多层喷射沉积制备大尺寸耐热铝合金管坯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合“九五”攻关项目和“九七三”项目制备高性能大尺寸耐热铝合金
    管材的要求,本文对FVS0812耐热铝合金在喷射沉积过程中的规律进行了研
    究,研制了新的多层喷射沉积制备大尺寸管坯设备。通过对多层喷射沉积制
    备管坯工艺参数的分析,确定了较佳的工艺参数,并成功地制备出形状和尺
    寸较好的无裂纹FVS0812合金管坯,管坯尺寸为Φ400×800×115(内径×长
    ×壁厚)。建立了热流分析模型,对管坯热流和显微结构进行了分析。制定了
    大尺寸高性能管材的挤压工艺和旋压工艺,制备出了性能优良的大尺寸挤压
    和旋压管材。并对高性能板材的制备工艺进行了探索。其主要的研究结果如
    下:
     ⑴对多层喷射沉积制备大尺寸耐热铝合金管坯的原理和FVS0812合金
    喷射沉积过程中的规律进行了研究和分析。多层喷射沉积制备管坯过程中,
    雾化器和基体管同时运动,喷射流在沉积面作往复扫描运动,管坯是逐层沉
    积而成。喷射流在同一位置沉积时的间隔较长,在相对较冷的表面沉积时可
    以获得约10~4K·s~(-1)以上的冷却速度。而管坯的长度和壁厚分别取决于喷射流
    的扫描行程和扫描次数。因而具备了制备耐热铝合金大尺寸管坯的可能。耐
    热铝合金喷射沉积过程中,熔滴的平均粒径和粒度分布均受到雾化气体压
    力、熔体温度和液流直径等雾化工艺参数的影响。喷射流的空间质量分布呈
    双峰分布,而喷射流在平面上扫描时,垂直于扫描方向的质量分布近似于高
    斯分布。随着喷射高度的增加(200~400mm),喷射流的粘结效率和沉积坯致
    密度降低。而基体材质、表面状况和温度都影响着沉积层的粘结。
     ⑵对管坯制备工艺进行了分析,并成功制备了形状和质量较好的无裂纹
    管坯。结果表明,雾化器平移速度υ_w与基体转速ω_j必须满足关系υ_w≥ω_j
    r_(0.5)/π,才能获得表面平整的管坯。而管坯的较优制备工艺可确定为:υ_w=0.1m·s~(-1),ω_j=60r·min~(-1),雾化气体压力1.0MPa,熔体温度960℃,液流
    直径4.0mm,喷射高度180~220mm。
    
    
     ()按照多层喷射沉积制备耐热铝合金管坯的过程,建立了热流分析模
     型。根据该模型对不同粒径熔滴飞行过程中的速度、温度、冷却速度、固相
    甩 分数等以及喷射流沉积后的冷却、凝固及其影响因素进行了分析。结果表明,
     雾化过程中,熔滴的直径大,凝固过程中的冷却速度较小,凝固过程在一个
     较长的距离内完成。熔滴直径小,则反之。在0< 的飞行距离内,0《20卜
     粒径的熔嫡均可获得 IXIO‘K·S’以上的平均冷却速度。喷射流沉积后,沉
     积层的平均冷却速度可以达到IX10’K*-’以上。同种工艺条件下,管坯的
     长度和直径大,则沉积层冷却速度较高。在轴向中点处,连续两次沉积时冷
     却速度相近,而越靠近管坯端部,连续两次沉积时的冷却速度差别越大。通
     过雾化粉末和沉积坯的微观结构分析,发现直径较大粉末(22 p m)中有2-5
     卜m粗大析出相,晶粒约10-20pm,根据二次枝晶臂间距可估算出其冷却
     速度约为 9.5 x二02K·s’。而沉积坯中析相为 20-60run的球形a-Al;。仰,“户,
    勿 晶粒尺寸200—500run。根据熔滴在沉积面扁平变形现象可以估算出,平均粒
     径 90 p m的单个熔滴在基体上沉积时冷却速度为工3 x 10k·s”’。因此,根
     据熔滴在0《00mm的雾化飞行阶段和沉积阶段的冷却速度,可推断出管坯
     制备过程中熔体凝固时冷却速度应为 IXIOL 10sK·S’之间,高于传统喷射
     沉积和雾化制粉工艺。
     (4较详细分析了挤压工艺、旋压工艺等对耐热铝合金管材组织结构和
     性能的影响,制备了高性能挤压和旋压管材,并对高性能板材加工工艺进
     行了探索。研究表明,450℃以上,挤压温度越高,管材力学性能越低。采
     用低温长时、高温短时的分级加热制度,在480℃以4.9的挤压系数挤压时,
     在现有设备能力下,可获得性能较好的挤压管材。虽然挤压管材的晶粒和
     析出相均有长大现象,但无平衡相析出。挤压管材的性能为:
     25t,or。。=310MPa,or。=391MPa,8=11.4%;
    t 350℃,or。。二178MP,rtr二185ma,8三12.SO/O。
     其性能明显高于传统喷射沉积挤压态该合金棒材,但与平流铸造挤压
     态该合金棒材相比则较低。挤压管材旋压过程中,管材密度随变形程度增
     加而提高。旋压温度高于450℃时,将导致管材强度下降。在350℃一420℃
     采用小道次压下量多道次旋压工艺,可以避免管材旋压开裂和性能降低,
    
     并且总压下量较大时,管材性能较高。与挤压管性能相比,总压下量为83o/o
     的旋压管材室温屈服强度和断裂强度分别提高 25
Combining ~vith a key project supported by the National Ke~?Program of 9 Live year Plan, a novel multi-layer spray deposition ~MLSD) equipment for large dimensions pipe blanks have been developed. Pipe blanks of FVSO812 alloy with dimensions of (I) 400 X 800 X 115mm (inner diameter X length X wall thickness) were J)repared by MLSD technology. Thermal history and microstructure characteristics of the pipe blanks were analyzed. Alloy pipes with high performance were produced by extrusion and spinning process. The main conclusions were drawn as following:
