煤直接液化重质中间产物结构与组成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究煤直接液化中间重质产物化学转化行为,探索煤直接液化机理,本文通过柱色谱法分别对不同煤种和液化工艺条件下制备的前沥青烯(PA)和沥青烯(AS)进行了分离,并通过元素分析、红外光谱、荧光光谱和凝胶色谱等分析方法对分离组份进行了结构表征,探讨了各因素对PA和AS结构与组成的影响。此外,利用荧光光谱对PA中的缔合作用进行了初步探索。
     研究结果表明:PA中甲苯和THF混合溶剂洗脱组分I和II含量高,并且组分I~III元素组成差异小,C %高、O %较低,甲醇洗脱组分IV含量较低,主要是以非共价键缔合的强极性含氧化合物;所有AS都以甲苯或甲苯/THF(4∶1)洗脱的弱极性组分为主,随洗脱溶剂极性增大,所得次组分C %逐渐降低,O %增大,尤其是甲醇洗脱组分E中O %显著高于其他组分;提高液化温度、延长液化时间以及强供氢体系(H_2气氛和FeS+S催化剂)都有利于促进加氢和脱氧作用,增大AS和PA中弱极性组分含量,降低次组分中的O %;褐煤液化AS和PA中极性组分含量显著高于次烟煤,并且褐煤液化AS和PA中C %高于原煤,O %显著低于原煤;AS和PA中含氧官能团存在形式非常复杂,不仅含有大量的酚羟基、醚键和芳香酮羰基,而且存在一定量的羧酸酯和少量的羧酸、酸酐和脂肪醇羟基,芳香酮羰基、酚羟基等含氧官能团反应活性相对较低,难以裂解脱除;AS和PA次组分中都存在两类不同能态的荧光发色体,组分间的荧光特性差异主要是能态分布和荧光效率不同,次组分的荧光效率明显低于未分离AS和PA;PA中芳香环主要为单环结构,同时存在少量2-3环稠环结构,AS中除了单环以外还存在大量的2-3环稠环结构,并且主要存在于弱极性组分中;煤液化重质产物AS和PA中存在显著的非共价键缔合作用,并影响其分离性能和表观分子量,溶液中PA的缔合过程为逐步缔合。
In order to study the conversion behaviors of heavy intermediate products of coal direct liquefaction and the mechanism of coal direct liquefaction, the heavy products of coal liquefaction such as asphaltene and preasphaltene, which are obtained by the liquefaction of different raw coal under different liquefaction conditions, are separated by column chromatography in this paper. The structures of all sub-components are characterized by ultimate analyses, FTIR, UV/Vis, fluorescence spectrum and GPC. The influence of each factor on the composition and distribution of liquefied products is also explored. In addition, the aggregation behavior of preasphaltene is discussed preliminarily by fluorescence photometry.
     The results indicate that the content of component I and II, which are obtained by column chromatography with a mixture solvent (toluene and tetrahydrofuran) as the eluents, are higher than that of component IV obtained with methanol as the eluent in preasphaltene. Ultimate analyses show that element components of I, II and III are very similar, in which the content of carbon is high but the content of oxygen is low. The component IV is mainly strong polarity compound containing oxygen which consists in preasphaltene through aggregation of the non-covalent bonds. The primary component of all asphaltenes is weak polarity component obtained with toluene or toluene/ tetrahydrofuran (4:1) as the eluent. The higher the polarity of the eluent is, the content of carbon of the sub-component is lower, but the content of oxygen is higher, especially the component E obtained with methanol as the eluent is evidently higher than other components. The hydrogenation and removal of heteroatom for the asphaltene and preasphaltene can be promoted by increasing the liquefaction temperature, time and atmosphere with strong supply hydrogen (H2 atmosphere and FeS+S catalyst), so that the content of weak polarity components increase and the content of oxygen decreases. The content of strong polarity component separated from asphaltenes and preasphaltenes of lignite liquefaction is evidently higher than that of subbituminous liquefaction, in which the content of carbon is higher than raw coal but the content of oxygen is lower. The oxygen-containing functional groups are extremely complicated. They not only contain large numbers of phenolic hydroxyl group, ether bond and aromatic ketone carbonyl group, but also carboxylic ester, carboxylic acid, acid anhydride and aliphatic alcohol hydroxyl group. The oxygen-containing functional groups such as aromatic ketone carbonyl group and phenolic hydroxyl group is show comparatively low reactivity and are difficult to remove. There are two different fluorophores with different energy state in all sub-components of asphaltene and prasphaltene. The difference of fluorescence characteristic of different components is mainly originated from different distribution of energy state and fluorescence efficiency. Fluorescence efficiency of sub-component is evidently lower than its parent asphaltene and prasphaltene. Aromatic ring of preasphaltene is mainly single ring structure. Meanwhile, there is few 2-3 aromatic fused ring structures in preasphaltene. Except for single ring structure, asphaltene shows abundant 2-3 aromatic fused ring structures which are mainly existed in weak polarity component. Non-covalent bond aggregation exists extensively in asphaltene and preasphaltene of heavy intermediate products of coal liquefaction. It can influence the separation performance and apparent molecular weight of heavy intermediate products. The aggregation of preasphaltene in solution is a progressive process.
