电阻传递标准用可携式高精度空气控温箱
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着量子霍尔化电阻和低温电流比较仪技术的发展,我们可以建立具有不确定度为10~(-9)量级甚至更低的电阻标准。在比对中保持电阻环境温度的高稳定性就成为基本的要求。实际的测量活动显示可携式高精度空气控温箱可以满足这种需求,特别是在不同实验室之间的相互比对中发挥了相当大的作用。
     高稳定度的空气控温箱最初是用来保存标准电池。标准电池的体积很小,所以所需的控温箱体积也不大。而标准电阻的体积比较大,同时有些高精度电阻在制作时,往往采用多段温度系数不同的电阻丝组合而成,互相弥补以达到较低的总体温度系数。显然温度的不均匀性会破坏电阻的温度特征。
     本工作针对以前大容积空气控温箱内腔温度不均匀性大的缺点,采用现代控制理论的方法,设计了一种具有多传感器多加热器的新型控温箱结构。此控温箱在理论上利用矩阵正交化,对控制系统的各个部分进行解耦,使三个加热部分接近相互独立,从而使控制系统得到了较大的简化;在结构上,其内腔铝壳表面均匀绕有加热丝,内腔与控温箱外壳之间填充泡沫塑料作为绝热层,外形尺寸为50×40×46cm,内腔的尺寸为50×40×46cm,可放入一只8R102型电阻或两只Tinsley 5685型电阻。控温箱的总重量约为15千克,仍然是可以携带的。它的最突出的特性是内腔顶部与底部的温度不均匀性被自动调节,并且减少至±1mk。同时决定控温箱内腔总体温度的调节系统与在内腔顶部与底部的温度不均匀性调节系统是互相独立的。这种高精度空气控温箱在标准电阻的保存和在不同实验室之间电阻的比对将发挥重要作用。
The development of QHR and CCC technique gives the possibility to establish a resistance standard with uncertainty of 10-9or less. To keep the environment temperature of the resistor to be compared in high stability becomes an essential requirement. The practical measurement activity shows that the portable air enclosure of high precision is an adequate apparatus for this purpose, which especially have a considerable effect on the case in which the inter-comparison between different laboratories.
    The high stability enclosure was firstly developed to maintain standard cells. The size of the standard cell is small, so the inner space size of the enclosure used to keep it is not very large too, while the size of standard resistors is much larger. Some resistors of high quality consist of several pieces with slightly different temperature coefficient and these pieces compensate each other to get very low temperature coefficient totally. Obviously the inhomogeneity of temperature will deteriorate the temperature characteristic of the resistor.
    In the face of the shortcoming of large capacity enclosure, which the temperature difference between bottom and top of inner space of the enclosure is large, an enclosure including multi-sensor and multi-heater is designed according to modern control theory. In theory, orthogonalization of the matrix to decouple the three parts make the control system simple and easy to run; In construction, heating wire is wound on the surface of the aluminum chamber evenly. Foam is placed between outer and aluminum chamber as thermal insulation. The outer dimension is 50?0?6cm and the inner space is 35?5?1cm, which fits one SR 102 type resistor or two Tinsley 5685 type resistors. The total weight of the enclosure is about 15 kg, which is still a portable one. Its outstanding feature is the temperature difference between top and bottom is regulated
    