     (1) The preparation principle of pipe blank with large dimensions by MLSD and the processing regularities were researched and analyzed. In present process, the atomized droplets spraying flow scans reciprocally along the surface of pipe substrate and the blank is deposited layer by layer with the atomizer and substrate moving simultaneously. Thus the scanning range of the spraying flow is large and the internal of the successive deposition at the same point is long ,which leads to a high cooling rate of the deposit above 104K s? So MLSD is more proper for preparation of FVSO8I2 alloy pipe blanks with large dimensions. The mean atomized droplet size and its size distribution were influenced by the atomization process parameters. such as atomization gas pressure (P3, temperature of melt (I) and the diameter of melt flow (D). The spatial matter flow density in the atomization cone presents a bimodal distribution. At the deposition stage, matter density vertical to the scanning direction (MDS) presents an approximate Gauss distribution. The sticking efficiency of the atomized droplets spraying flow and deposit density decrease as the increasing of spray distance (z).
     (2) Based on an intensive analysis on the process, the needed pipe blanks with fine shape precision and excellent quality were prepared. The results show that, to obtain pipe blanks with flat surface, the atomizer should move evenly and its speed U satisfy such expression as U ~ Lu1 r5/ ~t where Lu is the turning speed of the substrate and r,,5 is the half-width of MDS. The optimum process parameters in present study are as following: U ~0.1m s4, Lu 60r miff? Pz1.OMPa, T=96() ~C, D~4.0mm, z180~-220mm0
     (3) A one-dimension model of heat flow analysis was established to analysis the cooling and solidification of atomized droplets with different size during the flying and after their deposition. The results show that the average cooling rates of the droplets
    
    
    
    xx-ith thc sisc bctuyccn 0 to 220 ll m can reach above 1 X 10'Ii. s-l dufu1g thc fl\-ing
    distancc bctween 0 to 2()0min. the cooljng rates of dIop1ets witi1 the mean size of 9()
    P m can obtain 3.3 X l()'lt. s l after theiI deposihon. The average cooling ratc of thc
    deposited la\-er can reach above 10'K. s-'. So it can be concluded that the couljng rate
    during MLSD is about 103tw 105K. s-', which is higher than that either in convenh<)l1al
    spra\' deposihon and or in atoforahon. The dricrostructures of the atomizcd poxt.der
    particles xt'ith different size xt7ere tested. The results shou- that the grains about 1() to 2()
    P m and needle-shaped phase with the size between 2 to 5 ll m are prescnted in thc
    powder particles above 220 ll m. But in the deposiL the grain slze is ouly between 20()
    to 500nm wlth sphetical parhcles Q -Al,,(Fe,V),Si about 20 to 60nm.