引文
[1]崔晓刚,谭建忠.煤直接液化技术的进展及发展探讨[J].节能, 2006, 10: 17-20
    [2]张伟,金俊杰,俞虹等.煤的直接加氢液化工艺[J].洁净煤技术, 2001, 3: 31-33
    [3]张双全.煤化学[M].徐州:中国矿业大学出版社, 2004
    [4] Wertz D L, Bissell M. One-dimensional description of the average polycyclic aromatic unit in Pocahontas No. 3 coal: an X-ray scattering study[J]. Fuel, 1995, 74(10): 1431-1435
    [5]张代均,陈昌国,徐龙君等.南桐煤镜质组非晶结构的X射线衍射研究[J].燃料化学学报, 1997, 25(1): 72-77
    [6] Sharma A, Kyotani T, Tomita A. Direct observation of layered structure of coals by a transmission electron microscope[J]. Energy﹠Fuel, 2000, 14(2): 515-516
    [7] Schmiers H, K?pel R. Macromolecular structure of brown coal in relationship to the degradability by microorganisms[J]. Fuel Processing Technology, 1997, 52(1-3): 109-114
    [8] Zoller D L, Johnston M V, Tomic J, et al. Thermogravimetry?Photoionization Mass Spectrometry of different rank coals[J]. Energy﹠Fuel, 1999, 13(5): 1097-1104
    [9] Sobkowiak M, Painter P. A comparison of DRIFT and KBr pellet methodologies for the quantitative analysis of functional groups in coal by Infrared Spectroscopy[J]. Energy﹠Fuel, 1995, 9(2): 359-363
    [10] Stock L M, Obeng M. Oxidation and decarboxylation. A reaction sequence for the study of aromatic structural elements in Pocahontas No. 3 Coal[J]. Energy﹠Fuel, 1997, 11(5): 987-997
    [11]魏贤勇,宗志敏,秦志宏等.化工与材料[C].中国工程院化工、冶金与材料工程学部第二届学术会议论文集.北京:清华大学出版社, 1999, 623-628
    [12]魏贤勇,顾晓华,宗志敏等.煤作为化学品利用的科学基础-煤中有机质分子结构的可分离、非破坏性分析[C].中国化学会第六届应用化学学术会议论文集(1).常州:中国化学会出版社, 1999, 77-81
    [13] Solum M S, Pugmire R J, Grant D M, et al. 15N CPMAS NMR of the Argonne Premium Coals[J]. Energy﹠Fuel, 1997, 11(2): 491-494
    [14] Kelemen S R, Gorbaty M L, Kwiatek P J. Quantification of nitrogen forms inArgonne Premium Coals[J]. Energy﹠Fuel, 1994, 8(4): 896-906
    [15] Marta K. Coal structure studied by means of molecular acoustics methods[J]. Fuel Processing Technology, 2002, 77-78: 33-43
    [16] Nishioka M. The associated nature of bituminous coal[J]. Fuel, 1992, 71: 941-948
    [17] Takanohashi T, Iino M. Investigation of associated structure of Upper Freeport coal by solvent swelling[J]. Energy & Fuels, 1995, 9(5): 788-793
    [18] Miura K, Mae K, Li W, et al. Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique[J]. Energy & Fuels, 2001, 15(3): 599-610
    [19] Romey I. Cleaning of coal-derived oils by filtration[J]. Fuel, 1982, 61(10): 988-993
    [20] Yagmur E, Simsek E H, Aktas Z, et al. Effect of demineralization process on the liquefaction of Turkish coals in tetralin with microwave energy[J]. Fuel, 2005, 84: 2316-2323
    [21] Wang Z C, Shui F H, Pei Z N, et al. Study on the hydrothermal treatment of Shenhua coal[J]. Fuel, 2008, 87(4-5): 527-533
    [22] Goldberg I B, Crowe H R, Ratto J J, et al. Study of the products of coal hydrogenation and deuteration by electron paramagnetic resonance[J]. Fuel, 1980, 59(2): 133-139
