to not only solid synthesis process using porous amorphous material as feed but also in-situ recombination of electrical or structure auxiliaries such as titanium, zinc and rare earth, etc., which, for example, a zinc-incorporate in-situ Y zeolite has crystallinity 56% with as high as 3.5m% zinc content. Moreover, by the new concept of in-situ crystal self-transformation, different modified in-situ synthesis methods are developed related to free-of silica source or solid silica present and kinds of zeolie are attained with different appearance or granular-size, which, for example, a micro screw-form or nanometer sphere-form mesoporous zeolite was assembleded and then a new crystal self-transformation (3 zeolite with 60% more pore volume than traditionalβ zeolite was also synthesized by the use of these mesoporous materials.
     Depending on the new in-situ synthesis given by our research, a series of novel in-situ synthesis catalytic materials are prepared, whose characteristics differ from traditional material as they show super-micro crystal granular with 100-200 nm size, high B/L acidity ratio and concentrated mesoporous pore distribution in the range of 4-20nm with 40% or more than 60% ration. Furthermore, this dissertation and related research does much more effort on catalytic application of new in-situ synthesis. Getting rid of limitation of in-situ concept in the scope of FCC catalyst, much more works have been done on dual-function catalyst design, recipe optimization, hydrocracking process evaluation, hydrocracing operating way and product-cut scheme in order to coordinate properties of new in-situ material with requirement of hydrocracking process and its catalyst. It is demonstrated that, in one aspect, in-situ zeolite has more effective catalytic capability based on unit active site, in another aspect, it has excellent ring-open activity as so called in-situ type hydrocracking catalyst can produce tail oil with generally 2-3 unit lower than traditional hydrocracking catalyst on BMCI index. While low BMCI index tail oil is high quality ethylene feed, refineries have to treat more and more inferior feeds with high aromatic content. Thus, in-situ catalytic material or zeolite will provide a new material application reservoir and give hydrocracking catalyst R&D more space on selection and change. Also, a new opportunity for advancement for hydrocracking technology is presented.
引文
[1]徐如人等.沸石分子筛的结构与合成[M],吉林大学出版社,1987.
    [2]R.M.Milton.Molecular sieve adsorbtents,USP 2882243,1959
    [3]R.M.Milton.Molecular sieve adsorbtents,USP 2882244,1959
    [4]D.W.Breck,Tonawanda.Crystalline zeolite Y,USP33130007,1964
    [5]D.W.Breck,E.M.Flanigen,Molecular Sieves,1968,49(1)
    [6]Z.Gabelica,ETAL.Appl.Catal.,1980,1:201
    [7]R.Szostak.Introduction to Zeolites Science and Practice,Stud.in Surf.Sci.&Catal.,Vol.58 Chapter 12
    [8]Marcilly,C.Evolution of refining and petrochemicals:What is the place of zeolites Stud.Surf.Sci.Catal.,2001,135:37-60
    [9]Harding R H,Peters A W,Nee J R D.New developments in FCC catalyst technology.Appl.Catal.A:Gen.,2001,221(1-2):389-396
    [10]R.H.Harding,A.W Peters,J.R.D.Nee,New developments in FCC catalysts technology,Applied catalysis A:2001,General 221:389-396.
    [11]World refining capacity creeps in2004,Oil&Gas Journal/Dec,20.2004
    [12]张德义.提高催化裂化技术水平增强炼油企业竞争能力.炼油技术与工程,2003,33(3):1-8
    [13]张久顺.浅谈催化裂化工艺技术的近期发展.催化裂化协作组第九界年会报告论文选集,2003
    [14]Zhao X S,Lu G Q,Zhu H Y J Porous Mater,1997,4:245
    [15]陈祖庇.我国催化裂化催化剂发展的回顾与展望.炼油设计,1999,29(3):1-7
    [16]Mclean J B,Bovo E B.FCC Catalyst Trends:Responding to The Challenges of The 1990's.NPRA 1995 Annual Meeting Paper.NPRA AM-95-64
    [17]O'Connor P,Verlaar,J P J,Yanik S 1 Challenges,catalyst technology and catalytic solutions in resid FCC.Catal.Today,1998,43(3-4):305-313
    [18]Lussier R J.A novel clay-based catalytic material - preparation and propertier (新型粘土催化剂材料的制备和特性)[J].J.Catalysis(催化杂志),1991,129:225-237.
    [19]Van Bekkum.分子筛科学与实践的简介[M].Elsevier,Amsterdam-Oxford-New York -Tokyo(阿姆斯特丹-牛津-纽约-东京),1991,201-239.