    (4) The influences of densdriahon process on the rhastructures and properties
    of the allo}-'s piPes have been investigated. Extruded and spun p1Pes xv~id1 fine
    perfOrmance have been produced. The results show that the boe dixnensions extruded
    pipe wtth high performance can be rnanufactuxed within the capacaq of the available
    extiuding apparatus wtth optimUm processing. The mechanical properhes of
    as-extruded piPes are apparend3 higher than that of extruded bar b}' com,enhonal
    spra}' deposition. The mechandal properhes of the extruded piPes are llstcd as
    fUll<)\L,ing.
    25'C f o ..==3l0MPa, o,=391MPa, 6 =11.4'/O;
    350OC, O .,==178MPa, o,=185MPa, 6 =12.5?,o.
    When
引文
1 R.W.卡恩主编,材料科学与技术丛书(第15卷):金属与合金工艺,科学 出版社,1999:60
    2 陈振华,黄培云,快速凝固-粉末冶金技术发展综述,中南矿冶学院学报, 1991,22(1) Suppl:1
    3 A.Lawley, Powder metallurgy and rapid solidification-compelling technologies, J.Met, 1985, 37(8) : 15
    4 P.K.Johnson, Net P/M applications, Int.J.Powder Metall, 1990, 26(3) : 271
    5 黄培云主编,粉末冶金原理,冶金工业出版社,1982:1-3
    6 A.R.E.Singer, The principles of spray rolling of metals, Metals and Materials, June 1970, 4:246
    7 A.R.E.Singer, Recent developments in the spray forming of meals, Int. J. Powder Metall, Powder Technol., 1985, 21 (3) : 219
    8 A.R.E.Singer, The challenge of spray forming, Powder Metall., 1982, 25(4) : 196
    9 A.R.E.Singer, British Patent No. 1262471, 1968
    10 黄培云,金展鹏,陈振华著,粉末冶金基础理论与新技术,中南工业大 学出版社,1995,12:219
    11 R.G.Brooks, A.G.Leathan, J.S.Coornbs, etc, The osprey process: a novel method for the production of forgings, Metallurgia and Metal Forming, 1977, 44(4) : 157
    12 R.G.Brooks, U.S.Patent Nos.3826301, July.30, 1974
    13 R.G.Brooks, U.S.Patent Nos.3909921, Oct7, 1975
    14 A.R.E.Singer, S.E.Kisakurek, Mater.Technol., 1976, 3: 565
    15 周尧和,胡壮麟,介万奇编著,凝固技术,机械工业出版社,1998,9:292
    16 A.R.E.Singer, and S.Ozbek, Metal matrix composites produced by spray codeposition, Powder Metall., 1985, 28(2) : 72
    17 A.R.E.Singer, Metal matrix composites made by spray forming, Mater. Sci. Eng., 1991, A135:13
    18 张淑英, 张二林,喷射共沉积金属基复合材料的发展现状,宇航材料工艺,1996,4:1
    
    
    19 张济山,陈国良,粉末雾化喷射成形制备颗粒增强复合材料,材料科学 与工程,1995,13(1) :21
    20 R.W.Evans, A.G.Leatham and R.G.Brooks, The osprey preform process, Powder Metallurgy, 1985, 28:13
    21 A.G.Leatham, A.Ogilvey, P.F.Chesney, etc., Osprey process production flexibility in mater, manufacture, Metals and Mater., 1989, 5:140
    22 T.W.克莱因,P.J.威瑟斯著,金属基复合材料导论,冶金工业出版社,1996, 11:303
    23 彭晓东,金属基复合材料喷射沉积技术,材料导报,1993(2) :72
    24 J.C.Romero, L.Wang, R.J.Arsenault, Interfacial structure of a SiC/Al composite, Mater. Sci. and Eng.A, 1996, 212:1
    25 T.S.Srivatsan and E.J.Lavernia, Use of spray techniques to synthesize particulate-reinforced metal-matrix composites, J. Mater. Sci., 1992, 27: 5965
