煤高温空气无焦油气化实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国大部分中小型燃煤工业炉窑(不包括电厂锅炉)采用直燃煤工艺,燃烧效率低,环境污染严重。为了解决直燃煤工艺引发的环境问题,近些年中小型燃煤工业炉窑开始采用煤气化技术,其中传统的固定床气化炉约占90%。固定床气化炉的出炉煤气热值低、焦油含量高,这样的热脏煤气不宜直接燃用。若采用炉外净化工艺,由于煤气净化设备复杂,运行费用高,且易造成二次污染,所以不适合我国大量而分散的中小型燃煤工业炉窑。为了从根本上解决燃煤工业炉的煤转换效率低、煤气热值低、焦油含量高等问题,论文开发了“煤高温空气气化ˉˉ高温贫氧燃烧一体化实验系统”和煤无焦油气化技术。一方面利用燃气炉窑排出的高温烟气预热空气,将高温空气作为煤气化炉的高温气化剂使煤高效气化:另一方面使焦油在煤气化过程中裂解并转化为可燃气体,实现洁净燃烧。论文工作为煤气化炉的结构设计和操作优化提供了理论依据,为我国中小型燃煤工业炉窑的节能减排开辟了新途径。
     1.论文自行设计了煤高温空气气化炉,首次成功实现空气高度预热的煤常压固定床气化工艺。研究了气化操作参数对气化指标的影响规律。结果表明:在保持气化温度不变的条件下,空气预热温度由500℃提高到800℃时,煤气热值提高幅度达32.5%。气化当量比和汽碳比对气化指标的影响本质上是通过改变气化温度来实现的,且气化当量比和汽碳比均存在一个最佳操作区域。在保证气化炉内不结焦的前提下,应采用较大的气化当量比和较小的汽碳比并提高空气预热温度。空气预热温度越高,煤气热值、气化效率等气化指标越好,而不同的空气预热温度又对应不同的最佳气化当量比,空气预热温度越高,最佳气化当量比越小。
     2.论文将煤高温空气气化和高温贫氧燃烧技术相结合,开发了煤高温空气气化ˉ高温贫氧燃烧一体化实验系统。一体化系统实验结果表明:气化空气流量随鼓风机开度增加和排烟机开度减小而逐渐增加,助燃空气流量则随排烟机开度增加和鼓风机开度减小而逐渐增加。实验得到气化空气和助燃空气的分流量范围分别为0-68.5 Nm3/h和0-122.5Nm3/h,可以分别满足气化和燃烧过程的需要;一体化系统使燃气加热炉烟气显热得到充分利用,使煤高温空气气化过程比常温空气气化过程的气化效率和热效率分别提高7.3%和6%,整个一体化系统比常规燃用热发生炉煤气的工业炉窑热效率提高约30个百分点,充分体现了一体化系统的优越性。
     3.利用TG-MS联用仪研究了煤焦油热裂解时的热失重特性和气相产物的逸出规律,阐述了焦油热裂解机理。结论如下:
     (1)焦油在100℃左右出现缓慢失重,从200℃开始出现剧烈失重,323℃左右失重速率最大,达到16.38%/℃,之后失重速率逐渐降低,当温度升高至800℃时失重速率缓慢增大,在877℃、1084℃和1235℃左右分别出现三个失重峰,1300℃时热分解基本结束,固体残留物约占49.8%。
     (2)焦油的热解过程中,H20的析出可以分为三个区间,分属于吸附水的脱出和羟基之间发生缩聚反应产生的热解水以及稳定含氧官能团的断键,其中在316℃左右析出最明显。H2在400~1050℃之间大量析出,从1050℃开始,H2进入缓慢生成阶段。CH4、C2H4和C2H2的析出均存在一个类似高斯分布的峰,其析出峰的强度差异说明焦油裂解产生的小分子碳氢化合物以CH4和C2H4为主。C3、CO和CO2均在800℃以上的高温下析出明显。
     4.论文对煤高温空气固定床气化炉的结构进行了改造,利用改造后的气化炉在典型的工况下进行了无焦油气化实验研究,并在此基础上提出了喉口型双火层固定床气化炉结构,开发了煤高温空气无焦油气化炉。结果表明:
     (1)二次空气的加入对降低煤气中焦油的含量作用明显。对上吸式气化炉,采用在干馏段加入二次空气的方法仅能给煤气中的焦油裂解提供一个高温环境,但这需要以燃烧部分煤气为代价,煤气热值反而降低,不能获得去除焦油和提高煤气热值的双重效果。对改造后的气化炉,二次空气的加入,提高了气化炉内上部氧化层的最高温度和还原层的整体温度,加剧了焦油的裂解反应、Boudouard反应和水煤气反应,不仅大大降低了煤气中焦油含量,而且使煤气中CO和H2浓度升高,提高了煤气热值和气化效率,改善了气化过程。
     (2)气化炉的双火层结构和三段供风方式使出炉煤气中焦油含量大大降低,煤气热值明显提高,煤气中焦油含量最低可达10mg/Nm3,煤气热值高达6466.9kJ/Nm3,完全可满足各种燃烧器和加热工艺要求,实现了煤无焦油气化。
     (3)炉箅空气的加入可提高碳转化率,降低炉渣含碳量,但炉箅空气比例过大,对降低煤气中焦油含量不利。
     (4)适量水蒸汽的加入可降低煤气中焦油含量,因为它可与某些焦油成分发生反应,但水蒸汽量过大会导致床层温度下降,反而会使煤气中焦油含量升高。
Traditional direct coal combustion technology has been adopted in moat medium and small-sized coal fired industrial furnaces in China, which not only leads to low energy efficiency but also results in environmental pollution. In recent years, gasification technology has been adopted by some factories for environmental protection. Fixed bed gasifier account for almost 90% of the total gasifiers. The gas produced by conventional fixed bed gasifier has low heating value and high tar concentration. The kind of gas doesn't suit direct combustion. If the hot gas is cleaned outside the gasifier and turn into cold gas without tar, the cost of equipments and running will increase and the secondary pollution will be produced. So it doesn't suit the large numbers of medium and small-sized coal fired industrial furnaces. In order to solve the above problems, The integrated system for coal high temperature air gasification and high temperature air combustion and the coal tar-free gasifier was developed in the thesise. The high temperature air preheated by waste heat of high temperature flue gas is used for coal gasification as gasification agent in the integrated system. The tar crack and turn into fuel gas inside the gasifier during coal gasification and the clean combustion is realized. The study mentioned above not only is the theoretical foundation for the structural design of gasifier and the optimization of operational parameters, but also brings forward a new way for the energy saving and emission reduction of medium and small-sized coal fired industrial furnaces in China.
