热塑性预浸丝变角度铺放及其轨迹规划的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动纤维丝铺放技术是生产大型或超大型复杂表面形状复合材料构件的制造技术之一,属于极端制造的一种,被广泛应用于航空、航天飞行器制造领域。自动纤维丝铺放技术选取热塑性预浸丝为原料,同时引入原位固化成型技术代替以往的热压罐固化成型技术,不仅摆脱了热压罐尺寸对所加工构件大小的限制,还显著提高了生产效率、降低了生产成本。因此,热塑性预浸丝自动纤维丝铺放技术已经成为复杂表面形状复合材料构件制造的一项关键技术,得到了越来越广泛的重视。实现满足要求的复合材料构件的铺放,不仅需要相应的预浸丝材料、加工设备,还需要对自动纤维丝铺放过程中涉及的热塑性预浸丝铺放成型工艺、轨迹规划算法、铺放设备后置处理算法及铺层力学特性进行深入的研究。
     将热塑性预浸丝与原位固化成型技术相结合应用于自动纤维丝铺放过程中,可以同时完成复合材料构件预成型和最终固化成型,但也对铺放过程中各铺放参数的要求更加严格。因此,需要对铺放成型工艺进行研究,确定合理的铺放参数,以确保生产出符合设计指标的复合材料构件。本文对铺放成型工艺中加热工艺、冷却工艺及铺层间紧密接触度进行了研究,研究内容包括根据热塑性预浸丝(APC-2型)的物理性质选择加热热源及确定加热温度;针对铺放过程将铺放区域划分为预加热区、空气冷却区Ⅰ、主加热区、空气冷却区Ⅱ和特殊冷却区,分别建立相应区域的传热方程并确定边界条件;运用结晶动力学理论推导冷却过程中结晶温度与相对结晶率之间的关系式;将预浸丝表面粗糙度评价指标Ra和RSm引入铺层紧密接触模型,得到铺放压力、施压时间、表面粗糙度与紧密接触度之间的关系。针对具体算例,给出各铺放参数的确定方法,并通过Matlab与Ansys软件对各铺放参数进行计算,分析得到各铺放参数的合理数值;最后,对铺放参数进行了实验验证。
     复合材料铺层相邻丝束之间的间隙或重叠不仅会影响复合材料构件的形状精度、增加铺放过程的剪切和重送操作,还对铺层整体力学特性产生较大的影响。因此,自动纤维丝铺放轨迹规划算法研究的主要目的就是设计合理的铺放路径,以消除或减少相邻丝束间的间隙或重叠现象。为避免除零件端面外的剪切和重送操作,提出了一种变角度轨迹规划算法。通过锥壳、非可展回转外壳和非可展变截面接头三种典型零件,对上述变角度轨迹规划算法进行了验证,并对上述零件变角度轨迹规划算法具体实现步骤及算法的可实现性进行了分析。
     自动纤维丝铺放设备后置处理技术是将轨迹规划算法得到的轨迹点坐标及方向数据转化成铺放设备各个运动轴可以识别的数据格式。自动纤维丝铺放设备由手臂部分和主轴部分组成,在对手臂部分后置处理算法进行研究时,将以往研究中压辊与铺放头固结的情况转变为压辊绕其中心转动的情况建立运动学模型,较之前的模型更符合实际铺放情况,更为精确。这种建模方式导致手臂部分冗余自由度的引入,在进行逆运动学求解时,以铺放头悬臂最短为优化目标,实现了冗余系统逆运动学的求解。对主轴部分后置处理算法进行了恒转角和变转角两种方法的研究,给出了这两种方法的实现方式及优缺点。此外,还对锥壳零件变角度轨迹规划算法及后置处理算法进行了实验验证。
     变角度铺放成型的复合材料铺层与传统定角度铺放成型的铺层相比,具有设计灵活和可充分发挥复合材料各向异性特性的优点。通过改变铺放路径上每一位置的铺放角,可以改变铺层内应力分布形式,同时还可以改变整体铺层的固有频率以避免系统发生共振。以锥壳零件变角度铺放算法成型的八组不同初始铺放角的铺层为研究对象,分别对各组铺层进行了静力学、模态和屈曲分析研究。研究内容包括复合材料变角度铺层有限元模型的建立方法、变角度铺层应力应变、模态、屈曲强度随初始铺放角的变化规律;研究基于各向异性材料理论、薄壳平衡方程、几何方程及物理方程、有限元模态分析理论和线性屈曲分析理论,并通过ABAQUS有限元软件对上述模型进行了计算分析。
Automated fiber placement technology, as one of the extreme manufacturingtechnologies for large or extra large composite components with complex surfaceshapes, has been widely used in the field of aerospace vehicles. Automated fiberplacement technology uses thermoplastic towpreg as raw material and in-situconsolidation technology as curing method. Compared with the autoclave curingtechnology, it can get rid of the restriction of the autoclave on the demension of thecomposite components. It can also improve the production efficiency and reduce thecost effectively. Thus, the thermoplastic towpreg automated fiber placement hasbecome one of the key technologies for manufacturing the complex surface shapecomposite components and attracted more and more attention. To fabricate thequalified composite components using the automated fiber placement technique, notonly the thermoplastic towpreg and the fiber placement equipment are needed, butalso the thermoplastic towpreg placment process, the trajectory planning algorithm,the post processing algorithm of fiber placement device and the mechanicalproperties of the laminations need to be studied.