    26 M.Gupta, F.Mohamed and E.J.Lavernia, J. Mater. Manuf. Proc., 1990, 15:165
    27 Y.Wu and E.J.Lavernia, Interaction mechanisms between ceramic particles and atomized droplets Metall. Trans. A, 1992, 23A: 2923
    28 M.Gupta, J.Juatez-Islas, W.E.Frazier, etc., Metall. Trans.B, 1992, 23B: 719
    29 A.Lawley and D.Apelian, Spray forming of metal matrix composites. Powder Metall., 1994, 37(2) : 123
    30 孙章明,陈振华,金属喷射沉积成形技术在军事工业上的应用,中国有 色金属学报,1997,Suppl.1:326
    31 杨伏良,陈振华,金属喷射沉积工艺的进展,湖南冶金,1994,3(2) :49
    32 田世藩,李周,张国庆等,喷射成形的发展及产业化趋势,98全国喷射 成形技术学术研讨会论文集,哈尔滨,1998,9:13-15
    33 E.Gutierez-Miravete, E.J.Lavernia, G.M.Trapaga, etc., Mathematical model of the spray depsoition process, Met.Trans A, 1989, 20A(1) : 71
    34 G.Trapaga, J.Szekely, Mathematical Modeling of the isothermal impingement of liquid droplets in spraying process, Met Trans.B, 1991, 22B(12) : 901
    35 G.Trapaga, E.F.Matthys, J.J.Valencia, etc., Liquid flow, heat transfer and solidification of molten metal droplets impinging on substrates, Comparison of 44(6) : 2409
    
    numerical and experimental results, Met Trans.B., 1992, 23B(12) : 701
    36 S.A.Miller, R.S.Miller, D.P.Mourer, etc., High yield nonaxisymmetric atomization of Nickel Base superoalloys, Int. J. Powder Met., 1997, 33(7) : 37
    37 S.Annavarapu, D-Apelian, A.Lawley, Spray casting of steel strip: process analysis, Met Trans A, 1990, 21A(12) : 3237
    38 P.Mathur, S.Annavarapu, D.Apelian, etc., Spray casting: an integral model for process understanding and control, Mater Sci and Eng., 1991, A142: 261
    39 P.Mathur, Apellian and A.Lawley, Analysis of the spray deposition process, Acta Metall., 1989, 37(2) : 429
    40 R.Knight , R.W.Snnith and A.Lawley , Spray forming research at drexel university, Int J. Powder Metall., 1995, 31 (3) : 205
    41 R.Dohery, C.Cai and L.K.Kohler, Modeling and microsturcture development in spray forming, Int. J. Powder Metall., 1997, 33(3) : 50
    42 D.N.Hanlon, W.M.Rainforth and C.M.Sellars, etc, The structure and properties of spray formed cold colling mill work roll steels, J. Mater. Sci., 1998, 33: 3233
    43 J.R.Blackfood, RA.Buckley, Jones, etc., Spray deposition of an iron aluminide, J.Mater.Sci., 1998, 33:4417
    44 D.N.Hanlon, W.M.Rainforth, C.M.Sellars, etc, The effect of spray forming on the microstructure and properties of a high chromium white cast iron, J. Mater. Sci., 1999, 34:2291
    45 H.Haiming, H.L.Zin, D.R.White, etc., On the evolution of porosity in spray-deposited tool steel, Metall. and Mater. Trans. A, 2000, 31A(3) : 723
    46 X.Liamg and E.J.Lavernia, Solidification and Microstructure evolution during spray atomization and deposition of Ni3Al, Mater. Sci. and Eng.A, 1993,161: 221
