Mg_2Si基热电材料的微波合成机理及热电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是将热能和电能实现直接相互转换的一种功能材料,可用热电材料制成热电器件实现温差发电,从而充分利用工业上的废气和废热;也可用热电材料制成制冷机在一些特殊环境中替代传统的制冷设备。热电器件具有污染小、噪声低、重量轻、体积小、携带方便、可靠性高等优点,因此关于热电材料的研究与应用具有广阔前景。Mg_2Si是一种应用于500K-800K温度区间的性能优良的热电材料,其组成元素具有原料丰富、价格低廉、环境友好等特点,但镁化学活性高,容易氧化,导致Mg_2Si金属化合物的制备比较困难,因此Mg_2Si基热电材料的制备已成为研究重点之一。本论文采用微波加热合成技术,实现了Mg_2Si基热电材料的快速合成与产品致密化。微波加热合成法是利用微波与物质之间的相互作用产生的介质损耗、电导损耗和磁损耗,在物质内部产生热量,使材料被整体加热至反应温度从而实现相关的化学反应的一种新型材料合成方法,该方法具有体积加热、选择性加热、非热效应等特点。论文从理论和实验方面探索微波加热金属粉体的加热特性及发热机理,并以Mg_2Si微波合成实验为基础,研究了微波固相合成Mg_2Si反应的动力学及机制,同时研究了微波合成Mg_2Si和Mg_2Si1-xSn热电材料的工艺、热电性能、物相结构的特点。通过实验研究工作,本论文得到如下主要研究结论:
     (1)Mg_2Si基半导体材料在微波加热过程中,加热机理低温时主要以介电损耗为主,高温时主要以电导损耗加热为主。
     (2)Mg_2Si压坯在微波场中的加热升温特性与Mg_2Si压坯密度、元素组成和微波输出功率有关:压坯密度越小,加热速率越快,最终所能加热的温度也越高,但Mg_2Si压坯在微波场中最终所能达到的最高温度与Mg_2Si压坯初始密度无关;微波输出功率越大,Mg_2Si压坯加热速度越快;随Sn含量增加,Mg_2Si_(1-x)Sn_x压坯加热速度降低,Mg_2Si压坯的加热速度较Mg_2Sn压坯快。
     (3)采用微波辅助加热,制备了Sn掺杂的Mg_2Si_(1-x)Sn_x(x=0、0.2、0.4、0.6、0.8)热电材料,并应用X-射线分析仪(XRD)、电子显微镜和扫描电镜(带能谱分析)分析了试样的物相组成、结构形貌。分析结果表明:采用合适的微波加热工艺制度可以有效抑制Mg氧化;合适的Mg过量可以补偿Mg的挥发;当Mg过量8at%、微波加热功率在2.5Kw(853K)条件下保温30min时,可以得到纯度较高的Mg_2Si热电材料。同时XRD分析表明:在微波辐射下Mg_2Sil_(1-x)Sn_x形成了良好的固溶体并原位形成Mg_2(Si,Sn)结构的复合材料,该方法具有反应温度低,合成速度快等优点。
     (4)通过对Mg_2Si基热电材料进行热电性能测试,结果表明:所有的Mg_2Si基热电材料试样的电导率均随温度的升高而升高,这表明Mg_2Si基热电材料呈现半导体传输特性,Seebeck系数为负值,材料为n型半导体。而且随着Sn含量的增加,Mg_2Si_(1-x)Sn_x合金的Seebeck系数的绝对值和电导率增加,热导率降低60%。在500K时,Mg_2Si_(0.4)Sn_(0.6)固溶体的ZTmax为0.26,为未掺杂试样的2倍,可见Sn能极大地改善Mg_2Si的热电性能,相比较其它重金属元素, Sn可获得更高的热电性能,且资源更为丰富。因此,采用微波辅助加热合成并掺杂Sn元素形成固溶体是一种提高Mg_2Si热电材料性能的新途径。
     (5)通过对微波加热合成Mg_2Si反应动力学的研究,建立了转化率与时间关系曲线,从而计算出Mg_2Si生成反应的活化能,研究结果表明:微波电磁场对扩散过程的影响主要表现在对指前因子及扩散活化能的影响,微波加热降低了Mg_2Si反应活化能,其活化能为102KJ/mol,而常规合成Mg_2Si活化能为120~190kJ/mol;合成时间较常规合成时间降低85~90%。Mg_2Si合成过程大致可分为四个阶段,其反应的动力学模型符合金斯特林格扩散反应壳—核心模型。
     (6)微波电磁场作用下对Mg-Si反应体系的影响不仅表现出“热效应”,而且也存在着“非热效应”,微波对反应的促进作用主要体现在微波加热体系热点的形成,电场的取向作用及PMF效应。
Thermoelectric material is a kind of functional materials which can convert heatinto electricity directly. The thermoelectric materials could be used as generators andrefrigeration. The thermoelectric generators can convert terrestrial heat and the wasteheat of industry to electricity directly. The thermoelectric devices own some advantagesas no pollution, no voice, and lightweight, small, portable and safety, which are ofpromising application value for thermoelectric generation and thermoelectric cooling,mainly used in the fields of low-grade heat power generation, aerospace andmicroelectronics. Magnesium silicide is a kind of middle temperature thermoelectricmaterials, owing to some advantages as the abundance of raw materials, low cost andenvironment friendly. However, the phase purity and microstructure of the productMg_2Si are difficult to control by conventional technique because of the easyvolatilization and oxidation of Mg. In this paper, the method of microwave-assistedsynthesis was used to realize the rapid reaction and densification of Mg_2Si basedthermoelectric materials. Microwave synthesizing is a method through using the heatingproduced by the couple of microwace with the microstucture of materials and whichhave these features on bulk heating, selective heating and non-therm effect. This methodis a very promising preparation method for fabricating many materials because it is fast,clean energy efficient and does not suffer from the disadvantages of the classicalpreparation technique. In this paper, the behaviour and mechanism of microwaveheating metal powders was investigated, and the kinetics and mechanism of microwavesynthesizing Mg_2Si was researched. The process, thermoelectric properties andmicrosture of microwave synthesizing Mg_2Si and Mg_2Si_(1-x)Sn_xwere studies. On the baseof study, the magjor results of this paper are shown as following.