     The combination of thermoplastic towpreg and in-situ consolidation technologyin automated fiber placement process can achieve the preforming and the finalforming of the composite components simultaneously, but the parameters for theplacement process are quite critical. Therefore, the research on the automated fiberplacement process would be beneficial for choosing placement parameters, andensure the design specifications of the composite components. In this paper, theheating process, the cooling process and the degree of intimate contact in automatedfiber placement are studied including the selection of heat sources and proper heattemperature according to the physical properties of the thermoplastictowpreg(APC-2); the establishment of the heat transfer model and boundaryconditions of different placement areas which are divided on the basis ofmanufacturing process means preheating area, air cooling area Ⅰ, main heating area,air cooling area Ⅱ and special cooling area; based on crystallization kinetics theory,the relationship of crystallization temperature and relative crystallization rate isdeduced; the surface roughness evaluation parameters Ra and RSm of the towpregsare introduced to the model of the intimate contact and the relationship of theplacement pressure, pressure time, the surface roughness and the intimate contact isobtained. For the specific computing example, the methods of determining theplacement parameters are given, the placement parameters are calculated by Matlabor Ansys software, the reasonable placement parameters are obtained, and the placement parameters are validated by experiment.
     Overlap and gap of adjacent towpreg would, on one hand, affect the shapeaccuracy of composite components, and increase the operation of cut and re-send;on the other hand, have a great impact on the overall mechanical properties.Therefore, the main purpose of the trajectory planning algorithm for the automaticfiber placement is to design reasonable placement paths in order to reduce oreliminate the gap or overlap of adjacent towpregs. To avoid the cut and re-sendoperations except for the end faces, a variable angle trajectory planning algorithm isbrought out. The variable angle trajectory planning algorithm has been applied tothree typical components including the conical shell component, thenon-developable rotary shell component and the non-developable variablecross-section connection component. All the above mentioned examples verified thevariable angle trajectory planning algorithm, the detailed implementation steps andthe implementability analysis are also included.
     The post processing technology of automated fiber placement device is totransfer the coordinates and direction data of trace points obtained from thetrajectory planning algorithm into the data format which can be recognized by eachmotion axis of fiber placement device. Automated fiber placement device isconsisted of the arm part and the spindle part. A kinematic model was established inthe post processing research of the arm part which considered the rotation degree ofthe roller on the placement head. Compared with the model which simplified theroller as a fixed point on the placement head, this one better matches the acutal fiberplacement process and is more accurate. The model introduces a redundant degreeof freedom, thus the minimum length of the arm part can be considered as anobjective function to establish an optimization problem. Under this consideration,the inverse kinematic problem can be solved. The constant and variable anglepost-processing algorithms of spindle are studied, the applications, the advantagesand disadvantages of these two methods are given. The variable angle trajectoryplanning algorithm and the post processing algorithm are also verified via thefabrication of a cone shell.
     Compared with the traditional fixed-angle laminations, the variable anglecomposite laminations are featured with flexible designs and can fully take theadvantages of the anisotropic composite materials. By changing the fiber placingangle of each position in the placing path, the stress distribution of the laminationscan be changed. This would be helpful to avoid the system resonance by changingthe inherent frequency. Taking the conical shells with8different initial placementangles to study, the static analysis, the modal analysis and the buckling analysis areconducted. The research contents include the method for establishing the finiteelement model of composite variable angle laminations and the change rule of stress, strain, modal and buckling strength of laminations with initial placement angle. Thestudy bases on the finite element model of the laminations, derivation of anisotropicmaterial property theories, shell equilibrium equations, geometric equations andphysics equations, introduction of the finite element modal analysis theory and thelinear buckling analysis theory. Then the above-mentioned models are solved by useof ABAQUS, and the results are analyzed.