    [20]Lance D.Silverman,et al.,MATRIX EFFECTS IN CATALYTIC CRACKING.NPRA AM-86-62
    [21]Murphy J R,Cheng Y L.,et.al.,The Interaction of Heat Balance and Operatiin Variables in Zeolite Catalyst Operations.NPRA AM-03-126
    [22]Anderson M W,Occell M L.J Catal,1990,122:374
    [23]刘长久,张广林.石油和石油产品中的非烃化合物,北京:中国石化出版社,1991
    [24]McLean J B,Stockwell D.NaphthMaxTM Breakthrough FCC Catalyst Technology for Short Contact Time Applications.NPRA AM-01-59
    [25]Gerald M.Woltermann,Glenn Dodwell,et al.,MODERN CRACKING CATALYST AND RESIDUE PROCESSING.CHALLENGES.NPRA AM-96-46
    [26]Sato K,Nishimura Y,Shimada H.Preparation and activity evaluation of Y zeolites with or without mesoporosity.Catal.Lett.,1999,60(1-2):83-87
    [27]Mann R.Fluid catalytic cracking:some recent developments in catalyst particle design and unit hardware.Catal.Today,1993,18(4):509-528
    [28]Mitchell M M,JR,Hoffman J F,Moore H F.Residual feed cracking catalysis.Stud.Surf.Sci.Catal.,1993,76:293-338
    [29]Cheng W C,Kim GS Peters A W,Zhao X,Rajagopalan K.Environmental Fluid Catalytic Cracking Technology.Catal.Rev.-Sci.Eng.,1998,40(1-2):39-79
    [30]http://www.albemarlecatalysts.com/navigation/fcc/A_home,htm
    [31]Ken Bruno,A Revealing Look at FCC Catalysts:Profitable Operation with "Opportunity" Feeds.NPRA AM-04-59
    [32]McLean J B,Smith G M.Maximizing propylene production in the FCC unit:Beyond conventional ZSM-5 additives.NPRA AM-05-61
    [33]Alfonse Maglio,Group Leader,ADVANCED FCC CATALYST MATRIX TECHNOLOGY FOR REDUCED COKE AND SLURRY YIELDS.NPRA AM-94-59
    [34]McLean J B,Weber W A.Distributed matrix structures-a technology platform for advanced FCC catalytic solutions.NPRA AM-03-38
    [35]ZHOU Huijuan(周惠娟).Trend of variety of catalytic cracking catalysts(催化裂化催化剂品种的发展动向)[J].Petrochemical technology & application(石化技术与应用),2000,18(4):244-248.
    [36]W L Haden,et al.Method for producing faujasite type zeolites[P].US 3391994,1968
    [37]Basaldella E I,Bonetto R,Tara J C.Ind Eng them,Res,1993,32(4):751
    [38]G.Zhang,J.Sterte,B.J.Schoeman,J.Chem.Soc.,Chem.Commun.1995,2259.A.E.Persson,B.J.Schoeman,J.Sterte,J.E.Otterstedt,Zolites.1995,15,611.
    [39]REID PAUL IAN(ECC INT LTD),SYNTHESISING FAUJASITES,GB2178018,1986
    [40]REID PAUL IAN(ECC INT LTD),SYNTHESISING FAUJASITES,EP0209332,1986
    [41]W.L.Heden,et al.Zeolitic catalyst and preparation,USP:3663165,1972205216
    [42]Reagan W J,Speronello B K,Brown S M et al.USP 4493902,1985
    [43]Corma A,Grande M,Fornes V,Cartlidge S,Shatlock M P.Interaction of zeolite alumina with matrix silica in catalytic cracking catalysts.Appl.Catal.,1990,66(1):45-57
    [44]Rajagopalan K,Habib E T,Jr.Understand FCC matrix technology.Hydrocarbon Processing,1992,71(9):43-46
    [45]Maglio A,Keweshan C F,Madon R J,Mclean J B.Advanced FCC Catalyst Matrix Technology for Reduced Coke and Slurry Yields.1994,NPRA AM-94-59
    [46]朱华元,何鸣元,袁勇,张信,宋家庆,张觉吾.FCC催化剂基体的酸性与氢转移反应性能,工业催化.2001,9(2):60-64
    [47]LUSSIER ROGER JEAN;SURLAND GEORGE JOHN,(GRACE W R & CO).Catalysts and catalyst supports,EP0122572(1984)
    [48]Lussier,Roger J.,Surland,George J..Catalysts and catalyst supports,W.R.Grace & Co.,USP 4749672,1989