     1. The high temperature air as gasifying agent gasification of coal was applied successfully the first in a fixed bed gasifier by self-designed. The effects of operational parameters on gasification performance were studied. The experimental results show that the gas heating value increase 32.5% with the air pemperature increasing from 500℃to 800℃. The effects of ER and the steam/carbon ratio on coal gasification performance are realized by changing the gasification temperature, and the two parameters have an optimum operating range for a certain gasification process. It's of significance to optimize the process parameters such as ER and the steam/carbon ratio for high temperature air gasification process. It is avail for gasification performance to adopt higher ER, lower steam/carbon ratio and higer air temperature in the condition of no slag bonding in gasifier. The different air temperature carries with them corresponding ER. The higher the air temperature is, the lower ER.
     2. The integrated system for coal high temperature air gasification and high temperature air combustion was developed through combining the high temperature air gasification with high temperature air combustion technology. The cold state experimental results indicate that the flow rate of gasificaiton air is increased with an increase in the opening degree of fan and a decrease in the opening degree of a fume exhaust fan. The flow rate of combustion air is increased with an increase in the opening degree of fume exhaust fan and a decrease in the opening degree of fan. The regulation range of the gasification air and combustion air are between 0~68.5Nm3/h and 0~122.5Nm3/h, which may satisfy the gasification and combustion's needs, respectively. The hot state experimental results indicated that Integrated system made the most of the sensible heat of the gas-fired furnace's flue gas. The gasification efficiency and thermal efficiency of the high temperature air gasification is 7.3% and 6% higher than the normal temperature air gasification. The thermal efficiency of the Integrated system is 29.14% higher than the normal hot gas-fired furnaces. It adequately shows the advantage of the Integrated system.
     3. Simultaneous TG-MS was used to investigate thermo-gravimetric behavior of tar and the the releasing characteristics of gaseous products during the pyrolysis. We expatiate the mechanism of tar thermal cracking. The results show that:
     (1) The pyrolysis behavior of tar is slow at 100℃and become quicker after 200℃, and is the quickest at 323℃, then, it slow down. When the temperature is higher than 800℃, it slowly quicken and appeares three apices at 877℃,1084℃,and 1235℃. The pyrolysis behavior of tar is over at 1300℃and the solid residue is about 49.8%.