引文
[1] Vandventer J. CATIA V5分析和AFC在新型波音787飞机上的应用[OL].(2007-11-24)[2013-04-11]. http://articles.e-works.net.cn/articles/plm-overview/article49176.htm.
    [2]冯军.复合材料技术在当代飞机结构上的应用[OL].(2009-12-07)[2013-04-11]. http://mte.net.cn/remendetails.aspx?newsid=1613.
    [3]林胜.自动铺带机/铺丝机(ATL/AFP)-现代大型飞机制造的关键设备(上)[J].世界制造技术与装备市场,2009,(4):84-89.
    [4]韩振宇,富宏亚,付云忠,等.凹回转曲面纤维缠绕架空分析与应用[J].推进技术,2004,25(3):286-288.
    [5]王桂英,曹军,张华.2轴计算机控制的复合弯管缠绕成型方法[J].哈尔滨工业大学学报,2012,44(7):130-134.
    [6]匡载平,戴棣,王文贵,等.纤维稳定缠绕研究[J].航空制造技术,2009,(S1):64-67.
    [7] Zu L,Koussios S,Beukers A. Optimal Design of Filament Wound CompositeToroids[J]. Journal of Materials Engineering,2009,(S2):413-419.
    [8]邵忠喜.纤维铺放装置及其关键技术研究[D].哈尔滨:哈尔滨工业大学,2009:2-5.
    [9] Grant C. Composites Automation: Trending Smaller and Robotic[OL].(2012-07-01)[2013-01-01]. http://www.compositesworld.com/columns/comp-osites-automation-trending-smaller-and-robotic.
    [10]富宏亚,韩振宇,路华.纤维缠绕/铺带/铺丝成型设备的发展状况[J].航空制造技术,2009,(22):43-46.
    [11]田会方,吴猛.纤维带铺放控制系统的设计研究[J].机械工程与自动化,2008,147(2):135-137.
    [12]吴志恩.波音787的复合材料构件生产[J].航空制造技术,2008,(15):92-94.
    [13]吕佳.纤维带铺放运动机构的设计与仿真[D].武汉:武汉理工大学,2007:1-10.
    [14]富宏亚,邵忠喜.七自由度纤维铺丝样机研制[J].航空制造技术,2010,(17):46-48.
    [15] Wan X P,An L I,Zhang L Y,et al. Uniform Coverage of Fibres overOpen-contoured Freeform Structure Based on Arc-length Parameter[J]. ChineseJournal of Aeronautics,2008,(21):571-577.
    [16]王志辉,吕佳.纤维铺放头机构的研究[J].机械工程师,2007,(12):93-94.
    [17]梁宪珠,孙占红,张钺,等.航空预浸料-热压罐工艺复合材料技术应用概况[J].航空制造技术,2011,(20):26-30.
    [18]张晓明,刘雄亚.纤维增强热塑性复合材料及其应用[M].北京:化学工业出版社,2007:1-8.
    [19]陈绍杰.复合材料与A380客机[J].航空制造技术,2002,(9):27-29.
    [20]迪力穆拉提·阿卜力孜,段玉岗,李涤尘,等.树脂基复合材料原位固化制造技术概述[J].材料工程,2011,(10):84-90.
    [21] Lamontia M A,Gruber M B,Tierney J J, et al. Modeling the AccudyneThermoplastic In-situ ATP Process[C].30th International SAM-PE EuropeConference,Paris:SAMPE,2009. http://www.accudyne.com/sites/default/files/JEC09B.pdf.
    [22] Nejhad M N G. Three-dimensional Thermal and Residual Stress Analysis ofIn-situ Thermoplastic Composite Filament Winding[D]. Newark:University ofDelaware,1992:8-45.
    [23] Nejhad M N G,Gillespie Jr J W,Cope R D. Prediction of Precess InducedStresses for In-situ Thermoplastic Filament Winding of Cylinders[J]. ComputerAided Design in Composite Material Technology,1992:225-253.