    [49]Inoue;Akira,Ushio,Masaru,Morita,Toru,Oishi,Yasuyuki,Sakoda,Hisao.Method for removing iron content in petroleum series mineral oil therefrom,Nippon Oil Co.,Ltd.,USP 4836914,1989
    [50]Dight,L.,Leskowicz,M.,and Deeba,M.,New Matrix Improves FCC Catalyst Selectivity.NPRA AM-91-53
    [51]刘从华,马燕青,张忠东等.石油炼制与化工,1999,30(5):30-33
    [52]Sanz J.;J.Am.Ceram.Soc:,1989,71:418
    [53]M.F.L.Johnson,WE.Kreger and H.Erickson,Ind.Eng.Chem.,1957,49,283
    [54]R.A.Pachovsky and B.W.Wojciechowski,AIChE J.,1973:19,1121
    [55]D.A.Best,R:A Pachovsky and B.W.Wojeiechowski,Can.J Chem.Eng.,1971:49,809
    [56]杨小明,何鸣元,舒兴田.小品粒NaY分子筛的制备方法,CN 1081425,1992
    [57]陈诵英,胡泽善,高荫本:彭少逸一种金属表面活性剂对分子筛进行改性的方法,CN 1120977,1994
    [58]陈诵英,马跃龙,高荫本,彭少逸.一种小颗粒NaY分子筛的合成方法,CN 1176848,1996
    [59]罗一斌,胡颖,舒兴田,何鸣元.一种细晶粒超稳Y型分子筛的制备方法,CN 1205981,1997
    [60]Arika,Junji,Aimoto,Michiyuki,Miyazaki,Hiroshi.Process for preparation of high-silica faujasite type zeolite,Toyo Soda Manufacturing Co.,Ltd.,USP 4587115,1986
    [61]Rajagopalan K,Peters A W,Edwards G C.A ppl Catal,1986,23(1):69
    [62]Nace D M.Catalytic Cracking over Crvstalline Aluminosilicates.Ind.Eng.Chem.Prod.Res.Dev.,1970,9(2):203-209
    [63]O'Connor P,Imhof P,Yanik S J.Catalyst assembly technology in FCC.Part 1:A review of the concept,history and developments.Stud.Surf.Sci.Catal.,2001,134:299-310
    [64]Kuehler C W,Jonker R,Imhof P,Yanik S J,O'Connor P.Catalyst assembly technology in FCC.Part Ⅱ:The influence of fresh and contaminant-affected catalyst structure on FCCperformance.Stud.Surf.Sci.Catal.,2001,134:311-332
    [65]Donk S V,Janssen A H,Bitter J H,de Jong K P.Generation,Characterization,and Impact of Mesopores in Zeolite Catalysts.Catal.Rev.,2003,45(2):297-319
    [66]Corma A.From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis.Chem.Rev.,1997,97(6):2373-241
    [67]Zhao X J,Cheng W C,Rudesill J A.FCC bottoms cracking mechanisms and implications for catalyst design for resid applications[C],NPRA AM-02-53
    [68]Barthomeuf D.,Beaumont R.X.,Y aluminum-deficient and ultrastable faujasite-type zeolites:Ⅲ.Catalytic activity.J.Catal.,1973,30(2):288-297
    [69]Corma A,Monton J B.Orchilles A V Influence of acid strength distribution on the cracking selectivity of zeolite Y catalysts.Ind.Eng.Chem.Prod.Res.Dev.,1984,23(3):404-409
    [70]Harris David H.,Xu Mingting,Stockwell,David,Madon,Rostam J.FCC catalysts for feeds containing nickel and vanadium,USP 6673235,2004
    [71]R.V.马顿.用于含有镍和钒的原料的FCC催化剂,CN1630553A,
    [72]Stanley M.Brown,Brown,et al.Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weightY-faujasite and methods for making.USP:4493902,1985-01-15.
    [73]郑淑琴,高雄厚,张海涛,徐贤.磷对高岭土微球原位晶化的影响.中国非金属矿工业导刊.2005,46(2):26-27
    [74]Ward J W.J Catal,1968,10(1):34
    [75]Ward J W.J Catal,1969,13(3):321
    [76]Smith J V,Bennett J M,Flanigen E M.Nature,1967,215(5098):241
    [77]H.K.Henisch,J.Dennis,J.1.Hanoka,,J.Phys.Chem.Solids 1965,26,493.
    [78]肖金凯.粘土矿物在催化裂化催化剂中的应用[J]高校地质学报,2000,6(2):282
    [79]Mario L.Occelli.Vanadium Resistant Fluid Cracking Catalysts.in:Catalysts in Petroleum Refining and Petrochemical Industries 1995,M.Absi Halabi et al.(Editors),Published by Elsevier Science B.V.,1996
    [80]J.F.Charnell,Cryst.Growth,1971,8:291.