     (1) In the microwave heating of Mg_2Si-based thermoelectric materials, dielectriclosses was the main mode at lower temperature, while conductive losses would get therun upon at higher temperature.
     (2) The heating behavior of Mg, Si and Sn fixed powder was investigated undermicrowave irradiation. The microwave heating therm profiles of Mg_2Si–based compactsare dependent on composition, porosity and power. The faster of heating rate and higherof final temperature are. The larger of porosity is, the faster of heating rate is, And thehigher of output power is, the faster of heating rate is. The heating rate increases as the green density decreases (porosity increases). Higher is the porosity, higher is the heatingrate for a particular choice of experimental variables, the temperature rise is restricted toa certain level, but the final temperature doesn’t depend on the porosity. The heatingrate Mg_2Si_(1-x)Sn_xcompacts decreases at a particular power setting with the increase of x.
     (3) Mg_2Si_(1-x)Sn_x(x=0、0.2、0.4、0.6、0.8) solid solutions were prepared bymicrowave irradiation and the morphologies, microstures and phase compositions of thesample were mainly studied using scanning electron microscope(SEM) with energydisperse spectroscopy analyzer(EDS) and X-ray diffraction(XRD). The oxidation of Mgcan be rest rained by changing microwave heating programs, the volatility of Mg can bemade up by controlling excessive content of Mg. When the excessive content of Mg isabout8at%, the samples is kept under853K for30min, high purity Mg_2Si powders canbe obtained under this experimental conditions. XRD patterns show that Mg_2Si_(1-x)Sn_xsolid solutions have been well formed under microwave irradiation and microstructurecharacterization revealed a continuous network of Sn particulates and fabricate self-assembled Mg_2(Si, Sn) composites. This method is a very promising preparationmethod for many materials because it is fast, clean energy efficient and does not sufferfrom the disadvantages of the classical preparation technique.
     (4)Test of thermoelectric properties demonstrate that the electrical conductivity ofMg_2Si-based thermoelectric materials increases monotonically with temperature,indicating semiconducting behavior and a negative Seebeck coefficient suggests that theobtained materials exhibit n-type conductivity. What is more, increase of Sn ispositively related to the absolute value of Seebeck coefficient and electricalconductivity for Mg_2Si_(1-x)Sn_xalloy.The thermal conductivity of Mg_2Si sample dopedwith Sn element had been reduced by60%. A maximum figure of merit, ZT=0.26, wasobtained for Mg_2Si0.4Sn0.6at about500K, the figure of merit ZT achieved2times ofpure Mg_2Si at600K, and its ZTmaxwas0.13. Sn element is better than the heavy ones inthermoelectric properties of of Mg_2Si owing to some advantages as the abundance of itsraw materials and low cost. It is really a renewed approach to enhance thethermoelectric performances of Mg_2Si by doping Sn elements and using microwaveIrradiation technology.
     (5)Experiments of the kinetic analysis on Mg_2Si synthesizing were carried outby microwave irradiation and the curve of rate of conversion as the function of reactiontime is obtained based on former experiment. The kinetic analysis showed that theactivation energy Eain Mg-Si system decreased under microwave irradiation. The activation energy was102KJ/mol by microwave heating and was120~190kJ/mol byconventional heating. The synthesizing time of Mg_2Si sample by microwave heatinghad been reduced by85~90%. The microwave could increase the activation energy andpre-exponential factor. The kinetic model of the reaction process has been establishedand the reaction mechanism of Mg-Si system belonged to the Kingsburg diffusionreaction shell-core model. The results show that the reaction process of Mg-Sithermoelectric materials could be expressed as:(i) Mg is melted and the surface of Siparticle is covered by Mg liquid;(ii) formation of Mg_2Si;(iii) Mg penetrate Mg_2Siphase and move to interface of Si particle;(iv) The following reaction occurs at Mg_2Si/Si side:2Mg+Si=Mg_2Si.
     (6)In comparison with the conventional heating processing, the results ofmicrowave direct synthesis of Mg_2Si-based thermoelectric materials show that thekinetic induced by microwave irradiation owing to microwave thermal effect and non-thermal effect. The results that it is possible by microwave heating to induce localizedsuperheating (eventually thermal runaway) which lead to localized reaction rateenhancements, PMF effect and microwave E-field has orientation and, which canaccelerate the diffusion rate of particles. So the reaction rate of Mg-Si by microwavequickly than that conventional heating.