    [24] Nejhad M N G, Cope R D, Güceri S I. Thermal Analysis of In-situThermoplastic-matrix Composite Filament Winding[J]. ASME Journal of HeatTransfer,1991,113:304-313.
    [25] Nejhad M N G, Cope R D, Güceri S I. Thermal Analysis of In-situThermoplastic Composite Tape Laying[J]. Journal of Thermoplastic CompositeMaterials,1991,6(2):130-146.
    [26] Nejhad M N G,Gillespie Jr J W,Cope R D. Effects of Processing Parameters onMaterial Responses during In-situ Filament Winding of ThermoplasticComposites[J]. International Journal of Materials and Product Technology,1994,9(1-3):183-214.
    [27] Beyeler E P,Güceri S I. Thermal Analysis of Laser-assisted ThermoplasticMatrix Composite Tape Consolidation[J]. ASME Journal of Heat Transfer,1988,110:424-430.
    [28] Mazumdar S K,Hoa S V. Experimental Determination of Process Parameters forLaser Assisted Processing of PEEK/Carbon Thermoplastic Composites[C].Anaheim,38th International SAMPE Symposium,1993:189-203.
    [29] Quadrini F,Squeo E A,Prosperi C. Diode Laser Assisted Filament Winding ofThermoplastic Matrix Composites[J]. Materials,2010,3:563-571.
    [30] Grouve W J B,Warnet L L,Akkerman R. Towards a Process Simulation Toolfor the Laser Assisted Tape Placement Process[C]. Budapest,14th EuropeanConference on composite materials,2010:1-10.
    [31] Werdermann C,Friedrich M C,Pipes R B. Design and Fabrication of an On-lineConsolidation Facility for Thermoplastic Composites[J]. Journal ofThermoplastic Composite Materials,1989,2:293-306.
    [32] Mazumdar S K,Hoa S V. Determination of Manufacturing Conditions for HotGas Aided Thermoplastic Tape Winding[J]. Journal of Thermoplastic CompositeMaterials,1996,9:35-53.
    [33] Mazumdar S K, Hoa S V. Processing of PEEK/Carbon ThermoplasticComposites Using Hot Nitrogen Gas by Tape Winding Technique[J]. Heat andMass Transfer in Materials Processing and Manufacturing,1993,261:115-126.
    [34] Wagner P,Colton J S. On Line Consolidation of Thermoplastic TowpregComposites in Filament Winding[J]. Polymer Composites,1994,15(6):436-441.
    [35] Roderic C D,Pitchumani P,Gillespie Jr J W. Simulation of the TransientThermoplastic Fiber Placement[C]. Anaheim,39th International SAMPESymposium,1994:1521-1535.
    [36] Steiner K V,Pitchumani R,Bauer B M,et al. Experimental Verification ofModeling and Control for Thermoplastic Tow Placemet[C]. Anaheim,40thInternational SAMPE Symposium,1995:1550-1559.
    [37] Schmidt F M,Maoult Y L,Monteix S. Modelling of Infrared Heating ofThermoplastic Sheet Used in Thermoforming Process[J]. Journal of MaterialsProcessing Technology,2003,143-144:225-231.
    [38] Calawa R,Nancarrow J. Medium Wave Infrared Heater for High-speed FiberPlacement[OL].(2007-09-17)[2013-01-01]. http://www.electroimpact.com/.%-5Cresearch%5C2007-01-3842.pdf
    [39] Buijs J A H M,Nederveen P J. A Study of Consolidation in Filament Windingwith Thermoplastic Prepregs[J]. Journal of Thermoplastic Composite Materials,1992,5:276-286.
    [40] Pitchumani R,Gillespie Jr J W,Lamontia M A. Design and Optimization of aThermoplastic Tow Placement Process with in Situ Consolidation[J]. Journal ofComposite Materials,1997,31:244-275.
    [41] Colton J,Leach D. Processing Parameters for Filament Winding Thick-sectionPEEK/Carbon Fiber Composites[J]. Polymer Composites,1992,13(6):427-434.
    [42] Pitchumani R,Don R C,Gillespie Jr J W. Analysis of On-line ConsolidationDuring Thermoplastic Tow-placement Process[J]. Thermal Processing ofMaterials,1994,289:223-239.
    [43] Munki L. Heat Transfer and Consolidation Modeling of Composite Fiber Tow inFiber Placement[D]. Virginia, Virginia Polytechnic Institute and StateUniversity,2004:31-78.