     (2) The release of H2O has three stage during pyrolysis of tar, and is from adsorbed water emersion, pyrolysis water produced by condensation polymerization of hydroxy groups and the chemical bond of functional group broken, respectively. It mostly release at 316℃. H2 release between 400~1050℃obviously, then it slow down. The release rules of CH4, C2H4, and C2H2 are similar, which all have an apice which is similar to Gaussian distribution. The difference of three apices' intensity show that the hydrocarbon release by tar pyrolysis primarily are CH4, C2H4. C3, CO and CO2 all release above 800℃obviously.
     4. In order to investigate the influencing factors of tar-free gasification, the high temperature air gasifier was mended. Using the mended gasifier, a series of tar-free gasification experiments were carried out in different typical operating conditions. Based on this experimental investigation, the throated twin-fire fixed bed gasifier structure was put forward and a high temperature air tar-free gasifier was developed. The results show that:
     (1) The injection of secondary air is an effective way to reduce the primary tar concentration in gas. The method which solely inject secondary air at pyrolysis region of gasifier can merely offer a high temperature condition for tar pyrolysis, but it is at a cost of combustion of a part of gas for updraft gasifier. It can't get the double effect of the reduction of tar and the increase of heating value of gas. The injection of the secondary air raises the highest temperature in upper oxidation layer and the temperature in reduction layer for the throated twin-fire structure of gasifier. This can enhance reaction rate of tar pyrolysis, Boudouard reaction and water-gas reaction, and improve the concentration of CO and H2, heating value of gas and gasification effeciency. Consequently, the gasification is ameliorated.
     (2) The throated twin-fire gasifier and the three-stage air-feeding measure can reduce the tar concentration and raise the heating value of gas. The tar concentration and the heating value of gas can get 10mg/Nm3 and 6466.9kJ/Nm3, respectively.
     (3) The injection of the grate air leads to a comparable high carbon conversion ratio and also to an ash with a low carbon content. The more than ever grate air is adverse to reduce tar concentration. This kinds of gas can satisfy all kinds of burners and heating process. The tar-free gasification is realized.
     (4) An amount of steam avail to reduce tar concentration, but more than ever ateam will decrease the gasification temperature and increase the tar concentration in gas.
引文
1. Amos Salvador.能源:历史回顾与21世纪展望[M],北京:石油工业出版社,2006,13-14.
    2. BP. BP Statistical Review of World Energy June 2007,6-41. http://www.bp.com/ statisticalreview.
    3. IEA. World Energy Outlook 2006. Paris:International Energy Agency,2006.
    4. 魏一鸣,范英,韩智勇,等.中国能源报告(2006):战略与政策研究[M],北京:科学出版社,2006,5-15.
    5. BP. BP Statistical Review of World Energy June 2008,http://www.bp.com/statisticalreview.
    6. 国际能源署.世界能源展望2007:中国选粹[M],145http://www.worldenergyoutlook.com /index_chinese.asp.
    7. 《中国能源发展报告》编辑委员会.2003中国能源发展报告[M],北京:中国计量出版社,2003,99.
    8. 国家发展和改革委员会.煤炭工业发展“十一五”规划.http://www.ndrc.gov.cn/fzgh/ghwb/ 115zxgh/P020070925583241015610.pdf.
    9. 中华人民共和国国家统计局.中国统计年鉴2007[R],北京:中国统计出版社,2007,145-170.
    10.谢克昌.煤化工发展与规划[M],北京:化学工业出版社,2006,3,26-29.
    11.中华人民共和国国家统计局.2007年国民经济和社会发展统计公报http://www.stats.gov. cn/tjgb/ndtjgb/qgndtjgb/t20080228_402464933.htm.
    12.国务院发展研究中心.中国能源战略和改革北京报告.中国发展高层论坛能源战略和改革国际研讨会.北京,2003,11.
    13.岳光溪.循环流化床燃煤技术在我国的发展与前景[J],电力设备,2008,9(5):104-106.
    14.毛玉如,张永刚,张国胜.中国洁净煤发电技术进展[J],锅炉制造,2005,(1),26-27.
    15.邢伟.大型循环流化床锅炉技术发展现状及展望[J],四川电力技术,2008,301(2):51-87.
    16.江泽民.对中国能源问题的思考[J],中国能源,2008,30(4):5-19.
    17.王大中.21世纪中国能源科技发展展望[M],北京:清华大学出版社,2007.11:129.
    18.贺永德.现代煤化工技术手册[M],北京:化学工业出版社,2004.3:7-10.
    19.张建松,吴复民.警惕我国沦为国外煤气化技术“试验场”.国际煤炭网,http://www.In-en. com/coal/html/coal-20062006091335971.html.