引文
[1]刘玮书,张波萍,李敬锋,张海龙,赵立东.Co(1-x)NixSb(3-y)Sey热电输运中晶界和点缺陷的耦合散射效应[J].物理学报,2008(57):3791.
    [2] Hochbaum A.I, Chen R.R, Delgado D, et al.. Enhanced thermoelectric efficiency of roughsilicon nanowires[J]. Nature,2008,451:163.
    [3] Cai K. F,Yan C,He Z. M,Cui J. L,Stiewe C,Müller E,Li H. Preparation andthermoelectric properties of AgPbmSbTe2+malloys[J]. Journal of Alloys andCompounds,2009,469:499-503.
    [4] Joseph R. Sootsman, Duck Young Chung, and Mercouri G. Kanatzidis. New and OldConcepts in Thermoelectric Materials[J]. Angew. Chem. Int. Ed.2009,48:8616-8639.
    [5] Sales B.C.Thermoelectric materials-Smaller is cooler [J].Science,2002,295(5558):1248-1249.
    [6] Disalvo F.J.Thermoelectric cooling and power generation[J].Science,1999,285(5428):703-706.
    [7]于军,徐桂英.热电材料发展动态[J].材料导报2005,19(3):28-31.
    [8] Heikes R R, Ure R W. Thermoelectricity: Science and engineering[J]. Journal of ChemicalEducation,1962,39(5):274-281.
    [11] Rowe D. M. General principles and basic considerations, Thermoelectrics handbook. Ed.D.M.Rowe, CRC Press, Boca Raton, USA,2005.
    [12] FIoffe A. Semiconductor Thermoelements and Thermoelctric cooling[M]. London,Infosearch,1959:10-59.
    [13]张建中.温差电器件的进展[R].中国苏州,中国材料研究学会,2009.
    [14] Riffat S. B, Ma X. Thermoelectrics: a review of present and potential applications[J].Applied Thermal Engineering,2003,23:913-935.
    [15] Rowe D. M. Thermoelectrics, an environmentally-friendly source of electrical power[J].Renewable Energy,1999,16:1251-1256.
    [16]李文彬.低温应用工程-低温在制造、机械、农业、国防等工程的应用[M].北京:兵器工业出版社,1992:44-52.
    [17] O’Brien R C, Ambrosi R M, Bannister N P, et al. Safe radioisotope thermoelectric generatorsand heat sources for space applications[J]. Journal of Nuclear Materials,2008,377:506-521.
    [18] Esarte J, Blanco J M, Mend F, et al. Review: Improving cooling devices for the hot face ofPeltier pellets based on phase change fluids[J].Applied thermal engineering,2006,26:967-973.
    [19] Bulusu A, Walker D G. Review of electronic transport models for thermoelectric materials[J].Superlattices and Microstructures,2008,44:1-36.
    [20] Ving C. Silicides as Promising thermoelectric materials. In Proc.10th.Conf.on thermoelectrics,Cardiff, IEEE,1991.
    [21] Zaitsev V.K, Fedorov M.I, Gurieva E.A, et al. Highly effective Mg2Si1xSnxthermoelectrics[J]. Physical Review B,2006,74(4):045207.
    [22] ZHANG Qian, ZHU Tie-jun. ZHANG Sheng-nan, et al. High figures of merit and naturalnanostructures in Mg2Si0.4Sn0.6based thermoelectric materials [J]. Applied Physics Letters,2008,93(10):102109.
    [23] Zaitsev V.K, Fedorov M.I, A. Burkov T, Gurieva E.A, Eremin I.S, Konstantinov P.P,Samunin A.Yu, Sano S, Ordin S.V, Vedernikov M.V. Proceedings of the21st InternationalConference on Thermoelectrics,2001, p.151.
    [24]姜洪义,张联盟. Te对Mg2Si基化合物结构和热电传输性能的影响[J].硅酸盐学报.2002,30(5):550-553.
    [25]姜洪义,龙海山,张联盟.用低温固相反应制备p型Mg2Si基热电材料[J].硅酸盐学报,2004,32(9):1094-1097.
    [26] Kajikawa T, Shida K, Shiraishi K, et al. Thermoelectric Figure of Merit of Impurity DopedAnd Hot-pressed Magnesium Silicide Elements.17th International Conference onThermoelectrics. Nagoya, Japan,1998:362-369.
    [27] Tani Jun-ichi, Kido Hiroyasu. Thermoelectric properties of Bi-doped Mg2Sisemiconductors[J]. Physical B.2005,364:218-224.
    [28] YANG Mei-Jun, SHEN Qiang, ZHANG Lian-Meng. Effect of nanocomposite structure onthe thermoelectric properties of0.7-at%Bi-doped Mg2Si nanocomposite[J]. Chinese PhysicsB,2011,20(11):106202.
    [29] ZHANG Qian, ZHAO Xinbing, YIN Hao, et al. Effect of Sb-Doping on the ThermoelectricProperties of Mg2Si Based Compounds[J]. Rare Metal Materials and Engineering,2009,38,(Suppl.1):165-168.