    [23] Schwager I, Yen T F. Coal-liquefaction products from major demonstration processes. 1. Separation and analysis[J]. Fuel, 1978, 57(2): 100-104
    [24]葛岭梅,王晓华,夏美丽等.贵州煤萃取物的族组成与萃取动力学特征探讨[J].湖南科技大学学报, 2006, 21(1): 77-81
    [25]王旭珍,薛文华,朱玫玫等.褐煤超临界流体抽提产物中芳烃的组成特征[J].燃料化学学报, 1994, 22(4): 418-425
    [26]罗澜,赵濉,张路等.辽河原油活性组分的分离、分析及界面活性[J].油田化学, 2000, 17(2): 152-155
    [27] Zhang C M, Yang J L, Xue Y B, et al. Group type analysis of asphalt by column liquid chromatography[J]. Petroleum Science and Technology, 2008, 26: 665-673
    [28] Saydut A, Tonbul Y, Baysal A. Separation of liquid fractions obtained from ?ash pyrolysis of asphaltite[J]. J. Anal. Appl. Pyrolysis, 2008, 81: 95-99
    [29]张昌鸣,李爱英,李英等.煤系重质油的仪器分析及系统考察I.烃族分析[J].色谱, 1999, 17(4): 372-375
    [30]杜国华,杨海鹰,顾洁等. PLS方法辅助TLC/ FID技术测定石油沥青的族组成[J].理化检验-化学分册, 2004, 40(12): 715-718
    [31]郭志军,张庭良,刘秀清等.用TLC/FID棒薄层色谱测定重质油的族组成方法的研究[J].福建分析测试, 2008, 17(2): 22-24
    [32] Padlo D M, Subramarian R B, Kugler E L. Hydrocarbon class analysis of coal-derived liquids using high performance liquid chromatography[J]. Fuel Processing Technology, 1996, 49(1-3): 247-258
    [33] McKinney D E, Clifford D J, Hou Lei, et al. High performance liquid chromatography of coal liquefaction process stream using normal phase separation with diode array detection[J]. Energy & Fuels, 1995, 9(1): 90-96
    [34]令狐文生,张昌鸣,王志杰等.煤油共处理油品的族组成研究[J].燃料化学学报, 2002, 30(1): 33-35
    [35]梁汉东,李艳芳,郭敦等.中国云南禄丰煤中存在富勒烯(C60)的初步证据[J].中国学术期刊文摘(科技快报), 2001, 7(3): 366-367
    [36] Katoh T, Ouchi K. Analysis of coal-derived liquid obtained by mild hydrogenation: 1. Neutral oil distilling at 186–343°C[J]. Fuel, 1985, 64(9): 1260-1268
    [37]高晋生,吴幼青,孙培桦等.煤加氢液化研究-沥青烯的加氢裂解[J].燃料化学学报, 1989, 17(3): 16-21
    [38]陈茺,许学敏,高晋生.煤中前沥青烯与沥青烯性质的研究[J].华东理工大学学报, 1998, 24(2): 27-30
    [39] Sternberge H W, Raymond R. Acid-base structure of coal derived asphaltenes[J]. Science, 1975, 188: 49~50
    [40]高晋生,张佩芳,程雷萍等.兖州煤加氢液化性能的评价[J].华东化工学院学报, 1990, 16(4): 157-161
    [41]谷小会,史士东,周铭.神华煤直接液化残渣中沥青烯组分的分子结构研究[J].煤炭学报, 2006, 31(6): 785-789
    [42] Shadle L J, Given P H. Dependence of coal liquefaction behaviour on coal characteristics. 7. Structural differences between coals of different rank and the asphaltenes derived from them[J]. Fuel, 1982, 61(10): 972-979
    [43] Yoshida T, Tokuhashi K, Narita H, et al. Liquefaction reaction of coal: 2. Structural correlation between coal and its liquefaction products[J]. Fuel, 1985,64(7): 897-901
    [44]张娉,潘铁英,史新海等.煤直接液化中油煤浆热溶产物的13C-NMR研究[J].波谱学杂志, 2006, 23(1): 41-47
    [45] Hortal A R, Hurtado P, Haya B M, et al. Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments[J]. Energy & Fuels, 2007, 21(5): 2863-2868