    [81]V.N.Bogomolov and V.P.Petranovsky,Zeoli tes,1986,6:418
    [82]H.Zhang,Y.Kamotani,S.Ostrach,J.Cryst.Growth,1993,128:1288
    [83]郑淑琴,常小平,高雄厚.索继栓高岭土原位晶化体系中焙烧微球特性研究.[J]Non-Metallic Mines(非金属矿).2002,11.25(6):5-7
    [84]吴杰,秦永宁,马智,罗永康.分子筛合成工艺中原料高岭土及其焙烧特性研究[J].Non-Metallic Mines(非金属矿).2004,11.27(6):25-29
    [85]Xinmei Liu,Zifeng Yan,Huaiping Wang,Yantuo Luo,In-situ synthesis of NaY zeolite
    [86]L.B.Oight,et al.High zeolite content FCC catalysts and method for making them[P].EP369629,1990
    [87]郑淑琴,索继栓,张永明,刘宏海,王宝杰.FCC催化剂中高岭土的影响及应用.
    [J]Non-Metallic Mines(非金属矿).2000,3.25(2):22-23
    [88]孙丁伟,郑淑琴.在高岭土原位晶化体系中钾对P型沸石生成的影响.非金属矿Non-Metallic Mines.2003,26(3):6-7
    [89]张信,张觉悟,甘俊,何鸣元.催化裂化催化剂基质中高岭土系不同粘土的应用.[J]石油炼制与化工,1996,27(2):23-27
    [90]郑淑琴,羊建国,高雄厚,索继栓.贵州高岭土原位晶化制备全白土型FCC催化剂的探索性研究.中国非金属矿工业导刊.2003,32(2)
    [91]郑淑琴,豆祥辉,高雄厚,索继栓.韩城高岭土的性质及其原位晶化所制FCC催化剂的研究.[J].石油炼制与化工,2004,35(4):23-27
    [92]刘欣梅,阎子峰,王槐平.由煤系高岭土原位合成NaY分子筛.Journal of the University of Petroleum,China石油大学学报(自然科学版)2002,10.Vol.26,No.5
    [93]刘从华,马燕青,张忠东等.石油炼制与化工,1999,30(5):30-33
    [94]Stanley M.Brown,Brown,et al.Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weightY-faujasite and methods for making[P].USP 4493902,1985-01-15.
    [95]申建华,毛学文,原所良,张永明.高岭土微球原位合成NaY沸石体系中的非原位结晶反应.石油学报(石油加工)ACTA PETROLEI SINICA(PETROLEUM PROCESSING SECTION).1996,12(4):20-23
    [96]申建华,毛学文,原所良,张永明.高岭土微球原位合成NaY沸石体系中的非原位结晶反应.石油学报(石油加工)ACTA PETROLEI SINICA(PETROLEUM PROCESSING SECTION).1996,12.12(4):20-23
    [97]肖金凯.粘土矿物在催化裂化催化剂中的应用[J]高校地质学报,2000,6(2):282
    [98]Walter L.,Haden Jr.Motuchen,Frank J..Synthetic zeolite contact masses and method for making the same,USP 3367886,1968
    [99]Walter L.,Haden Jr.Motuchen,Frank J..Microspheric zeolite molecular sieve composite catalyst and preparationthereof,USP 3506594,1970
    [100]Haden Jr.,Walter L.,Dzierzanowski,Frank J..ZEOLITIC CATALYST AND PREPARATION,USP 3663165,1972
    [101]Haden Jr.,Walter L.,Dzierzanowski,Frank J..Hydrocarbon conversion process,USP 3932268,1976
    [102]Walter L.,Haden Jr,Frank J..Microsphertic crcaking catalyst.USP 3657154,1972
    [103]许名灿,程谟杰,谭大力,刘秀梅,包信和,宗保宁,闵恩泽.沸石分子筛在高岭土微球上的生长.催化学报.2001,1(22)
    [104]Investigations of the structure orienting role of acyclic molecules containing (-OCH2CH2-)groups in the synthesis of high-silica faujasitelike zeolites.ZEOLITES,1993,13:122-127
    [105]Bibby,D.M.,and Dale,M.P.Nature 1985,317,157
    [106]Keijsper,J.,Den Ouden,C.J.J.,and Post,M.F.M.in Zeolites:Facts,Figures,Future(Eds.P.A.Jacobs and R.A.van Santen)8th International Zeolite Conference,Part A,Amsterdam,1989,p.237
    [107]S.F.Delprato,J.L.Guth,D.Anglerot,C.Zivkov,FR Demande 0364352,1990.