    47 X.Liang and E.J.Lavernia, Residual stress distribution in spray atomized and deposited Ni3Al, Scripta Metall. et Mater., 1993, 29(3) : 353
    48 S.Ho and E.J.Lavernia, Thermal Residual strees in spray atomized and deposited Ni3Al, Scripta Mater., 1996, 34(4) : 527
    49 Eon-Sik Lee, Woo-Jin Park, kyeon-Ho Baik, etc., Different carbide type and their effect on bend properties of a spray-formed high speed steel, Script Metall.,
    
    1998, 39(8) : 1133
    50 B.Li, J.Wolfenstine , J.C.Earthman , etc., Compressive creep behavior of spray-formed Gamma Titanium Aluminide, Metall and Mater. Trans. A, 1997, 28A(9) : 1849
    51 D.E.Lawrynowicz, B.Li and E.J.Lavernia, Particle penetration during spray forming and co-injection of Ni3Al+B/Al2O3 intermetallic matrix composite, Metall and Trans.B., 1997, 28B(10) : 877
    52 J.S.Lee,N.J.Kim,The influence of reinforced particle fracture on strengthening of spray formed Cu-TiB2 composite, Scripta Mater., 1998, 39(8) : 1063
    53 M.H.Kim and H.Jones , In rapidly quenched metals , T. Masumoto and H.Suznki, ets., The Japan Institute of Metals, Sendai, 1982, pp85-93
    54 B.P.Bewlay and B.Cantor, Gas velocity measurement from a close-coupled spray deposition atomizer, Mater. Sci and Eng. A, 1989, 118: 207
    55 B.P.Bewlay and B.Cantor, Modeling of spray deposition, Measurements of particle size, gas velocity, particle velocity, and spray temperature in gas-atomized sprays, Metall. Trans.B, 1990, 21B(10) : 899
    56 B.P.Bewlay and B.Cantor , The relationship between thermal history and Microstructure in spray-deposited tin-lead alloys, J. Mater. Res., 1991, 6(7) : 1433
    57 P.S.Grant, B.Cantor and L.Katgerman, Moldeling of droplet dynamic and thermal histories during spray forming-Ⅰ, Individual droplet behavior, Acta Metall. Mater., 1993, 41 (11) : 3097
    58 P.S.Grant, B.Cantor and L.Katgerman, Moldeling of droplet dynamic and thermal histories during spray forming-Ⅱ, Effect of process parameters, Acta Metall. Mater., 1993, 41(11) : 3109
    59 Huimim.Liu, H.Rangel and E.J.Lavernia, Modeling of reactive atomization and deposition processing of NijAl, Acta metall. Mater., 1994, 42(10) : 3277
    60 H.Liu, EJ.Lavernia and R.H.Rangel, Modeling of molten droplet impingment on a non-flat surface, Acta Metall. Mater, 1995, 43(5) : 2053
    61 B.Li, X.Liang, J.C.Earthman and etc., Two dimensional modeling of momentum and thermal behavior during spray atomization of γ-TiAl, Acta Mater., 1996,
    
    
    62 J.P.Delplanque and R.H.Rorngel, Simulation of Liquid-jet overflow in droplet deposition processes, Acta Mater., 1999, 47(7) : 2207
    63 X.Liang and E.J.Lavernia, Evoluation of interaction domain microstructure during spray deposition, Metall and Mater. Trans. A, 1994, 25A(1) : 2341