    [46] Wu Z G, Rodgers R P, Marshall A G. ESI FT-ICR mass spectral analysis of coal liquefaction products[J]. Fuel, 2005, 84: 1790-1797
    [47] Desando M A, Ripmeester J A. Chemical derivation of Atnabasca oil sand asphaltene for analysis of hydroxyl and carboxyl groups via nuclear magnetic resonance spectroscopy[J]. Fuel, 2002, 81(10): 1305-1319
    [48] George G N, Gorbaty M L. Sulfur K-edge x-ray absorption spectroscopy of petroleum asphaltenes and model compounds[J]. J. Am. Chem. Soc., 1989, 111(9): 3182-3186
    [49] Mitra-Kirtley S, Mullins O C, George S J, et al. Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy[J]. J. Am. Chem. Soc., 1993, 115(1): 252-258
    [50] Sharma A, Groenzin H, Tomita A, et al. Probing order in asphaltenes and aromatic ring systems by HRTEM[J]. Energy & Fuels, 2002, 16(2): 490-496
    [51] Badre S, Goncalves C C, Norinaga K, et al. Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen[J]. Fuel, 2006, 85(1): 1-11
    [52] Groenzin H, Mullins O C. Asphaltene molecular size and structure[J]. J. Phys. Chem. A, 1999, 103(50): 11237-11245
    [53] Groenzin H, Mullins O C. Molecular size and structure of asphaltenes from various sources[J]. Energy & Fuels, 2000, 14(3): 677-684
    [54] Groenzin H, Mullins O C. Molecular size of asphaltene solubility fractions[J]. Energy & Fuels, 2003, 17(2): 498-503
    [55] Andersen S I, Christensen S D. The critical micelle concentration of asphaltenes as measured by calorimetry[J]. Energy & Fuels, 2000, 14(1): 38-42
    [56] Andreatta G, Goncalves C C, Buffin G. Nanoaggregates and structure-function relations in asphaltenes[J]. Energy & Fuels, 2005, 19(4): 1282-1289
    [57] Ghosh A K, Sunil K S, Sanjib B. Study of self-aggregation of coal derived asphaltene in organic solvents: A fluorescence approach[J]. Fuel, 2007, 86(16):2528-2534
    [58] Acevedo S, Ranaudo M, Pereira J C, et al. Thermo-optical studies of asphaltene solutions: evidence for solvent-solute aggregate formation[J]. Fuel, 1999, 78(9): 997-1003
    [59] Goncalves S, Castillo J, Fernandez A, et al. Absorbance and ?uorescence spectroscopy on the aggregation behavior of asphaltene-toluene solutions[J]. Fuel, 2004, 83: 1823-1828
    [60] Headen T F, Boek E S, Skipper N T. Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulation[J]. Energy & Fuels, 2009, 23: 1220-1229
    [61]谷小会.神华煤直接液化残渣结构特性的探讨[D].煤炭科学研究总院, 2005
    [62]王知彩.神华煤的预处理及其新型固体酸催化液化研究[D].华东理工大学, 2007
    [63]刘颖,张蓬洲,吴奇虎.抚顺烟煤及其抽出物的FTIR光谱结构表征[J].燃料化学学报, 1992, 20(1): 96-100
    [64]李文,李保庆,三浦孝一.原位漫反射红外分析水分对煤中氢键形成的作用规律[J].燃料化学学报, 1999, 27: 11-14
    [65]陈茺,许学敏,高晋生等.煤中氢键类型的研究[J].燃料化学学报, 1998, 26(2): 140-144
    [66]张卫,曾凡桂.中等变质程度煤中羟基的红外光谱分析[J].太原理工大学学报, 2005, 36(5): 545-548
    [67] Friedel R A, Queiser J. Ultra-Violet-Visible spectrum and the aromaticity of coal[J]. Fuel, 1959, 39: 369-370