    20.宋湛苹,史竞.工业炉的节能与环保[J],机械工人,2005,(7):10-13.
    21.汤健中.煤的高温气化法[P],中国:86105896,1988-03-23.
    22.秦世平.高温空气ˉ水蒸汽煤的气化[J],煤气与热力,1992,12(4):15-19.
    23. Nishimura M, Suzuki T, Nakanishi R, el al. Low NOx combustion under high preheated air temperature condition in an industrial furnace[J], Energy Conversion and Management,1997, 38(10):1353-1363.
    24. Ishii T. Numerical simulations of highly preheated air combustion in an industrial furnace[C]. Transactions of the ASME,1998,276-284.
    25. Mochida S, Hasegawa T. Development of a combustion diagnostics method on advanced industrial furnaces making use of high temperature air combustion[C]. In:Proceeding of the 2nd International High Temperature Air Combustion Symposium. Taiwan:1999,94-105.
    26. Gupta A K, Hasegawa T. High temperture air combustion:flame characteristics, chanllenges and opportunities[C]. High Temperature Air Combustion Symposium. Beijing, Oct.18-19, 1999,9-28.
    27. Shimo N, Itoh Y, Yoshikawa K. Development of clean combustion technology for many kinds of fuel oil[C]. In:Proceeding of the 4th International Symposium on High Temperature Air Combustion and Gasification. ENEA of Italy:2001,35-39.
    28. Guido C, Ambrogio M. Regenerative combustion system for tube reheating and normalizing furnaces[C]. In: Proceeding of the 4th International Symposium on High Temperature Air Combustion and Gasification. ENEA of Italy,2001,50-55.
    29.森田光宣,持田晋,村上英樹,等.高温空気燃烧の特性(Ⅱ)[J],日本工ネルキ一学会誌,2001,3(80):177-182.
    30.马小茜,张凌.HTAC的关键技术及其高效低污染特性分析[J],钢铁,1993,34(9):60-63.
    31.周怀春,盛锋,姚洪,等.高温空气燃烧技术—21世纪关键技术之一[J],工业炉,1998,20(1):19-31.
    32.萧泽强,蒋绍坚,周孑民,等.高温低氧空气燃烧过程实验研究和数值计算[C].北京:高温空气燃烧新技术讲座,1999,115-137.
    33.蒋绍坚,彭好义,艾元方,等.高温空气燃烧新型锅炉及特性分析[J],热能动力工程,2000,(7):348-351.
    34.艾元方,蒋绍坚,周孑民,等.高风温无焰燃烧及其火焰特性的实验研究[J],热能动力工程,2001,16(6):615-617.
    35.饶文涛.高温空气燃烧特性及应用研究[D],上海:同济大学,2002.
    36.祁海鹰,李宇红,由长福,等.高温空气燃烧技术的国际发展动态[J],工业加热,2003, 32 (1):1-6.
    37. Yoshikawa K. Present status and future plan of crest-meet project[C]. In:Proceeding of the 2nd International High Temperature Air Combustion Symposium. Taiwan:1999,10-17.
    38. Kobayashi H, Kawai K, Yoshikawa K. Gasification power generation system and boiler performance using high temperature air[C]. In:Hsiao Tsechiang,Yoshikawa Kunio, eds. Proceedings of High Temperature Air Combustion Symposium. Beijing:1999,33-38.
    39. K.Yoshikawa. Gasification and Power Generation from Solid Fuels Using Temperature Air. In:Proceedings of High Temperature Air Combustion Symposium. Beijing:1999.48-68.
    40. Carlson C P P, Yoshikawa K. Biomass-fueled meet gasification system[C]. In:Proceedings of High Temperature Air Combustion Symposium. Editor: Hsiao Tsechiang, Kunio, Yoshikawa. Beijing:1999,69-88.
    41. Yoshikawa K. Present status and future plan of crest meet project. In:Proceeding of the 2nd International High Temperature Air Combustion Symposium.Taiwan:1999,10-17.
    42. Yoshikawa K. Gasification and power generation from solid fuels using high temperature air[C]. In:Proceedings of High Temperature Air Combustion Symposium. Beijing: 1999, 48-68.
    43. Yoshikawa K. High temperature gasification of coal, biomass and solid wastes[C]. In: Proceeding of the 2nd International seminal on High Temperature Combustion. Stockholm, Sweden, January 17-18,2000.
    44. Yoshitaka K, Yoshikawa K. Gasification performance of a pebble bed gasifier using high temperature air and steam[C]. In: Proceedings of 2000 International Joint Power Generation Conference. Miami Beach, Florida, July 23-26,2000.