    64 Q.Xu, V.V.Gupta and E.J.Lavernia, On the mechanism of mushy layer formation during droplet based processing, Metall and Mater. Trans, B, 1999, 30B(6) : 527
    65 W.D.Cai and E.J.Lavernia, Modeling of porosity during spray forming: Ⅰ , Effects of processing parameters, Metall and Mater. Trans. B, 1998, 29B(10) : 1085
    66 W.D.Cai and E.J.Lavernia, Modeling of porosity during spray forming: Ⅱ , Effects of atomization gas chemistry and alloy compositions, Metall and Mater. Trans. B, 1998, 29B(10) : 1097
    67 H.M.Liu, R.H.Ranged and E.J.Lavernia, Modeling of droplet-gas incteractions in spray atomization of Ta-2. 5W alloy, Mater. Sci and Eng. A, 1995, 191:171
    68 张永安,熊柏青,刘江等,喷射成型过程中雾化粒滴的数值模拟研究, 98全国喷射成形技术学术研讨会论文集,李庆春,沈军主编,1998:49
    69 X.B.Qing, Z.Y.An, L.Y.Jun, etc., Preparation of tube blanks by atomization deposition process, Trans. Nonferrous Met Soc. China, 1999, 9(3) : 472
    70 X.B.Qing, Z.Y.An, L.Y.Jun, etc., Preparation of round billets by spray forming technology, Trans. Nonferrous Met Soc. China, 1999, 9(2) : 302
    71 张济山,崔华,段先进等,雾化喷射沉积成型凝固过程模拟研究Ⅰ,理 论分析,金属学报,1998,34(1) :7
    72 张济山,崔华,段先进等,雾化喷射沉积成型凝固过程模拟Ⅱ,Al-Cu 合金的计算结果,金属学报,1998,34(1) :13
    73 张济山,孙继跃,崔华等,喷射沉积成型过程的优化控制-Ⅰ,沉积坯件 几何形状的控制(近终型成形),材料导报,1999,13(1) :17
    74 傅晓伟,张济山,孙祖庆,喷射沉积过程的计算模型及优化软件,金属 学报,1999,35(2) :147
    75 曹福洋,崔成松,范洪波等,喷射成形过程工艺参数作用规律的理论预 测,中国有色金属学报,1999,9(2) :213
    
    
    76 陈玉勇,张淑英,沈光骏等,喷射共沉积 Al-4. 7Cu-1. 73Mg/SiCp 复合材料 的微观组织及界面结构研究,98’全国喷射成形学术研讨会论文集,哈尔 滨,1998:134
    77 陈玉勇,张淑英,沈光骏等,喷射共沉积 Al-5. 5Cu/TiB_2自生复合材料的 界面TEM研究,98全国喷射成形学术研讨会论文集,哈尔滨,1998:147
    78 沈军,李振宇,曹福洋等,喷射成形Cu-Cr-Zr-Mg合金的显微组织及性 能,98全国喷射成形学术研讨会论文集,哈尔滨,1998:162
    79 张国庆,米国发,李周等,氩气雾化喷射成形镍基高温合金的研究,98 全国喷射成形学术研讨会论文集,哈尔滨,1998:117
    80 刘仲武,米国发,田世藩等,氮气雾化喷射沉积变形镍基高温合金的研 究,98全国喷射成形学术研讨会论文集,哈尔滨,1998:125
    81 张智慧,李周,张国庆等,3-D形状模型辅助喷射成形工艺优化的研究, 98全国喷射沉成形学术研讨会论文集,哈尔滨,1998:28
    82 张豪,中南工业大学博士学位论文,1998
    83 Yuan Wu-hua, Chen Zhen-hua, Huang Pei-yun, Preparation of heat-resist aluminum alloy pipe blanks by multi-layer spray depestion, Trans. Nonferrous Met Soc. China, 2000, 10(4) : 461
    84 Kang Zhitao, Cheng Zhenhua, Yan Hongge etc., Preparation of 6066Al/SiC_p composites by multi-layer spray deposition, Proc.of the IntConf.on spray deposition and Melt Atomization, Bremen, Germany, 26-28, June, 2000: 519
    85 Wu Huayuan, Zhen Huachen, The application of multi-layer spray deposition to production of heat-resisting aluminum alloy, proc. of the Int Conf. on spray Deposition and Melt Atomization, Bremen, Germany, 26-28, June, 2000: 277
    86 袁武华,陈振华,多层喷射沉积技术的研究及进展,材料导报,2000,14(1) : 17
    87 陈振华,蒋向阳,杨伏良等,多层喷射沉积工艺,中国有色金属学报,1995, 5(4) :66
    88 陈振华,黄培云,蒋向阳等,多层喷射沉积规律,中国有色金属学报,1995, 5(4) :70
    
    
    89 J.S.Zhang, X.J.Liu, H.Cu, etc., Microstructure and properties of spray-depesited 2014-15 vol pct SiC particulate-reinforced metal matrix composite, Metall and Mater. Trans. A, 1997, 28A(5) : 1261