    [30] LIU Wei, ZHANG Qiang, TANG Xin-feng, et al. Thermoelectric Properties of Sb-DopedMg2Si0.3Sn0.7[J].Journal of Electronic Materials,2011,40(5):1062-1066.
    [31] Isoda Y, Nagai T, Fujiu H, et al.Thermoelectric Properties of Sb-doped Mg2Si0.5Sn0.5.25thInternational Conference On Thermoelectrics, Vienna, Austria,2006:406-409.
    [32] Martin J J.The thermal conductivities of Mg2Si and Mg2Ge[J]. Journal of Physics andChemistry of Solids,1972,33(5):1138-1148.
    [33] Zaitsev V K. Lattice thermal conductivity of Mg2Si-Mg2Sn, Mg2Ge-Mg2Sn and Mg2Si-Mg2Ge solid solutions [J]. Soviet Physics of Solid State,1969,11(2):221-224.
    [34] Mikhail I. Optimization of Thermoelectric Parameters in Some Silicide Based Materials.19thInternational Conference On Thermoelectrics, Cardiff, UK,2000,17-27.
    [35] Song R B, Liu Y and Aizawa T. Thermoelectric properties of p-type Mg2Si0.6Ge0.4fabricatedby bulk mechanical alloying and hot pressing[J]. Physics of the Solid State-Rapid ResearchLetters,2007,1(6):226-228.
    [36] LUO Wei-jun, YANG Mei-jun, CHEN Fei, et al.Fabrication and thermoelectric properties ofMg2Si1xSnx(0≤x≤1.0) solid solutions by solid state reaction and spark plasmasintering[J]. Materials Science and Engineering B,2009,157(1-3):96-100.
    [37] Fedorov M. I, Zaitsev V. K, Eremin I. S, et al. Transport Properties of Mg2X0.4Sn0.6SolidSolutions (X=Si, Ge) with p-Type Conductivity[J].Physics of the Solid State,2006,48(8):1486–1490.
    [38] ZHANG Xin, LU Qing-mei, WANG Lei. Preparation of Mg2Si1-xSnxby Induction Meltingand Spark Plasma Sintering, and Thermoelectric Properties[J]. Journal of ElectronicMaterials,2010,39(9):1413-1417.
    [39] ZHANG Qian, HE Jun, ZHU Tie-jun. High figures of merit and natural nanostructures inMg2Si0.4Sn0.6based thermoelectric materials[J]. Applied Physics Letters,2008,93:102109.
    [40] Zaitsev V.K, Fedorov M. I, Gurieva E. A. Highly effective Mg2Si1xSnxthermoelectrics[J].Physical Review B,2006,74(4):045207.
    [41] ZHANG Qian, ZHAO Xin-bing, et al. Thermoelectric performance of Mg2-xCaxSicompounds[J].Journal of Alloys and Compounds,2008,464(1):9-12.
    [42]高洪利,朱铁军,赵新兵.钙取代对Mg2Si基热电材料性能的影响[J].材料科学与工程学报,2010,28(2):260-262.
    [43] Jun-ichi Tani, Hiroyasu Kido. Thermoelectric properties of Al-doped Mg2Si1-xSnx(x<0.1)[J]. Journal of Alloys and Compounds,466(1-2):335-340.
    [44] ZHANG Qian, HE Jun, ZHAO Xin-bin, et al. In situ synthesis and thermoelectric propertiesof La-doped Mg2(Si,Sn) composites[J]. Journal of Physics D,2008,41(18):5103-5108.
    [45]张倩,朱铁军,殷浩. La掺杂n型Mg2Si基半导体的热电性能研究[J].功能材料,2008,39(12):2008-2010.
    [46] Meng Q. S, Wang L. Q, Li B. S, et al. Thermoelectric Properties of Sc and Y-doped Mg2SiPrepared by Field-Activated and Pressure-Assisted Reactive Sintering[J]. AdvancedMaterials Research2009,79-82:1639-1642.
    [47] Akasaka M,Lida T, Nemoto T, et al. Non-wetting crystal growth of Mg2Si by verticalBridgman method and thermoelectric characteristics [J]. Journal of Crystal Growth,2007,304:196-201.
    [48] Soga J, Iida T. Sticking-free growth of bulk Mg2Si crystals by vertical Bridgman method andtheir thermoelectric properties.15th International Conference On Thermoelectrics. Pasadena,USA,1996:194-196.
    [49] Tamura D, Nagai R, Sugimoto K, et al. Melt growth and characterization of Mg2Si bulkcrystals[J]. Thin Solid Films,2007,515:8272-8276.
    [50] Yoshinaga M, Lida T, Noda M,et al. Bulk crystal growth of Mg2Si by the verticalBridgman method[J]. Thin Solid Films,2004,461:86-89.
    [51] Daiki Tamura. Melt growth and characterization of Mg2Si bulk crystals[J]. Thin Solid Films,2007,515:8272.
    [52] Aizawa T, Song R. Mechanically induced reaction for solid-state synthesis of Mg2Si andMg2Sn[J].Intermetallics,2006,14:382-391.
    [53] Wang L, Qin X Y. The effect of mechanical milling on the formation of nano-crystallineMg2Si through solid-state reaction[J]. Scripta Materialia,2003,49(3):243-248.