    45. Yoshikawa K. R&D on small-scale gasification of solid fuels using high temperature air and steam[C]. In:Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasification. ENEA of Italy:2001,27-29.
    46. Yoshitaka K, Yoshikawa K. High temperature air gasification of wood-based biomass by a pebble bed slagging gasifier[C]. CREST Interational symposium on high temperature air combustion and gasification (Fifth). Tokyo(Japan):Tokyo Institute of Technology,2002, E1-1-6.
    47. Lincoln Y, Carlson C P P. High-temperature, air-blown gasification of dairy-farm wastes for energy production[J], Energy,2003,28:655-672.
    48. Yoshikawa K. R&D on small-scale gasification of solid fuel at the demonstration plant of MEET system, MEET Ⅱ[C]. In:Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasification. Rome:ENEA of Italy,2001,68-72.
    49. Shinobu S. Naoki S, Yoshitaka K, et al. Gasification performance of coals using high temperature air[J], Energy,2005,30:399-413.
    50. Sugiyama S, Yoshikawa K, Ishii T, et al.Gasification performance of solid fuels using temperature air at the demonstration plant MEET-Ⅱ [C]. In:Proceedingsofthe 4th international symposium on high temperature air combustion and gasification. ENEA of Italy:2001,77-89.
    51. Ishii T, Yoshitaka E, Yoshikawa K, et al. Gasification of coal and wood at the demonstration plant of MEET system, MEET-II [C]. In:Proceedings of the 4th International symposium on high temperature air combustion and gasification. ENEA of Italy:2001,35-46.
    52. Min T J, Yoshikawa K., Murakam i K. Distributed gasification and power generation from solid wastes[J], Energy,2005,30:2219-2228.
    53. Ishii T, Yoshitaka E, Kiga T, et al. Gasification of solid fuel at the demonstration plant of meet system, MEET-II[C]. In:Proceedingsofthe 4th international symposium on high temperature air combustion and gasification. ENEA of Italy:2001,15-20.
    54. Cal-lson C P P, Young L. High-temperature. air-blown gasification of dairy-farm wastes for energy production[C]. In:Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasification. ENEA of Italy:2001,98-103.
    55. Carlson. C P P. Biomass-fueled meet gasification system[C]. In:Proceedings of High Temperature Air Combustion Symposium. Editor: Hsiao Tsechiang, Kunio, Yoshikawa. Beijing: 1999,69-88.
    56. Lucas C, Szewczyk D, Blasiak W, et al. High-temperature air and steam gasification of densified biofuels[J], Biomass and Bioenergy,2004,27:563-575.
    57. Anna P, Sylwester K, Wlodzimierz B. Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG) of plastic containing waste[J], Fuel Processing Technology,2006,87(3):223-233.
    58.蒋绍坚,艾元方,彭好义.高温空气资源的开发与应用[J],冶金能源,2000,19(4):40-44.
    59.蒋绍坚,彭好义,艾元方,等.固体燃料高温空气气化系统及关键技术[J],煤气与热力,2000,20(4):247-250.
    60.艾元方,蒋绍坚,彭好义.高温空气气化炉原理与开发研究[J],锅炉制造,2000,(3):23-25.
    61.艾元方,蒋绍坚,邓胜祥.生物质燃料及其高温空气气化[J],能源工程,2000,(4):15-17.
    62.蒋绍坚,曹小玲,艾元方,等.生活垃圾高温空气气化处理的低污染特性分析[J],环境 污染治理技术与设备,2001,2(5):91-94.
    63.蒋绍坚,王晓波,柳楷玲,等.卵石床高温空气气化的影响因素[J],煤气与热力,2003,23(12):707-710.
    64.曹小玲,蒋绍坚,翁一武.生物质高温空气气化分析、现状及前景[J],节能技术,2003,22(1):47-49.
    65.曹小玲.生物质高温空气气化的分析与探讨[J],华东电力,2003,(10):16-19.
    66.蒋绍坚,郑彦民,柳楷玲,等.高温空气气化过程的计算[J],煤气与热力,2003,23(11):666-668.
    67.曹小玲,翁一武,蒋绍坚,等.气化参数对高温空气气化的影响[J],新能源及工艺,2003,(3):22-24.
    68.曹小玲.生物质高温空气气化工艺过程分析与高温空气发生器的研制[D],长沙::中南大学能源与动力工程学院,2002.
    69.柳楷玲.基于HTAC技术的蓄热式高温空气发生器实验研究[D],长沙::中南大学能源与动力工程学院,2003.