    [68] Taylor G. H, Teichmüller M, Davis A, et al. Organic Petrology[M]. Gebrüder Borntraeger, Berlin, 1998, 704
    [69] Powell T G., Creaney S, Snowdon L R. Limitations of use of organic petrographic techniques for identification of petroleum source rocks[J]. American Association of Petroleum Geologists Bulletin, 1982, 66: 430-435.
    [70] Senftle J T, Brown J H, Larter S R. Refinement of organic petrographic methods for kerogen characterization[J]. International Journal of Coal Geology, 1987, 7: 105-117.
    [71] Michelsen J K, Khavari K G. Monitoring chemical alterations of individual oil-prone macerals by means of microscopical fluorescence spectrometry combined with multivariate data analysis[J]. Organic Geochemistry, 1990, 15:179- 192.
    [72]宋继梅,程桂,伍大俊.原油样品芳烃同步荧光光谱测定技术[J].石油勘探与开发, 1998, 25(4): 20-21
    [73]宋继梅,毕建宏,刘峰.恒定能量同步荧光光谱技术在油气化探中的应用[J].应用化学, 2004, 21(9): 966-968
    [74]王子军,梁文杰,阙国和等.减压渣油组分中芳环数分布的同步荧光光谱研究[J].石油学报, 1999, 15(4): 67-71
    [75] File L A, Moore M, Herkhoff M, et al. Gasoline and crude oil fingerprinting using constant energy synchronous luminescence spectrometry[J]. MicroChem. J., 1987, 35: 305-314
    [76] Guerra R E, Ladavac K, Andrews A B, et al. Diffusivity of coal and petroleum asphaltene monomers by fluorescence correlation spectroscopy[J]. Fuel, 2007, 86(12-13): 2016-2020
    [77] Yokoyama S, Bodily D M, Wiser W H. Chemical structure of heavy oil from coal hydrogenation 1. Hydrogenation with zinc chloride catalyst[J]. Fuel, 1983, 62(1): 4-10
    [78] Masuda K, Okuma O, Kanaji M, et al. Chromatographic characterization of preasphaltenes in liquefied products from Victorian brown coal[J]. Fuel, 1996, 75(9): 1065-1070
    [79] Al-Muhareb E M, Karaca F, Morgan T J, et al. Size exclusion chromatography for the unambiguous detection of aliphatics in fractions from petroleum vacuum residues, coal liquids, and standard materials, in the presence of aromatics[J]. Energy & fuels, 2006, 20(3): 1165-1174
    [80]魏贤勇,宗志敏,秦志宏.煤液化化学[M].北京:科学出版社, 2002: 138-144
    [81] Herod A A, Lazaro M-J, Domin M, et al. Molecular mass distributions and structural characterisation of coal derived liquids[J]. Fuel, 2000, 79(3-4): 323-337
    [82] Whitehurst D D, Butrill S E, Derbyshire F J, et al. New characterization techniques for coal-derived liquids[J]. Fuel, 1982, 61(10): 994-1006
    [83] White C M, Li C N. Determination of phenols in a coal liquefaction product by gas chromatography and combined gas chromatography/mass spectrometry[J]. Anal. Chem., 1982, 54: 1570-1572
    [84]王旭珍,顾永达,盛国英. GC-MS分析煤抽出物中的含氮杂环化合物[J].现代科学仪器, 2000(2): 15-17
    [85]魏贤勇,宗志敏,秦志宏等.分子煤化学的构想及其发展前景[C].中国工程院化工、冶金与材料工程学部第二届学术会议论文集.北京:清华大学出版社, 1999, 624
    [86] Wei X, Zong Z, Wu L, et al. LC/MS A nalysis of CS2-NMP Soluble Fraction from Upper Freeport Coal[C]. Prospects for Coal Science in the 21st Century. Taiyuan: Shanxi Science and Technology Press, 1999, 263-266