    [54] Song R B, Aizawa T, Sun J Q. Synthesis of Mg2Si1-xSnxsolid solutions as thermoelectricmaterials by bulk mechanical alloying and hot pressing[J]. Marerials Science andEngineering B-solid State Materials for Advanced Technology,2007,136(2-3):111-117.
    [55] Lee C H, Lee S H, Chun S Y, et al. Fabrication of Mg2Si thermoelectric materials bymechanical alloying and spark-plasma sintering process[J].Journal of Nanoscience andNanotechnology,2006,6(11):3429-3432.
    [56] JINANG Hong-yi, LONG Hai-shan, ZHANG Lian-meng. Effects of solid-state reactionsynthesis processing parameters on thermoelectric properties of Mg2Si [J].Journal of WuhanUniversity of Technology-Materials Science,2004,19(6):55-56.
    [57]姜洪义,张联盟.用固相反应合成Mg2Si1-xGex热电固溶体[J].硅酸盐通报2002,2:21-25(专题论文).
    [58]韩丽琴,杨梅君,沈强等.硅化镁热电材料的放电等离子反应烧结[J].硅酸盐学报,2008,36(3):337-340.
    [59] Takenobu Kajikawa, Keisuke shida, Sugihara.16th international Conference onThermoelectrics,1997:275.
    [60] Shon L J, Rho D H, Kim H C, et al. Dense WSi2and WSi2–20vol.%ZrO2compositesynthesized by pressure-assisted field-activated combustion[J]. Journal of Alloys andCompounds,2001,322:120-126.
    [61] Meng Q S, Chen S P, Munir Z A, et al. Microstructure and Mechanical Properties of GradedMaterials Prepared by Field-Activated and Pressure-Assisted Combustion Synthesis [J]. KeyEngineering Materials,2008,368-372:1876-1878.
    [62] Meng Q S, Chen S P, Wang L Q, Munir Z A.(TiB2)pNi/Ni3Al/Metals Graded MaterialsPrepared by the Field-Activated and Pressure-Assisted Combustion Process[J]. AdvancedMaterials Research,2009,66:194-197.
    [63]李柏松,陈超,王丽七,孟庆森.电场激活合成Mg2Si的热电性能研究[J].金属功能材料,2009,16(5):19-21.
    [64] Zaitsev V.K, Fedorov M. I, Gurieva E. A. Gurieva. Section Thermoelectrics on the base ofsolid solutions of MgⅣ2Bcompounds (BⅣ=Si, Ge,Sn), Thermoelectrics Handbook:Macroto Nano. ed. Rowe D M,CRC Press,(New York: Taylor&Francis),2005,Ch.29.
    [65] ZHANG Qian,YIN Hao,ZHAO Xin-bing, et al.Thermoelectric properties of n-type Mg2Si0.6–ySbySn0.4compounds[J]. Physics of the Solid State (a),2008,(205):1657.
    [66] Isoda Y, Nagai T, Fujiu H, et al. Thermoelectric properties of Sb-doped Mg2Si0.5Sn0.5. inProc.25thInt. Conf.on Thermolectrics, Vienna, Austria,2006,406-410.
    [67] Venkatasubramanian R, Siivola E,Colpitts T. Thin-film thermoelectric devices with highroom-temperature figures of merit[J]. Nature,2001,413(6856):597-602.
    [68] Harman T C, Taylor P J, Walsh M P, et al. Quantum dot superlattice thermoelectric materialsand devices[J]. Science,2002,297(5590):2229-2232.
    [69] Hsu K F, Loo S, Guo F, Chen W, et al.Cubic AgPbmSbTe2+m:Bulk thermoelectric materialswith high figure of merit[J]. Science,2004,303(5659):818-821.
    [70] Ikeda T, Haile S M, Ravi V A, Azizgolshani H. Solidification processing of alloys in thepseudo-binary PbTe-Sb2Te3system[J]. Acta Materialia,2007,55(4):1227-1239.
    [71] Yang S H, Zhu T J, Sun T, et al. Nanostructures in high-performance (GeTe)x(AgSbTe2)100-xthermoelectric materials[J]. Nanotechnology,2008,19(24):245707.
    [72] Kim W, Zide J, Gossard A, Klenov D, et al. Thermal conductivity reduction andthermoelectric figure of merit increase by embedding nanoparticles in crystallinesemiconductors[J]. Physics Review Letters.,2006,96(4):045901.
    [73] Jeon Hyung-Wook, Ha Heon-Phil, Hyun Dow-Bin,et al. Electrical and thermoelectricalproperties of undoped Bi2Te3-Sb2Te3and Bi2Te3-Sb2Te3-Sb2Se3single crystals[J]. Journal ofPhysics and Chemistry of Solids,1991,52(4):579-585.
    [74] Mi J L, ZHU Tie-jun, ZHAO Xin-bing, et al.Nanostructuring and thermoelectric propertiesof bulk skutterudite compound CoSb3[J]. Journal Applied Physics,2007,101:054314.
    [75] Kenkre V. M, Skala L, Weiser M. W, et al. Theory of microwave interactions in ceramicmaterials: the phenomenon of thermal runaway[J] Journal of Materials Science1991,26(9):2483-2489.