    [44] John T,Gillespie Jr J W. Modeling of in Situ Strength Development for theThermoplastic Composite Tow Placement Process[J]. Journal of CompositeMateriels,2006,40:1487-1506.
    [45] Grove S M. Thermal Modeling of Tape Laying with Continuous CarbonFiber-reinforced Thermoplastic[J]. Composites,1988,19(2):367-375.
    [46] Nejhad M N G, Cope R D, Güceri S I. Thermal Analysis of in SituThermoplastic Composite Tape Laying[J]. Journal of Thermoplastic CompositeMaterials,1991,4:20-45.
    [47] Turnkor S,Turkmen N,Chassapis C,et al. Modeling of Heat Transfer inThermoplastic Composite Tape Lay-up Manufacturing[J]. Heat Mass Transfer,2001,28(1):49-58.
    [48] Jandal M Z,Widmann G.热分析应用手册系列丛书:热聚性聚合物[M].上海:东华大学出版社,2008:15-21.
    [49]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2007:80-110.
    [50]郭来辉,方省众,王贵宾,等.热塑性聚酰亚胺与聚醚醚酮共混物的等温结晶动力学[J].高等学校化学学报,2011,32(12):2908-2915.
    [51]成名璧,徐小南,郑俊,等.聚醚醚酮及其碳纤维复合材料—恒温结晶动力学的研究[J].高分子学报,1989,(3):257-263.
    [52] Harris L. A Study of the Crystallization Kinetics in PEEK and PEEKComposites[D]. Birmingham:University of Birmingham,2011:27-28.
    [53] Chan T V,Shyu G D,Isayev A I. Master Curve Approach to PolymerCrystallization Kinetics [J]. Polymer Engineering and Science,1995,35(9):733-740.
    [54] Maffezzoli A, Kenny J M, Nicolais L. A Macrokinetic Approach toCrystallization Modelling of Semicrystalline Thermoplastic Matrices forAdvanced Composites[J]. Journal of Materials Science,1993,28(18):4994-5001.
    [55] Maffezzoli A, Kenny J M, Nicolais L. Welding of PEEK/Carbon FiberComposite Laminates[J]. SAMPE Journal,1989,25(1):35-40.
    [56] Tobin M C. Theory of Phase Transition Kinetics with Growth Site Impingement.Ⅰ. Homogeneous Nucleation [J]. Journal of Polymer Science: Polymer PhysicsEdition,1974,12(2):399-406.
    [57] Tobin M C. Theory of Phase Transition Kinetics with Growth Site Impingement.Ⅱ. Heterogeneous Nucleation[J]. Journal of Polymer Science: Polymer PhysicsEdition,1974,14(12):2253-2257.
    [58] Tobin M C. Theory of Phase Transition Kinetics with Growth Site Impingement.Ⅲ. Mixed Heterogeneous-homogeneous Nucleation and Noninternal Exponentsof the Time[J]. Journal of Polymer Science: Polymer Physics Edition,1974,15(12):2269-2270.
    [59] Supaphol P. Application of the Avrami, Tobin, Malkin, and Urbanovici–SegalMacrokinetic Models to Isothermal Crystallization of SyndiotacticPolypropylene[J]. Thermochimica Acta,2001,370(1-2,4):37-48.
    [60] Sajkiewicz P,Carpaneto L,Wasiak A. Application of the Ozawa Model toNon-isothermal Crystallization of Poly(Ethylene Terephthalate)[J]. Polymer,2001,42(12):5365-5370.
    [61] Kuo M C,Huang J C,Chen M. Non-isothermal Crystallization Kinetic Behaviorof Alumina Nanoparticle Filled Poly(Ether Ether Ketone)[J]. MaterialsChemistry and Physics,2006,99(2-3):258-268.
    [62] Boutaous M H,Brahmia N,Bourgin P. Parametric Study of the CrystallizationKinetics of a Semi-crystalline Polymer During Cooling[J]. Comptes RendusMécanique,2010,338(2):78-84.
    [63] Tierney J J,Gillespie Jr J W. Modeling of Situ Strength Development for theThermoplastic Composite Tow Placement Process[J]. Journal of CompositeMaterials,2006,40(16):1487-1506.
    [64] Dara P H,Loos A C. Thermoplastic Matrix Composite Processing Model[R],Virginia Polytechnic Institute and State University,1985.