    [108]F.Delprato,L.Delmotte,J.L.Guth,L.Huve,Synthesis of new silica-rich cubic and hexagonal faujasites using crown-ether-based supramolecules as templates. ZEOLITES,1990,10:546-552
    [109]申建华等.高岭土微球原位晶化合成NaY沸石体系中的非原位品化反应[J].石油学报(石油加工),1996,12(4):20
    [110]P.B.Venuto,E.T.Hubib,Fluild Catalytic Cracking with Zeolite Catalysts.Mercel Dekker,Inc.,New York,1979
    [111]Shiralkar V P,Joshi P N,Eapen M J,et al.Zeolites,1991,11(5):511
    [112]van der Pol A J H P,Verduyn A J,van Hooff I H C.In:Von Ballmoos R,Higgins J B,Treacy M MJ eds.Proceedings of the 9th International Zeolite Conference.Boston:Butterworth Heinemann,1993,607
    [113]B.J.Schoeman,J.Sterte,J.E.Otterstedt,Zeoli tes 1994,14,110.
    [114]V.P.Shiralker,P.N.Joshi,M.J.Eapen and B.S.Rao,Zeolites,1991,11,511
    [115]A J Ⅱ P.van der Art;A.J,Verduyn and J.H.C.van Hooff,in R.Yon Ballmoos,J.B.Higgins and M.M.J.Treacy(Eds.),Proc.9th Int.Zeolite Conf,Montreal,July 5-10,1992,Butterworth-Heinemann,Boston,1993,607;
    [116]武汉石化厂与Engelhard公司第二次FCC技术交流会资料,武汉((1992)
    [117]Elena 1.Bassadalla et al.,Ind.Eng.Chem.Res.1993,32,751.
    [118]舒兴田,李才英,何鸣元.含稀土氧化物的分子筛及其制备,CN86107531A,1986
    [119]张培青,王祥生,郭洪臣.组合改性对纳米HZSM-5催化剂降低汽油烯烃性能的影响,催化学报,2005年10期,26(10):911-915
    [120]李春义,袁起民,庞新梅等.催化裂化USY/ZnO/Al_2O_3脱硫添加剂的高温水热失活.催化学报.2003.26(6):458-464
    [121]Marilyn Radler.Oil and Gas Journal,2000,97(51):45-90
    [122]山本雅一.石油和石油化学.1964,8(1):12-16:8(2):13-18
    [123]Mark Van Wees,Vinayan Nair,Hemant Gala B.Unkcrack in Innovations Maximize Your for Low-Sulfur Fuels.NPRA AM-02-36.
    [124]Ronnie M,Tom K.Integrated solutions for optimized ULSD economics.NPRA Annual Meeting,Texas,2003.NPRA AM-03-119.
    [125]M.M.Habib,R.D.Bezman,A.J.Dahlberg,J.F.Mayer.New generation of Isocracking catalysts.The 2000 NPRA AnnualMeeting,San Antonio,2000
    [126]G.Meijberg.Production of ultra low sulfur diesel in hydrocracking with the latest and future generation catalysts.World Refining,2002,12(2):30-36
    [127]D.M.Altrichter.Shell Chemical Company LP.New Catalyst Technologies for Increased Hydrocracker Profitability and Product Quality.NPRA Annual Meeting.2004,March 21-23:3-22
    [128]Rascona I.[J].Akzo Catalysts Courier 2001,42
    [129]胡永康等.抚顺石油化工研究院五十年院庆论文集[C].中国石化出版社,2003:11-23.
    [130]Hu Zhihai(胡志海),Shi Yulin(石玉林).Petroleum Processing Petrochem icals (China)(石油炼制与化工)[J],2000,31(9):6-9
    [131]张全信,刘希尧.多环芳烃的加氢裂化.工业催化(INDU STR IAL CA TAL YS IS).2001,9(3):10-16
    [132]李清华,柳云骐,刘春英,刘晨光.环烷烃分子在贵金属催化剂上的开环化学规律研究.分子催化(JOU RNAL O F MOL ECULAR CA TAL YS IS(CH INA).2004,12.18(6)
    [133]Korre S C,et al.Ind Eng Chem Res[J],1995,34:101.
    [134]Korre S C,et al.Ind Eng Chem Res[J],1997,36:2041
    [135]Shoko Yamadaya,et al.Bull Chem Soc Jpn[J],1977,50(1):79.
    [136]Haynes H W,et al.Ind Eng Chem Process Des Dev[J],1983,22:401.
    [137]王蕾,彭芸.石油化工高等学校学报[J],1997,10(2):12.
    [138]Kozo Ueda,et.al.石油学会志[J],1990,33(6):413.
    [139]H isaji Matsui.Energy & Fuels[J],1995,9:435.
    [140]Masakatsu Manura,et al.Catal Today[J],1996,29:235.