    [76] Michael D, Baghurst D R, Mingos P. Applications of microwave dielectric heating effects tosynthetic problems in chemistry[J].Chemical Society Reviews,1991,20:1-47.
    [77] Mingos D. M. P, Baghurst, D. R. The Application of Microwaves to the Processing ofInorganic Materials[J]. British Ceramic Society, Transactions and Journal.1992,91(4):124-127.
    [78] Morteza Oghbaei, Omid Mirzaee. Microwave versus conventional sintering: A review offundamentals,advantages and applications[J]. Journal of Alloys and Compounds494(2010)175-189.
    [79]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理[M].北京:科学出版社,2006.1.
    [80]赵克玉,许福永.微波原理与技术[M].北京:高等教育出版社,2006.8:439.
    [81] Berteavd A J,Badot J C. Microwave sintering of ceramics. Microwave Power,1976,11(4):314-316.
    [82] Barmsley B P. Microwave processing of materials[J]. Metals and materials Bury StEdmunds,1989,5(11):633-636.
    [83] Rao K J, Vaidhyanathan B, Ganguli M,et al. Synthesis of Inorganic Solids UsingMicrowaves[J]. Chemistry of Materials,1999,11:882~895.
    [84] Morteza Oghbaei, Omid Mirzaee. Microwave versus conventional sintering: A review offundamentals,advantages and applications[J].Journal of Alloys and Compounds494(2010)175–189.
    [85] Agrawal D. Microwave processing of materials at high temperature:successes andchallenges[C].13thChina National Conference on MW Power Application, Changsha,China,2007,10:14-16.
    [86]周承商,易健宏,罗述东,彭元东,陈刚.W-Ni-Fe高密度合金的微波烧结[J].2009,19(9):1601-1607.
    [87] Walkiewicz J W,Kazonich G. Microwave Heating Characteristics of selected Minerals andCompounds[J]. Mineral metallurgy processing,1988,5:39-42.
    [88] Roy R,Agrawal D,Cheng J P,et al. Full sintering of powdered metal bodics in a microwavefield[J].Nature,1999,399(17):668.
    [89] Li H.W, Kikuchi K, Nakamori Y.Dehydriding and rehydriding processes of well-crystallizedMg(BH4)2accompanying with formation of intermediate compounds[J]. Acta Materialia,2008,56:1342-1347.
    [90] LIU Yang, LI Qian, LIN Gen-wen. Properties of Mg2NiH4prepared by microwave-assistedactivation synthesis from micro-particles[J]. Journal of Alloys and Compounds,2009,468:455.
    [91] XIA Qing-lin, YI Jian-hong, PENG Yuan-dong. Microwave direct synthesis of MgB2superconductor[J]. Materials Letters,2008,62:4006.
    [92] Masahiro H, Miyuki H, Michael T L, et al. Complex Permittivity of Graphite, CarbonBlack and Coal Powders in the Ranges of X-band Frequencies (8.2to12.4GHz) andbetween1and10GHz[J]. ISIJ International,2011,51(11):1766-1772.
    [93]陈津.微波加热还原自熔性含碳球团的应用基础研究[博士论文][D].钢铁研究总院,2003.
    [94]李翰如.电介质物理导论[M].成都:成都科技大学出版社,1990.
    [95]关振铎,张中太,焦金.无机材料物理性能[M].北京:清华大学出版社,1992.
    [96]步文博.吸波材料的基础研究及微波损耗机理的探讨[J].材料导报,2001,15(5):34-37.
    [97]周克省,黄可龙.吸波材料的物理机制及其设计[J].中南工业大学学报,2001,22(6):617-621.
    [98]阱李黎明,徐政.吸波材料的微波损耗机理及结构设计现代陶瓷技术[J].2004(2):31-35.
    [99]孙目珍.电介质物理基础[M].广州:华南理工大学出版社,1999:97-100.
    [100]金钦汉.微波化学[M].北京:科学出版社,1999.10:287.
    [101] Ma J, Diehl J F, Johnson E J, et al. Systematic study ofmicrowave absorption, heating, andmicrostructure evolution of porous copper powder metal compacts[J]. Journal of AppliedPhysics,2007,101(7):074906.
    [102]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社,2004.
    [103]郭木森.电工学[M].北京:高等教育出版社,2001,277,264-266.
    [104]金晓昌.感应加热技术中的趋肤效应[J].武汉化工学院学报,1995,17(4):65-68.
    [105]鲁百佐,刘志存.趋肤效应的实验研究[J].物理测试,2004,4:16-18.
    [106] CHENG Ji-ping, ROY Rustum, AGRAWAL Dinesh.Radically different effects on materialsby separated microwave electric and magnetic field[J]. Materials research Innovat,2002(5):170-177.
    [107]赵雨,王锦辉,刘公强等.锰锌铁氧体的磁损耗研究[J].中国科技论文在线,2005,39(12):2102-2104.
    [108] Mishra, Sethi G,Upadhyaya A. Modeling of microwave heating of particulate metals[J].Metallurgical and Materials Transactions B,2006,37:839-845.
    [109] Thorsten Gerdes, Monika Willert-Porada,et al. Microwave sintering of ferrous PMmaterials[J]. International Conference on Powder Metallurgy&Particulate Materials, SanDiego,Califormia US,2006.