    70.郑彦民.高温空气发生器试验研制与高温空气气化器设计[D],长沙:中南大学能源与动力工程学院,2004.
    71.蒋绍坚,柳楷玲,艾元方,等.蓄热式高温空气发生器冷态实验研究[J],煤气与热力,2003,(2):70-72.
    72.曹小玲,蒋绍坚,吴创之,等.高温空气发生器热态实验研究[J],中国电机工程学报,2005,25(2):109-113.
    73.林竹.一种气化数学模型及木屑的高温气化试验[D],长沙:中南大学能源与动力工程学院,2005.
    74.张灿,杨伟锋,岂斌,等.木屑高温空气气化实验研究[J],能源工程,2006,(6):46-49.
    75.肖小清,孙新,李政.高温空气气化的卵石床气化炉的数学模型研究[J],动力工程,2003,23(5):2652-2659.
    76.田红.高温空气煤气化数值模拟及气化特性研究[D],沈阳:东北大学,2007.
    77.肖睿.煤加压部分气化试验研究与数值模拟[D],南京:东南大学,2005.
    78.肖睿,金保升,周宏仓,等.高温气化剂加压喷动流化床煤气化试验研究[J],中国电机工程学报,2005,25(22):100-105.
    79. Lopamudra D, Krzysztof J, Ptasinski, et al. Janssen. a review of the primary measures for tar elimination in biomass gasi cation processes[J], Biomass and Bioenergy,2003,24:125-140.
    80. Hesp W R, Waters R L. Thermal cracking of tars and volatile matter from coal carbonization[J], Ind. Eng. Chem. Prod. Res. Dev.1970,9(2):194-202.
    81. Khan M R. Compositional changes in the mild gasification liquids produced in the presence of calcium compounds[J], Fuel Process Technol,1991,27:83-94.
    82. Simell P A, Bredenberg J B S. Catalytic purification of tarry fuel gas[J], Fuel,1990,69: 1219-1225.
    83. Simell P A, Leppalahti J K, Bredenberg J B S. Catalytic purification of tarry fuel gas with carbonate rocks and ferrous materials[J], Fuel,1992,71:211-218.
    84. Simell P A, Hepola J O, Krause A O I. Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts[J], Fuel,1997,76(2):1117-1127.
    85. Simell P A, Hirvensalo E K, Smolander V T, et al. Steam reforming of gasification gas tar over dolomite with benzene as a model compound[J], Ind. Eng. Chem. Res.,1999,38:1250-1257.
    86. Simell P A, Hakala I A, Haario E, et al. Catalytic decomposition of gasification gas tar with benzene as the odel compound[J], Ind. Eng. Chem. Res.,1997,36:2-51.
    87. Ekstrom C, Lindman N, Pettersso n R. Catalytic conversion of tars, carbon black and methane from pyrolysis/gaisification of biomass, in:Fundamentals of Thermochemical Biomass Conversion, R. P.Overend, A. T. Mi lne, K. L. Mudge, eds., Elsevier Applied Science, London,1985,601-618.
    88. Sjostrom K, Taralas G, Liinanki L. Sala dolomite catalysed conversion of tar from biomass pyrolysis, in:Research in Thermochemical Biomass Conversion, Bridgwater A V, Kuester J L, eds. Elsevier Applied Science, London,1988,974-986.
    89. Alden H, Espenas B G, Rensfelt E. Conversion of tar in pyrolysis gas from wood using a fixed dolomite bed, in:Research in Thermochemical Biomass Conversion, Bridgwater A V, Kuester J L, eds. Elsevier Applied Science, London,1988,987-1002.
    90. Alden H, Hagstrom P, Hallgren A, et al. In:Proceedings of conference on developments in thermochemical biomass conversion, Banff, Canada,1996,1131-1135.
    91. Vassilatos V, Taralas G, Sjostrom K, et al. Catalytic cracking of tar in biomass pyrolysis gas in the presence of calcined dolomite[J], Can. J. Chem. Eng.,1992,70:1008-1013.
    92. Myren C, Hornell C, Sjostom K, et al. In:Proceedings of conference on developments in thermochemical biomass conversion, Banff, Canada,1996,1170-1175.
    93.吕俊复,岳光溪.氧化钙条件下焦油主要组分的催化裂解[J],清华大学学报(自然科学版),1997,27(2):62-67.
    94.侯斌,吕子安,李晓辉,等.生物质热解产物中焦油的催化裂化[J],燃料化学学报,2001,29(1):70-75.