    [141]Hisaji Matsui,et al.,石油学会志[J],1996,39(2):120.
    [142]菊地英一,等.石油学会志[J],1985,28(5)
    [143]吉川彰一,等.石油学会志[J],1976,19(10):
    [144]Reddy KM,Chunshan Song.Am Chem Soc,D iv Fuel Chem[J],1995,40(4):1003.
    [145]Brown,Stanley M.,Durante,Vincent A.,,Reagan,William J.,Speronello,Barry K.Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weight Y-faujasite and methods for making,US 4493902,1985
    [146]C.W.吉布森,.M.J.威利斯,G.E.甘特,R.E.巴恩斯,D.M.斯托克韦尔.流化催化裂化催化剂的制造方法,CN 1549746,2002
    [147]张永明,唐荣荣,刘宏海,郑淑琴.一种全白土型流化催化裂化催化剂及其制备方法.CN 1232862A,1998
    [148]刘宏海,段长艳,张永明,郑淑琴,马建刚,刘蕴恒.一种全白土型高辛烷值催化裂化催化剂的制备,CN 1334318A,2000
    [149]高雄厚,刘宏海,段长艳,庞新梅,郑淑琴,王宝杰,张莉,孙艳波,张艳慧.一种多产柴油的催化裂化助催化剂及其制备方法.CN 1683474,2004
    [150]周继红,闵恩泽,杨海鹰,宗保宁.用高岭土合成的纳米级Y型沸石及其制备方法.CN 1533982,2003
    [151]苏建明,达建文,刘剑利,徐兴忠,吴莱萍.高活性流化催化裂化催化剂的制备方法.CN 1429883,2001
    [152]苏建明,达建文,刘剑利,徐兴忠,吴莱萍.高岭土型流化催化裂化催化剂的制备方法.CN 1429882,2001
    [153]王雷,沈健.四氢萘加氢裂化反应动力学.沈阳化工(Shenyang Chemical Industry).1998,4(27):56-58
    [154]Murphy W J,Cody I A,Wittenbrink R J,et al.[P].WO:99/41334,1999.
    [155]Bogdan P L,Lawson P L,Sachlter J W A,et al.Selective isoparaffin synthesis from naphtha[P].US:5498810,1996.
    [156]Schmidt R J,Bogdan P L,Galperin L B,et al.Production of aliphatic gasoline[P].US:5831139,1998.
    [157]McVicker G B,Touvelle M S,Hudson C W,et al.[P].WO:97/09288,1997.
    [158]Del Rossi KJ,Dovedytis D J,Esteres D J,et al.Combined paraffin isomerization/ring opening process for C+5 naphtha[P].US:5334792,1994.
    [159]Weitkamp J,Raichle A,Traa Y,et al.Preparation of synthetic steamcracker feed from cycloalkanes(or aromatics)on zeolite catalysts[J].Chemical Communications,2000,403-404
    [160]Raichle A,Ramin M,Singer D,et al.Influence of the aluminium content of zeolite H-ZSM-5 on the conversion ofmethylcyclohexane into a high quality synthetic steam cracker feedstock[J].Catalysis Communications,2001,2:69-74.
    [161]Raichle A,Traa Y,Weitkamp J.Preparation of a high quality synthetic steamcracker feedstock from methylcy clohexane on acidic zeolite H-ZSM-5:influence of the hydrogen partial pressure[J].Applied Catalysis B:Environmental,2003,41:193-205
    [162]Berger C,Raichle k,Rakoczy R A,et al.Hydroconversion of methylcyclohexane on TEOS modified H-ZSM-5 zeolite catalysts:Production of a high quality synthetic steam cracker feedstock[J].Microporous and Mesoporous Materials,2003,59:1-12.
    [163]Raichle A,Moser S,Traa Y,et al.gallium containing zeolites valuable catalysts for the conversion of cycloalkanes in to a premium synthetic steamcracker feedstock[J]. Catalysis Communications,2001,2:23-29.
    [164]Raichle A,Traa Y,Fuder F,et al.Haag Dessau catalysts for ring opening of cycloalkanes[J].Angew Chem Int Ed,2001,40(7):1243-1246,27-32
    [165]McVicker G B,Daage M,Touvelle M S,et al.Selective ring opening of naphthenic molecules[J].Journal of Catalysis,2002,210:137-148.
    [166]Vaughan D E W,Strohmaier K G,McVicker G B,et al.Method for preparing high silica faujacitic zeolites[P].US:6054113,2000
    [167]Baird J,Klein W C,et al.Ring opening with group Ⅷ metal catalysts supported on modified substrate[P].US:6586650,2003
    [168]Raichle A,Moser S,Traa Y,et al.Gallium2containing zeolites valuable catalysts for the conversion of cycloalkanes into a premium synthetic steamcracker feedstock[J].Catalysis Communications,2001,2:23-29.