    [110]黄向东,李建保,谢志鹏等.微波与无机非金属介质的相互作用[J].无机材料学报,1998,13(3):282-288.
    [111]张兆镗,钟若青编译.微波加热技术基础[M].北京:电子工业出版社,1988,l8-22.
    [112] Patil D S,Mutsuddy B C.Microwave sintering of aluminas ceramics in a single applicator[J].British Ceramic Transactions,1991,21:301-303.
    [113]张劲松,曹丽华,杨永进等.微波烧结关键技术的进展[J].材料导报,1994,8(2):34-37.
    [114] Manoj Gupta, Eugene Wong. Microwave and metal[M].John Wiley&Sons(Asia) Pre Ltd,Singapone,2007.
    [115]黄加伍,彭虎.粉末冶金Fe2Cu2C合金的微波烧结研究[J].矿冶工程,2005,25(5):77-79.
    [116]易建宏,罗述东,唐新文等.金属基粉末冶金零件的微波烧结机理初探[J].粉末冶金工业,2003,13(2):22-25.
    [117] Jiping Cheng, Rustum Roy and Dinesh Agrawal. Experimental proof of major role ofmagnetic filed losses in microwave heating of metal and metallic composites[J]. Journal ofMaterials Science Letters,2001,20:1561-1563.
    [118]陈孟尧.电磁场与微波技术[M].北京:高等教育出版社,1989:175-176.
    [119] Tang X,Tian Q, Zhao B, Hu K.The microwave electromagnetic and absorption properties ofsome porous iron powders[J]. Materials Science and Engineering A,2007,445-446:135-140.
    [120] Buchelnikov V. D, Louzguine-Luzgin D. V, Xie G, et al. Heating of metallic powders bymicrowaves: Experiment and theory[J]. Journal of Applied Physics,2008,104:113505.
    [121] Avijit Mondal, Anish Upadhyaya, Dinesh Agrawal. Effect of heating mode on sintering oftungsten[J]. Int. Journal of Refractory metals and Hard Materials,2010,28:597-600.
    [122] Rybakov K I, Semenov V E, Egorov S V,et al. Microwave heating of conductive powdermaterials[J]. Journal of Applied Physics,2006,99:023506.
    [123]张倩,胡仁喜,康士廷. ANSYS12.0电磁学有限元分析从入门到精通[M].机械工业出版社,2010.
    [124] Zaitsev V. K, Fedorov M. I, Eremin I. S, and Gurieva E. A. Thermoelectrics Handbook:Macro to Nano-Structured Materials[M].(CRC press, New York,2005), Chap.29.
    [125] RoWe D M. CRC Handbook of Thermoelect rics [M].New York:CRC Press,1995.
    [126] Nikitin E.N, Tkalenko E.N, Zaitsev V.K, et al. A study on the phase diagram for the Mg2Si-Mg2Sn system and properties of certain of its solid solutions[J], Journal of InorganicMaterials,1970,4:1656.
    [127] Yasuhiro H, Mukannan A, Yosuke S, et al. Growth of homogeneous polycrystalline Si1-xGexand Mg2Si1-xGexfor thermoelectric application[J]. Thin solid film,2011,519(24):8532-8537.
    [128]郗云飞,卓栋涛,林少凡.粉末X射线衍射谱图的计算机物相分析[J].天津理工学院学报,2002,18(2):69273.
    [129] Riffel M and Schilz J. Mechanically alloyed Mg2Si1-xSnxsolid solution as thermoelectricmaterials. In proc.15thInt. Conf. on Thermoelectrics, Pasadena, CA,1996,133-135.
    [130]张联盟,黄学辉,宋晓岚.材料科学基础[M].武汉:武汉理工大学出版社,2004,372-413.
    [131] Ohsugi I J, Kojima T, Nishida I. A calculational procedure of the Fermi–Dirac integralwithan arbitrary real index by means of a numerical integration technique [J] Journal of AppliedPhysics,1998,63(10):5179-5181.
    [132] MacDonald D K. Thermoelectric: an introduction to the principle.NewYork, JohnWiley&Sons, Inc.1962:15.
    [133] Morris R G, Redin R D, Danieison C. Semiconducting properties of Mg2Si single crystals [J].Electrical Transport Phenom,1958,109(6):1909-1915.
    [134] Labotzr J, Mason D R, Kane F O. The Thermal Conductivities of Mg2Si andMg2Ge[J].Journal of the Elchtrochemical Society,1963,110(2):127-134.
    [135] Wijngaards D D L, Kong S H, Bartek M,et al. Design and fabrication of on-chip integratedpoly-SiGe and poly-Si Peltier devices[J]. Sensors and Actuators,2000,85:316-323.
    [136] Yoshida M, Hara N, TAKADA T, et al. Structure and dielectric properties of (Ca1-xNd2x/3) TiO3[J]. Journal of Applied Physics,1997,36:6816-6823.
    [137] Conwell E M, Weisskopf VF. Theory of Impurity Scattering in Semiconductors[J]. PhysicalReview,1950,77(3),388-390.
    [138] R.B. Song, T.Aizawa, J.Q.Sun. Synthesis of Mg2Si1-xSnxsolid solution as thermoelectricmaterials by bulk mechanical alloying and hot pressing[J]. Materials Science andEngineering B,2007.136(1):111-117.