    [87]徐秀峰,张蓬洲,杨保联等.用13C-NMR及技术分析气煤加氢产物中沥青烯段分的组成结构[J].燃料化学学报, 1995, 23 (4): 410-416
    [88]马志茹,张蓬洲,赵秀荣等.峰峰肥煤热解加氢产物的高分辨NMR研究[J].燃料化学学报, 1996, 24 (2): 155-161
    [89] Gupta P L, Dogra P V, Kuchhal R K, et al. Estimation of average structural parameters of petroleum crudes and coal-derived liquids by 13C and 1H n.m.r.[J]. Fuel, 1986, 65(4): 515-519
    [90] Redlich P J, Jackson W R, Larkins F P, et al. Studies related to the structure and reactivity of coals: 16. The chemical structure of the oil products from reactions of Victorian brown coals[J]. Fuel, 1989, 68(12): 1538-1543
    [91] Redlich P J, Jackson W R, Larkins F P. Studies related to the structure and reactivity of coals: 17. The chemical structure of asphaltenes and residues from reactions of Victorian brown coals[J]. Fuel, 1989, 68(12): 1544-1548
    [92] Collin P J, Gillbert T D, Philp R P, et al. Structures of the distillates obtained from hydrogenation and pyrolysis of Liddell coal[J]. Fuel, 1983, 62(4): 450-458
    [93] Redlich P J, Jackson W R, Larkins F P, et al. Studies related to the structure and reactivity of coals: 18. The chemical structures of products from reactions of a suite of higher rank Australian coals[J]. Fuel, 1989, 68(12): 1549-1557
    [94]程能林.溶剂手册[M].北京:化学工业出版社, 2008
    [95] Wang Z C, Shui H F, Zhang D X, et al. A comparison of FeS, FeS + S and solid superacid catalytic properties for coal hydro-liquefaction[J]. Fuel, 2007, 86(5-6): 835-842
    [96]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002
    [97]张华,彭勤纪,李亚明等.现代有机波谱分析[M].北京:化学工业出版社, 2005
    [98]卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社, 1989
    [99] Vo-Dinh T, Gammage R B, Martinez P R. Analysis of a workplace air particulate sample by synchronous luminescence and room-temperature phosphorescence[J].Anal. Chem., 1981, 53: 253-258
    [100] Benkhedda Z, Landais P. Spectroscopic analyses of aromatic hydrocarbons extracted from naturally and artificially matured coals[J]. Energy & Fuels, 1992, 6: 166-172
    [101] Ketoh T, Yokyama S, Sanada Y. Analysis of a coal-derived liquid using highpressure liquid chromatography and synchronous fluorescence spectrometry[J]. Fuel, 1980, 59(6): 845-850
    [102] Shui H, Shen B, Gao J. Study on the structure of heavy oils[J]. Petroleum Science & Technology, 1997, 15(7-8): 595-610
    [103] Mullins O C. Optical interrogation of aromatic moieties in crude oils and asphaltenes[C]. In Structures and dynamics of asphaltenes. New York: Plenum Press, 1998, 21
    [104] Lakowicz J R. Principles of fluorescence spectroscopy (third edition)[M]. Beijing China: Science Press(authorized by Springer-Verlag), 2008, 57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700