    90 Guofa Mi, Zhou Li, Shifan Tian, etc., Microstructure and tensile properties of spray-deposited IC6 alloy., J. Mater. Sci. Technol., 1998, 4:143
    91 Peng Xiaodong and Li Yulan, Spraying-oxidation and deposition process of Al/Al_2O_3 composites, Trans. Nonferrous Met. Soc. China, 1999, 9(2) : 342
    92 K.W.LiU, R. Gerling and F.P.Schimansky, Microstructure and tensile properties of spray formed gamma Ti48. 9at%Al, Scripta Mater., 1999, 40(5) : 601
    93 Chengsong Cui, Hongbo Fan, Darning Zu, etc., Microstructure of rapidly-solidified Al-3. 8Li-0. 8Mg-0. 4Cu-0. 13Zr alloy by spray deposition processing, J. Mater. Sci. Technol., 1998, 14:407
    94 Xiao guang Yuan and Luquan Ren, Microstructure and properties of spray deposited 2024-20Si-5Fe alloy, J. Mater. Sci. Technol., 1998, 14:402
    95 蒋宏,陈振华,液体动态成形沉积规律的研究,中南矿冶学院学报,1991, 22(1) suppl:95
    96 周多三,胡荫森,蒋向阳等,喷射沉积 Al-8Fe-2V-2Si 合金的结构和性能 研究,湖南冶金,1993,4:5
    97 张豪,陈振华,陈刚等,喷射沉积制备6063/SiC_p复合材料,1996,6(2) : 300
    98 Chen Zhenhua, Zhang Hao, ChenGang, etc., Preparation of 6066Al/SiCp(+Gr) composites by multi-layer spray deposition, Trans. Nonferrous Met Soc. China 1996, 6(4) : 61
    99 T.P.Johnson, M.H.Jacobs, R,M.Ward, etc, Spray forming of alloys for high perfermance application, Proc.2nd Int.Conf.on Spray Forming, J.V.Wood, ed, Woodhead Publishing Limited, Cambridge, UK, 1993:183
    100 李庆春,崔成松.超音雾化金属喷射沉积技术制备高性能铝合金材料, 98全国喷射成形技术学术研讨会论文集,1998,9:13-15,哈尔滨:1
    101 A.J.W.Ogilvy, The metal of the Osprey process, 1992 Powder Metall.World Conf., San Francisco, California, Jun 23-24, 1992:32
    102 崔成松,李庆春,沈军等,喷射沉积快速凝固技术发展概况,宇航材料工艺,1995,6:1
    
    
    103 E.J.Lavernia and N.J.Grant, Spray Deposition of Metals: A Review, Mater. Sci. Eng., 1998, 98:381
    104 A. G. Leatham, L. G. Elias, M. Yaman, etc., Spray-forming-commercialisation and applications, 1992 Powder Metall. World conf., San Francisco, California, June 23-24, 1992:58
    105 K.Okazaki and D.J.Skinner, Al-Fe-Zr alloys for high temperature applications produced by rapid quenching from the melt, Scripta Met, 1984, 18(9) : 911
    106 D.J.Skinner and K.Okazaki , High strength Al-Fe-V alloys at elevated temperatures produced by rapid quenching from the melt, Scripta Met, 1984, 18(9) : 905
    107 A.K.Gogia, P.V.Rao and J.A.Sekhar, Rapidly solidified aluminum-iron-misch metal alloys, J. Mater. Sci., 1985, 20(9) : 3091
    108 D.J.Skinner, R.L.Rye, D.Raybould, etc., Dispersion strengthened Al-Fe-V-Si alloy, Scripta Metall., 1986, 20:867
    109 P.S.Gilman, M.S.Zedalis, J.M.Peltier, etc., Rapidly solidified aluminum-Transition metal alloys for aerospace application, AIAA/AHS/ASEE Aircraft Design, Systerms and Operations Conference, Sept.7-9, 1988, Atlanta, Georgia.