    95.谢威,郭瓦力,周世贤,等.生物质焦油在氧化钙上的催化裂化研究[J],沈阳化工学院 学报,2000,14(3):205-208.
    96.贾永斌,张守玉,程中虎,等.热解和气化过程中焦油裂解的研究[J],煤炭转化,2000,23(4):1-6.
    97.周劲松,干铁柱,骆仲泱,等.生物质焦油的催化裂解研究[J],燃料化学学报,2003,31(2):144-148.
    98.张晓东.生物质热解气化及热解焦油催化裂化机理研究[D],杭州:浙江大学,2003.
    99.干铁柱.生物质焦油催化裂解试验研究[D],杭州:浙江大学,2003.
    100.刘亚军.生物质焦油催化裂解实验及中热值气化技术研究[D],杭州:浙江大学,2004.
    101.王树东,郭树才.神府煤新法干馏焦油的性质及组成的研究[J],燃料化学学报,1995,23(1):198-204.
    102. Hesp W R, Waters R L. Thermal crack ing of tars and vo latilem atter from coal carbonization. Ind Eng Chem P rod Res Dev,1970,9(2):194-202.
    103. Stiles H N, Kandiyoti R. Secondary reactions of flash pyrolysis tars measured in a fluidized bed pyrolysis reactor with some novel design feature[J], Fuel,1989,68:275-282.
    104. Doo lan K R, M ack ie J C, Tyler R J. Coal flash pyrolysis secondary cracking of tar vapours in the range 870k-2000k[J], Fuel,1987,66(4):572-578.
    105. Katheklakis L E, Lu S, Bartle K D, et al. Effect of freeboard residence time on the mo lecular m ass d istribution of fluidized bed pyrolysis tars[J], Fuel,1990,69:172-176.
    106. Seshadri K S, Shamsi A. Effects of temperature,pressure and carrier gas on the cracking of coal tar over a char-dolomite mixture and calcined dolomite in a fixed-bed reactor. Ind Eng Chem Res,1998,35:3830-3837.
    107. Simell P A, Hepola J O, Krause A O. Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts[J], Fuel,1997,76:1117-1127.
    108. Narvaez I, Orio A, Aznar M P, et al. Biomass gasification with air in an atmospheric bubbling fluidized bed:effect of six operational variables on the quality of produced raw gas[J], Industrial and Engineering Chemistry Research,1996,35:2110-2120.
    109. Olivares A, Aznar M P, Caballero M A, et al. Biomass gasification:produced gas upgrading by in-bed use of dolomite[J]. Industrial and Engineering Chemistry Research,1997,36:520-526.
    110. Corella J, Aznar M P, Gil J, et al.Biomass gasification in fluidized bed:where to locate the dolomite to improve gasification[J], Energy and Fuels,1999,13:1122-1127.
    111. Rapagna S, Jand N, Kiennemann A, et al.Steam-gasification of biomass in a fluidized-bed of olivine particles[J], Biomass and Bioenergy,2000,9:187-97.
    112. Rapagna S, Jand N, Foscolo P U. Utilization of suitable catalyst for the gasification of biomass. In:Proceedings of the Tenth European Conference and Technology Exhibition on Biomass for Energy and Industry. Kopetz H, Weber T, Palz w, et al. editors. Wurzburg,Germany,1998, 1720-1723.
    113.吕俊复,岳光溪.循环床锅炉循环灰对焦油裂解的催化影响[J],工程热物理学报,1999,20(1):106-110.
    114. Chembukulam S K, Dandge A S, Kovilur N L, et al. Smokeless fuel from carbonized sawdust[J], Ind. Eng. Chem. Prod. Res. Dev,1981,20(4):714-719.
    115. Pan Y G, Roca X, Velo E, et al. Removal of tar by secondary air in fluidized bed gasification of residual biomass and coal[J], Fuel,1999,78:1703-1709.
    116. Peder B, Elfmn L, UMk H. High tar reduction in a two-stage gasifier[J], Energy & Fuels,2000, 14:816-819.
    117. Bhattacharya S C, Md A H, Siddique M R. A study on wood gasification for low-tar gas production[J], Energy,1999,24:285-296.
    118. Henriksen U, Christensen O. Gasification of straw in a two-stage 50 kW gasifer. In: Proceedings of the Eighth European Conference on Biomass for Energy, Environment, Chartier PH. Editor. Agriculture and Industry, Vienna, Austria,1994,1568-1578.