    [65] Lee W I, Springer G S. A Model for the Manufacturing Process ofThermoplastic Matrix Composites[J]. Composite Materials,1987,21(11):1017-1055.
    [66] Mantell S C,Springer G S. Manufacturing Process Models for ThermoplasticComposites[J]. Composite Materials,1992,26(16):2348-2377.
    [67] De Gennes P D. Reptation of a Polymer Chain in the Presence of FixedObstacles[J]. Chemical Physics,1971,55(2):572-579.
    [68] Doi M,Edwards S F. Dynamics of Concentrated Polymer Systems Part2.Molecular Motion under Flow[J]. Journal of the Chemical Society,FaradayTransactions2:Molecular and Chemical Physics,1978,74:1802-1817.
    [69] Bastien L J,Gillespie Jr J W. A Non-isothermal Healing Model for Strength andToughness of Fusion Bonded Joints of Amorphous Thermoplastics[J]. PolymerEngineering and Science,1991,31(24):1720-1730.
    [70] Yang F,Pitchumani R. Healing of Thermoplastic Polymers at the Interfaceunder Nonisothermal Conditions[J]. Macromolecules,2002,35(8):3213–3224.
    [71]蔡自兴.机器人学[M].北京:清华大学出版社,2006:265-280.
    [72]邵忠喜,富宏亚,韩振宇,等. S型进气道纤维铺放轨迹规划和优化算法[J].航空学报,2010,31(3):855-861.
    [73]韩振宇,邵忠喜,富宏亚,等. S型进气道纤维铺放轨迹网格化生成[J].航空制造技术,2009,(19):72-78.
    [74]富宏亚,邵忠喜,韩振宇.纤维铺放轨迹规划的两种方法及其比较研究[J].材料工程,2009,(增刊2):349-353.
    [75]还大军,肖军,李勇.给定点纤维方向的自动铺丝轨迹规划算法[J].南京理工大学学报,2011,35(3):410-414.
    [76]曾伟,肖军,李勇,等.回转体自动纤维轨迹规划与覆盖性分析[J].宇航学报,2010,31(1):239-243.
    [77]王升,肖军,吴海桥.自动铺带轨迹规划中测地线算法研究[J].玻璃钢/复合材料,2007,(2):15-18.
    [78]党旭丹,肖军,还大军.自动铺丝平行等距轨迹规划算法实现[J].武汉大学学报(理学版),2007,53(5):613-616.
    [79]朱丽君,王小平,李燕元.利用分段G2插值方法构造铺丝路径[J].计算材料学,2010,(3):18-22.
    [80]卢敏,周来水,王小平,等.圆筒状构件的多层铺丝路径生成算法[J].航空学报,2011,32(1):181-186.
    [81]卢敏,周来水,安鲁陵,等.开曲面构件的多层铺丝路径生成算法[J].南京航空航天大学学报,2010,42(6):735-738.
    [82]卢敏,周来水,王小平,等.锥形复合材料构件的铺丝路径规划与丝数求解[J].计算材料学,2009,(6):15-18.
    [83]安鲁陵,周燚,周来水.复合材料纤维铺放路径规划与丝数求解[J].航空学报,2007,28(3):745-750.
    [84]邵冠军,游有鹏,熊慧.自由曲面构件的纤维铺放路径规划[J].南京航空航天大学学报,2005,37(增刊):144-148.
    [85] Shirinzadeh B, Cassidy G, Denny O, et al. Trajectory Generation forOpen-contoured Structures in Robotic Fibre Placement [J]. Robotics andComputer-integrated Manufacturing,2007,23(4):380-394.
    [86] Debout P,Chanal H,Duc E. Tool Path Smoothing of a Redundant Machine:Application to Automated Fiber Placement [J]. Computer-aided Design,2011,43(2):122-132.
    [87] Blom A W,Abdalla M M,Gürdal Z. Optimization of Course Locations inFiber-placed Panels for General Fiber Angle Distributions [J]. CompositesScience and Technology,2010,70(4):564-570.
    [88] Blom A W,Tatting B F,Hol J M A M,et al. Fiber Path Definitions forElastically Tailored Conical Shells [J]. Composites:Part B,2009,40(1):77-84.
    [89]张承宗.复合材料板壳力学解析理论[M].北京:国防工业出版社,2009:1-10.