    [169]Raichle A,Traa Y,Fuder F,et al.naag-Dessau catalysts for ring opening of cycloalkanes[J].Angew Chem Int Ed,2001,40(7):1243-1246
    [170]M Guisnet,F Alvarez,et al.Hydroisomerization and hydrocracking of n-heptane on PtH zeolites.Effect of the porosity and of the distribution of metallic and acid sites[J].Catal Today,1987,1:415-433.
    [171]F Alvarez,F R Ribeiro,et al.Hydroisomerization and hydrocracking of alkanes[J].J Catal,1996,162:179-189.
    [172]J M Campelo,F Lafont,J M Marinas.Comparison of the activity and selectivity of Pt/SAPO-5 and Pt/SAPO-11 in n-hexane and n-heptane hydroconversion[J].Appl Catal A:General,1997,152:53-62.
    [173]W Zhang,P G Smirniotis.Effect of zeolite structure and acidity on the product selectivity and reaction mechanism for n-octane hydroisomerization and hydrocracking [J].J Catal,1999,182:400-416.
    [174]柳云骇,田志坚等.SAPO-11分子筛在长链烷烃临氢反应中的选择效应[[J].石油大学学报(自然科学版),2002,26(5):88-93
    [175]黄卫国,李大东等.分子筛催化剂上正十六烷的临氢异构反应[[J].催化学报,2003,24(9):651-657.
    [176]R J Taylor,R H Petty.Selective场droisomerization of long chain normal paraffins[J].Appl Catal A:General,1994,119:121-138.
    [177]W Souverijns,P A Jacobs,et al.Isomerization of 1-cyclohexyloctane on Pt/HZSM-22 bifunctional zeolite catalyst[J].J Catal,1998,174:201-209.
    [178]O S Santilli,M M Habib,T V Harris.Use of modified 5-TX10-10m pore molecular sieves for the isomerization of hydrocarbons[P].US 5 282 958,1994.
    [179]J A Martens,P A Jacobs.Evidence for branching of long-chain n-alkanes via protonated cycloalkanes larger than yclopropane[J].J Catal,1990,124:357-366.
    [180]J B Moffat.Theoretical Aspects of Heterogeneous Catalysis[M].New York:Van Nostrand-Reindhold,1990,52.
    [181]R Prada,M Yorrealba,et al.Catalyst for the hydroisomerization of contaminated hydrocarbon feedstock[P].US 5612273,1997.
    [182]J B Butt,E E Petersen.Activation,deactivation and poisoning of catalysts[M].Academic Press Inc,1988.
    [183]柳云骐,李望良,刘春英,崔敏,刘晨光.HY/MCM241/γ 2A1203负载的硫化态Ni-Mo-P 催化剂上萘的加氢.催化学报(Chinese Journal of Catalysis),2004,25(7)
    [184]Kresge C.T.,Leonowicz M.E.,Roth W.J.et al..Nature[J],1992,359:710
    [185]师希娥,翟尚儒,戴立益等.纳米硅铝介孔分子筛的合成及其催化裂化性能,物理化学学报.2004,20(3):265-270
    [186]尹泽群,阮彩安,王安杰等.MCM-41分子筛加氢裂化催化剂的研究,工业催.2003,11(6):11-13
    [187]Kresge C T,Leonowicz M E,Roth WJ,et al.Ordered mesoporous molecular sieves synthesized by a liquid -crystal template mechanism[J].Nature,1992(359):710-712.
    [188]Beck J S,Vartuli J C,Roth W J,et al..A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].J Am Chem Soc,1992,114:10834-10843.
    [189]Ryoo R,Kim J M,Ko C H,et al.Disordered molecular sieve with branched mesoporous channel network[J].J Phys Chem B,1996,100:17718-17721.
    [190]Khushalani D,Kuperman A,Coombs N,et al.Mixed surfactant assemblies in the synthesis of mesoporous silicas[J].Chem Mater,1996,8:2188-2193.
    [191]张迈生.XRD粉末衍射法研究全微波辐射法合成的MCM-41介孔分子筛[J].无机化学学报,2000,16(1):119-122.
    [192]姚云峰,张迈生,杨燕生,等.纳米介孔分子筛MCM-41的微波辐射合成法[J].物理化学学报,2001(12):1117-1122.
    [193]Edler K J,White J W.Room-temperature formation of molecular sieve MCM-41[J].J Chem Soc(Chem Commun),1995,21(2):155-156.