    119. Brandt P, Larsen E, Henriksen U. High tar reduction in a two-stage gasifier[J]. Energy and Fuels,2000,14:816-819.
    120. Cao Yan, Wang Yang, Riley J T, et al. A novel biomass air gasification process for producing tar-free higher heating value fuel gas[J], Fuel Processing Technology,2006,87:343-353.
    121. Susanto H, Beenackers AACM. A moving-bed gasi er with internal recycle of pyrolysis gas[J], Fuel,1996,75(11):1339-1347.
    122. Dogru M, Midilli A, Howarth C R. Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis[J], Fuel Processing Technology,2002,75:55-82.
    123. Dogru M, Howarth C R, Akay G, et al. Gasification of hazelnut shells in a downdraft gasifier[J], Energy,2002,27:415-427.
    124. Pathak B S, Patel S R, Bhave A G, et al. Performance evaluation of an agricultural residue-based modular throat-type down-draft gasifier for thermal application[J], Biomass And Bioenergy,2008,32:72-77.
    125.赖艳华.生物质热解过程的传热传质及低焦油气化技术研究[D],南京:东南大学,2002.
    126. Kramreiter R, Url M, Kotik J, et al. Experimental investigation of a 125 kW twin-fire fixed bed gasification pilot plant and comparison to the results of a 2 MW combined heat and power plant (CHP)[J], Fuel Processing Technology,2008,89:90-102.
    127.王连勇,蔡九菊,王爱华,等.煤高温空气气化和高温贫氧燃烧一体化系统开发[J],中国冶金,2007,17(4):51-54.
    128.王连勇,蔡九菊,田红,等.煤高温空气气化高温贫氧燃烧一体化系统特性研究[J],东北大学学报,2006,27(S2):117-120.
    129.蔡九菊,田红,王连勇,等.煤高温气化—高温贫氧燃烧一体化系统的研究与开发[J],热能动力工程,2007,22(5):512-516.
    130.蔡九菊,王连勇,干爱华.煤高温气化高温贫氧燃烧一体化系统[P],中国:ZL200610045665.X,2008-05-07.
    131.陆钟武.冶金热能工程导论[M],沈阳:东北工学院出版社,1991,1-11.
    132.朱锡锋.生物质热解原理与技术[M],合肥:中国科学技术大学出版社,2006,158-159.
    133.吕佐周,王光辉.燃气工程[M],北京:冶金工业出版社,2004,168-171.
    134.贺永德.现代煤化工技术手册[M],北京:化学工业出版社,2004:333-334.
    135.房倚天,陈富艳,王鸿瑜,等.循环流化床(CFB)煤/焦气化反应的研究(Ⅱ):温度、氧含量及煤种对CFB气化反应的影响[J],燃料化学学报,1999,27(1):23-28.
    136. Gupta A K, Hasegawa T. High temperature air combustion:flame characteristics, challenges and opportunities[C]. In:Proceedings of Beijing Symposium on High Temperature Air Combustion. Beijing: Engineering Institute of Chinese Science & Technology Association, 1999,9-28.
    137.蔡九菊,于娟,赵海.冶金炉用填充球蓄热室传热过程的数值模拟及热工热性[J],金属学报,2000,36(4):417-421.
    138.张全国.生物质焦油燃烧动力学及其燃烧特性实验研究[D],大连:大连理工大学,2006.
    139.李继红.生物质焦油及其馏分的热动力学研究[D],郑州:河南农业大学,2005.
    140.]闫金定,崔洪,杨建丽,等.热重-质谱联用(TG-MS)技术应用进展[J],分析测试学报,2003,22(4):105-107.
    141.贺永德.现代煤化工技术手册[M],北京:化学工业出版社,2004,329-330.
    142.薛江涛.流化床煤热解气化过程中焦油析出特性研究[D],杭州:浙江大学,2005.
    143.王树东,郭树才.神府煤新法干馏焦油的性质及组成的研究[J],燃料化学学报,1995,23(1):198-204.
    144.薛江涛,方梦祥,刘耀鑫,等.煤裂解和气化过程中焦油裂解的实验研究[J],煤炭转化,2004,27(3):58-63.
    145. Kinoshita C M, Wang Y, Zhou J. Tar formation under different biomass gasificaion conditions. Journal of Analytical and Applied Pyrolysis[J],1994,29:168-181.
    146.马隆龙,吴创之,孙立.生物质气化技术及其应用[M],北京:化学工业出版社,2003, 78-91.
    147.郭汉贤.应用化工动力学[M],北京:化学工业出版社,2003,57-93.
    148.马隆龙,吴创之,孙立.生物质气化技术及其应用[M],北京:化学工业出版社,2003,81-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700