    [139] Nikitin E N, Bazanov V G, Tarasov V I. Thermoelectric properties of solid solutions Mg2Si-Mg2Sn[J].Physics of Solid State,1961,3(12):2468-2651.
    [140] Osepchuck J M. A history of microwave heating applications. IEEE Transaction on Microwave Theory and Techniques,1984,32:1200-1224.
    [141] Breccia1Coupled systems dielectricmicrowave to improve thermal effects[J]. MicrowavePower,1995,30(1):3-9.
    [142] Senise Jose T, Jermolovicius, LuizA. Microwave chemistry—a fertile field for scientificresearch and industrial applications//SBMO/IEEEMTT-S International Microwave andOptoelectronics Conference Proceedings,2003:1-6.
    [143]常爱民.氧化物电子陶瓷材料的微波处理研究[D].成都:电子科技大学,2002.
    [144] Booske J H. Mechanisms for nonthermal effects on ionic mobility during microwaveprocessing of crystalline solids[J].Materials Research,1992,7(2):495-500.
    [145] Rybakov K I,Semenov V E. Mass transport in ionic crystals induced by the ponderomotiveaction of a high-frequency electric field[J]. Phs Rev B,1995,52:3030-3033.
    [146] Janney M A,Kimvey H D,Allen W R,et al. Enhanced diffusion in sapphire duringmicrowave heating[J].Material Science,1997,32:1347-1355.
    [147]叶大伦,胡建华,实用无机物热力学数据手册(第2版)[M].北京:冶金工业出版社,2002.
    [148]姜洪义. Mg2Si基化合物的固相反应合成、材料制备及其热电性能研究[D].武汉,武汉理工大学,2003.
    [149]黄希祜著.钢铁冶金原理(第3版)[M].北京:冶金工业出版社,2002,1.
    [150] J.D. Hancock, J.H. Sharp. Method of Comparing Solid-State Kinetic Data and Its Applicationto the Decomposition of Kaolinite, Brucite, and BaCO3[J]. Journal of the American CeramicSociety.1972,55(2):74-77.
    [151] K.W. SEO, J.K. OH, BaTiO3particle formation mechanism under hydrothermal condictions[J].The Journal of the Ceramic Society of Japan,2000,108:691-696.
    [152]胡荣祖,高胜利,赵凤起.热分析动力学(第2版)[M].北京:科学出版社,2008.1.
    [153] Lu L, Lai M O, Hoe M L. Formatio n of Nanocrystalline Mg2Si disspersion strengthenedMg2Al alloy by mechanical alloying[J].NanoStructure Materrials,1998,10(4):551-563.
    [154] Wang L, Qin X Y. The effect of mechanical milling on the formation of nanocrystallineMg2Si through solid-state reaction[J].Scripta Materialia,2003,(49):243-248.
    [155] Horvitz D, KlingeL R, Gotman I. New approach to measuring the activation energy ofthermal explosion and its application to Mg2Si system[J].Scripta Materialia,2004,(50):631-634.
    [156] Chou Kuo-Chih, Qiu Wei-hua, Wu Ke. Kinetics of synthesis of Li4Ti5O12through solid-solid reaction[J]. Rare Metals,2006,25(5):399-406.
    [157] Gedye R N, Smith F E, Westaway K C, et al.The use of microwave ovens for rapid organicsynthesis[J]. Tetrahedron Letters,1986,27(3):279-282.
    [158] Alloum A B, Labiad B, Villemin D. Application of microwave heating techniques for dryorganic reactions[J]. Journal of the Chemical Society, Chemical Communications,1989,7:386.
    [159]潘道皑,赵成大,郑载新.物质结构(第二版)[M].北京,高等教育出版社.1994:382-390.
    [160]胡英,陈学让,吴树森.物理化学(下册)[M].北京,高等教育出版社.1983:164-166.
    [161]张华莲,胡希明,赖声礼.微波对化学反应作用的动力学原理研究[J].华南理工大学学报.1997,25(9):46.
    [162]徐光宪.物质结构(上册)[M].北京,人民教育出版社.1978:150-53.
    [163] Stuerga D, Gaillard P. MIicrowave heating as a new way to induce localized enhancementsof reaction rate: Non-Isothermal and heterogeneous kinetic[J]. Tetrahedron,1996,52(15):5505-5510.
    [164] Rybakov K I, Semenov V E. Mass transport in ionic crystals induced by the ponderomotiveaction of a high-frequency electric field[J].Physical Review B,1995,52(5):3030-3033.
    [165] Rybakov K I, Semenov V E, Freeman S A, et al. Dynamic of microwave-induced currents inionic crystals[J]. Physical Review B,1997.55:3559-3563.
    [166] Freeman S A, Booske J H, Cooper R F. Mass transport in ionic crystals induced by theponderomotive action of a high-frequncy electric field[J]. Physical Review Letters,1995,74:2042-2046.
    [167] Rybakov K I, Semenov V E. Possibility of plastic deformation of an ionic crystal due to thenonthermal influence of a high--frequncy electric field[J]. Physical Review B,19947,49:64-69.
    [168] Freeman S A, Booske J H, Cooper R F.Modelling and numerical simulations of microwave-induced ionic transport[J]. Journal of Applied Physics,1998,83(11):5761-5772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700