    [194]Chatterjee M,Iwasaki T,Hayashi H,et al.Room-temperature formation of thermally stable aluminium-rich mesoporous MCM- 41[J].Catal Lett,1998,52:21-23.
    [195]Yang P,Zhao D,Margolese D I,et al..Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frame-works[J].Nature,1998(396):152-155.
    [196]MacLachlan MJ,Coombs N,Ozin G A.Non - aqueous supramolecular assembly of mesostructured metal germanium sulphides from(Ge4S10)4-clusters[J].Nature,1999,397:681-684.
    [197]Fyfe C A,Fu G.Structure organization of silicate polyanions with surfactants:a new approach to the syntheses,structure transformations,and formation mechaniams of mesostructural materials[J].J Am Chem Soc,1995,117:9709-9714.
    [198]Gallis KW,Landry C C.Synthesis of MCM- 48 by a phase transformation process[J].Chem Mater,1997,9:2035-2038.
    [199]Karlsson A,Stocker M,Schmidt R,et al.Composites of micro and mesoporous materials simultaneous synthesis of MFI/ MCM-41 like phases by a mixed template approach[J].Microporous Mesoporous Mater,1999,27:181-192.
    [200]Di Y,Yu Y,Sun Y Y,et al.Synthesis,characterization,and catalysis properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors [J].Microporous Mesoporousater,2003,62:2212228.
    [201]Liu Y,Zhang W Z,Pinnavaia T J.Steam Stable aluminosilicate mesostructures assembled from zeolite type Y seeds[J].J Am Chem Soc,2000,122:8791-8792.
    [202]Han Y,Wu S,Sun Y Y,et al.Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media[J].Chem Mater,2002,14:1144-1148.[203]Zhang Z T,Han V,Xiao F S,et al.Mesoporous aluminosilicates with ordered hexagonal structure,strong acidity and extraordinary hydrothermal stability at high temperatures[J].J.Am Chem Soc,2001,123:5014-5021.
    [204]Vartuli J.G.,Schmitt K.D.,Kresge C.T.et al..Chem.Mater.[J],1994,6:2317-2326
    [205]Beck J.S.,Vartuli J.C.,Roth W.J.et al..J Am Chem.Soc.[J],1992,114(19):10834
    [206]Monnier A.,Schuth F.,Huo Q.,et al..Science,1993,251:1299
    [207]Chen C.Y.,Burkeet S.L.,Li H.X.et al..Micropor.Mater[J],1993,(2):27
    [208]Steel A.,Carr S.W.,Anderson M.W..J Chem Soc Chem Commun[J],1994,1571
    [209]Huo Q.S.,Margolese D.I.,Stucky G.D et al..Nature[J],1994,368:317
    [210]Huo Q.S.,Margolese D.I.,Stucky G.D..Chem.Mater.[J],1996,8:1147
    [211]Zhao D.,Feng J.,Melosh N.,Fredrickson G.H.,Chemlka B.F.,Stucky G.D.,Science[J]1998,279:548-552
    [212]Zhao D.,Huo Q.,Feng J.,Chemlka B.F.,Stucky G.D.,J.Am.Chem,Soc.[J]1998,120:6024
    [213]Liu X.,Tian B.,Yu C.,Gao F.,Xie S.,Tu B.,Che R.,Peng L.,Zhao D.,Angew.Chem.Int.Ed Engl.2002,413876
    [214]Yu C.,Yu Y.,Zhao D.,chem..Commun.[J]2000,575
    [215]Wang Lianzhou(王连洲),Shi Jianlin(施剑林)et al..Journal of Inorganic Material(无机材料学报)[J],1999,14(4).558-562
    [216]Wei Hongmei(魏红梅),He Nongyue(何农跃)et al..Natural Science Journal of Xiangtan University(湘潭大学自然科学学报),2000,22(3):49-53
    [217]Yang Chun(杨春),He Nongyue(何农跃)et al..Journal of Inorganic Material(无机材料学报)[J],2001,17(2).-256-262
    [218]Jia Xueping(贾雪平),He Nongyue(何农跃)et al..Journal of Inorganic Material (无机材料学报)[J],2001,17(2).-249-255
    [219]Tanev P.T.,Chibwe M.,Pinnavaia T et al..Nature[J],1994,368:321-323
    [220]Chen Xiao-yin,Huang Li-min,Ding Guo-zhong,et al..Cata.Lett.[J],1997,44:123-128
    [221]Gregg S.J.,Sing KSW,Adsorption,Surface Area and Porosity(M),2nd ed.Academic Press,London,1982
    [222]Wang Shuguo(王树国),wu Du(吴东)et al..Acta.Phys.Chem.Sin.(物理化学学报),2001,17(7):659-661

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700