    
    automatically and decreased within 1 mK. At the same time, the regulating operation determining the temperature of inner space of the enclosure and the regulating operation of the temperature difference between bottom and top is independent from each other. This enclosure is useful for the maintenance of resistance standard and for the comparison between different laboratories.
引文
[1] 张钟华,量子计量基准—历史及进展,中国计量,2002.8:5-9
    [2] 张钟华,量子物理与量子计量基准,中国计量,1997年第10期:48-49
    [3] 张钟华,贺青,量子化霍尔电阻基准系统验收报告,2000,pp.1-6,20-22.
    [4] 曾谨言,量子力学导论(第二版),北京大学出版社,北京,2001
    [5] 周世勋,量子力学,高等教育出版社,北京,1979
    [6] 张钟华,贺青,21世纪电磁计量的展望,现代计量测试,2001年第3期:4-6
    [7] K.V. Klitzing, G. Dorda and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on Quantized Hall Resistance, Phys. Rev. Lett. 45(1980)494-497.
    [8] A. Hartland, The Quantum Hall Effect and resistance standard, Metrologia 29(1992)175-190.
    [9] B. Jeckelmann, W. Fasel, and B. Jeanneret, Improvements in the Realization of the Quantized Hall Resistance Standard at OFMET, IEEE Trans. on Instrum. & Meas., vol. 44, no. 2, pp. 265-268, Apr. 1995.
    [10] 张钟华,贺青,测控系统准确性的依据——计量基、标准,测控技术,2000年19卷第1期:7-8
    [11] 张钟华,贺青,量子基准与基本物理常数,现代计量测试1998年第2期:3-5
    [12] 张钟华,量子计量基准与基本物理常数,工业计量,2001年第5期:4-7
    [13] F. Delahaye et al., Report from the working group on the Quantum Hall Effect, Report of the 18th Meeting of CCE, BIPM, 1988.
    [14] 张树伟,超级恒温油槽控温部分的改造,航空计测技术,2003年第23卷第3期:37
    [15] 李丹丹,精密恒温槽技术性能的测试方法,计量测试,2001:266-267
    
    
    [16] 季镜屏,李国平,钱火根,一种新型高精度标准恒温油槽,计量技术,2000第10期:15-17
    [17] M. E. Halvey, Precision Temperature-controled water Bath, The Review of scientific Instruments. 39(1968), 13-18.
    [18] N.T. Larsen, 50 Microdegree Temperature Controller, The review of scientific instruments, 39(1968), 1-11
    [19] T.M. Dauphinee and S. B. Woods, Rev. Sci, Instrum. 41,996(1955)
    [20] Jay Dratler, A proportional thermostat with 10 microdegree stability, 45(1974), 1435-1443
    [21] David, w. Brauday, Truly Transportable standard-cell Bath, IEEE Trans. IM 19(1970), 263-266
    [22] 中国计量科学研究院电磁室,空气恒温箱(电阻电容电感的绝对测量课题研究报告之十二),1975.11
    [23] 瞿清昌,稳定性为50℃/℃的便携式标准电池控温箱,电磁测量文集,1981,213-220.
    [24] M. Nakanishi, International resistance comparison between NIM and ETL, private comm..
    [25] CIPM key comparison CCEM K-10 "100 Standard Resistor" technical protocol, 2002.06
    [26]. Alexandre Satrapinski et al., Comparison of Four QHR Systems Within One Month Using a Temperature and Pressure Stabilized 100- Resistor, IEEE Trans. IM 50(2001), 238-241.
    [27] F.Delahaye, T.J. Witt, E.Pesel, B.Schumacher and P. Warnecke, Comparison of quantum hall effect resistance standards of the PTB and the BIPM, Metrologia, pp. 211-214, Apr. 1997.
    [28] 徐家政,高稳定性控温箱,航天技术与民品,1997.12
    [29] 吴麒,自动控制原理,清华大学出版社,北京,1990
    
    
    [30] 戴忠达,自动控制理论基础,清华大学出版社,北京,1991年
    [31] 胡家耀,现代控制理论基础,轻工业出版社,北京,1990年
    [32] Katsuhiko著,卢伯英等译,现代控制工程(第三版),电子工业出版社,2000.
    [33] 王化祥,张淑英,传感器原理及应用.天津大学出版社,天津,1999.2
    [34] 刘迎春,叶湘滨,传感器原理设计与应用,国防科技大学出版社,长沙,1997.8
    [35] 余瑞芬,传感器原理,航空工业出版社,北京,1995.8
    [36] 郑岩,热敏电阻精密控温仪,全国电阻测温学术讨论会论文集,1988.07.06,85-88
    [37] 孙传友等,测控电路及装置,北京航空航天大学出版社,北京,2002.5
    [38] 吴琦等,单片机在温度测量中的应用,哈尔滨建筑大学学报,33(2000),121-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700