    110 田荣璋,王祝堂主编,铝合金及其加工手册,中南大学出版社,2000, 8:875
    111 Marvin G., Mckimpson Eric, L. Pohlenz, etc., Evaluating the mechanical properties of commercial DRA,JOM, 1993, 45(1) : 26
    112 A. Unal, Production of rapidly solidified aluminum alloy powders by gas atomsation and their application, Powder Met, 1990, 33(1) : 53
    113 H.A.Davies, Processing, properties and applications of rapidly solidified advanced alloy powders, Powder Met, 1990, 33(3) : 223
    114 S.K.Das and L.A.Davies , High performance aerospacealloy via rapid solidifiation processing, Mater. Sci. Eng., 1998(98) : 1
    115 Sunghak Lee, D.Y.Lee and Sangho Ahn: Formation of coarse Al_(13) Fe_4 particles and their effects in RS/PM Al-Fe-V-Si alloy, Light Weight Alloy for Aerospace Applications Ⅱ, edited by Eui W.Lee and Nack J.Kim, 1991:277
    
    
    116 S.Hariprasad, S.M.L.Saotry, K.LJerina, etc., Microstructures and mechanical properties of dispersion-strengthened high-temperature Al-8. 5Fe-1. 2V-1. 7Si alloys produced by atomized melt deposition process, Metall. Trans. A, 1993, 24A(4) : 865
    117 S.Hariprasad, S.M.L.Sastry and K.L.Jerina, Deformation behavior of a rapidly solidified fine grained Al-8. 5%Fe-1. 2%V-1. 7%Si alloy, Acta Mater., 1996, 44(1) : 383
    118 Blandino C GO and Brain Wilshire, Strength retention following elevated temperature exposure of a rapidly solidified aluminum alloy. Scripta Metall.et Mater., 1992, 26: 435
    119 Sunghak Lee, D.Y.Lee and N.J.Kim, Correlation of microstructure and fracture toughness of a rapid solidification-powder metallurgy Al-Fe-V-Si alloy, Mater. Sci.and Eng.A, 1991, 147:33
    120 R.E.Frank and J.A.Hawk, Effect of very high temperatures on the mechanical properties of Al-Fe-V-Si alloy, Scripta Metall., 1989, 23:113
    121 S.Mitra, Elevated temperature mechanical properties of a rapidly solidified Al-Fe-V-Si alloy, Scripta Metall, et Mater., 1992, 27:521
    122 Yang Leng, William C., Porr Jr. Etc, Time dependent crack growth in P/M Al-Fe-V-Si at elevated temperature, Scripta Metall., 1991, 25:895
    123 A.P.Roynolds, Elevated temperature fatigue of P/M aluminum alloy 8009, Scripta Metall., Mater., 1993, 28:201
    124 Z.H.Chen, H.Zhan, F.L.Yang, etc, A novel multi-layer spray deposition, Proc.Third Int.Conf.on Spray Forming, Cardiff, UK, 9-11 Sept, 1996:329
    125 Chen Zhenhua, Zhang Hao, Yang Fuliang, etc., A novel multi-layer spray deposition, J. Cent South Univ. Technol., 1996, 3(2) : 110
    126 袁武华,陈振华,康智涛等,多层喷射沉积制备Al-Fe-V-Si合金管坯.中 南工业大学学报,2000,31(1) :60
    127 黄培云主编,粉末冶金原理,冶金工业出版社,1982:131-136
    128 黄培云主编,粉末冶金原理,冶金工业出版社,1982:103
    129 梅炽主编,冶金传递过程原理,中南工业大学出版社,1987:103
    130 Hyun-Kwang Seok, Dong-Hun Yeo, Kyu Hwan OH, etc., A three-dimensional model of the spray forming mothod,Metall.and Mater.Trans.B,1998,29B(6) :699
    
    
    131 V.Uhlenwimkel, K.Bauchhage, Mass flux profile and local particle size in the spray cone during spray forming of steel, copper and tin, Proc. 2nd Int. Conf. On Spray Forming, J.V.Wood, ed., Woodhead Publishing Limited, Cambridge, Uk, 1993:25
    132 C.G.Levi and R.Mehrabian: Heat flow during Rapid solidification of undercooled metal droplet, Metall.Trans.A, 1982, 13A(2) : 221
    133 Eon-Sik lee and S.Ahn, Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming, Acta Metall Mater., 1994, 42(9) : 3231
    134 J.E.Fischer, V.Vhlenwinked, R.Schrder, etc., Thermal cracking in large diameter spray formed billets. Int J. Powder metall., 1999, 35(6) : 27
    135 A.K.Srivastava, S.N.Ojha and S.Ranganathan, Microstructure feature and heat flow analysis of atomized and spray-formed Al-Fe-V-Si alloy, Metall and Mater. TransA, 1998, 29A(8) : 2205
    136 夏长清,金展鹏,稀有金属材料与工程,1997,26(6) :18
    137 田荣璋,王祝堂主编,铝合金及其加工手册,中南大学出版社,2000, 8:482-565
    138 黎文献,杨军军,肖于德,Al-Fe-V-Si 合金高温变形热模拟,中南工业 大学学报,2000,31(1) :56
    139 邓至谦,周善初编,金属材料及热处理,中南工业大学出版社,1989, 6:22
    140 曹明盛主编,物理冶金基础,冶金工业出版社,1985,5:253-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700