    [90]王军,程小全,张继奎,等. T700复合材料层合板拉-拉疲劳特性[J].航空材料学报,2012,32(3):85-90.
    [91]修英姝,崔德刚.复合材料层合板稳定性的铺层优化设计[J].工程力学,2005,22(6):212-216.
    [92]张亮泉,李惠,欧进萍.纤维缠绕CFRP圆管强度特性研究[J].沈阳建筑大学学报(自然科学版),2010,26(3):409-415.
    [93]卓艾宝.复合材料火箭定性管的结构分析与优化[D].南京:南京理工大学,2009:1-16.
    [94] McLaughlin P V D,Santhanam S. Simulating Damage Growth in a [90/0]sComposite Laminate Using Quasi-two-dimensional Finite Element Methods[J].Composites Structures,2002,58(2):227-236.
    [95] París F,Blázques A,McCartney L N,et al. Characterization and Evolution ofMatrix and Interface Related Damage in [0/90]sLaminates under Tension. PartⅠ: Numerical Predictions[J]. Composites Science and Technology,2010,70(7):1168-1175.
    [96] Vargas G,Mujika F. Determination of In-plane Shear Properties by Three-pointFlexure Test of±45°Anti-symmetric Laminates[J]. Polymer Testing,2011,30(2):204-215.
    [97] Adda-bedia E A, Bouazza M, Tounsi A, et al. Prediction of StiffnessDegradation in Hygrothermal Aged [θm/90n]sComposite Laminates withTransverse Cracking [J]. Journal of Materials Processing Technology,2008,199(1-3):199-205.
    [98] David-West O S,Alexander N V,Nash D H,et al. Energy Absorption andBending Stiffness in CFRP Laminates: the Effect of45°Plies[J]. Thin WalledStructure,2008,46(7-9):860-869.
    [99]秦永利,祝颖丹,范欣愉,等.纤维曲线铺放制备变刚度复合材料层合板的研究进展[J].玻璃钢/复合材料,2012,(1):61-65.
    [100] Lopes C S,Gürdal Z,Camanho P P. Variable-stiffness Composite Panels:Buckling and First-ply Failure Improvements over Straight-fibre Laminates[J].Computers&Structures,2008,86(9):897-970.
    [101] Blom A W. Structural Performance of Fiber-placed Variable-stiffness CompositeConical and Cylindrical Shells[D]. Netherlands: Delft University ofTechnology,2010:31-56.
    [102] Blom A W,Setoodeh S,Hol J M A M,et al. Design of Variable-stiffness ConicalShells for Maximum Fundamental Eigenfrequency[J]. Composites&Structures,2008,86(9):870-878.
    [103] Wu Z M,Weaver P W,Raju G,et al. Buckling Analysis and Optimization ofVariable Angle Tow Composite Plates[J]. Thin-walled Structures,2012,60:163-172.
    [104] Akhavan H, Ribeiro P. Natural Modes of Vibration of Variable StiffnessComposite Laminates with Curvilinear Fibers[J]. Composites Structures,2011,93(11):3040-3047.
    [105]邵冠军,游有鹏,廖群华.复合材料开孔层合板的纤维铺放路径优化设计[J].玻璃钢/复合材料,2006,(4):31-34.
    [106] Domb M M,Hansen J S. The Effect of Cooling Rate on Free-edge StressDevelopment in Semi-crystalline Thermoplastic Laminates[J]. Journal ofComposite Materials,1998,32(4):361-386.
    [107]李战雄,王标兵,欧育湘.耐高温聚合物[M].北京:化学工业出版社,2007:380-382.
    [108]徐啟阳,王新兵.高功率连续CO2激光器[M].北京:国防工业出版社,2000:1-10.
    [109]邹晓轩,戴文利,田际波.非等温条件下聚合物结晶动力学模型研究进展[J].高分子通报,2004,(6):15-20.
    [110]陈艳,王军佐,曹俊奎,等.聚醚醚酮酮等温结晶动力学的研究[J].高等学校化学学报,1995,16(2):322-324.
    [111]梁岱春,张为民,隋立江.浅析基于CAA的CATIA二次开发技术[J].航空制造技术,2012,(10):66-68.
    [112]刘连忠,汪一彭,张启先.机器人逆运动学的数值解法[J].北京航空航天大学学报,1995,21(1):120-125.
    [113]曹妍妍,赵登峰.有限元模态分析理论及其应用[J].机械工程与自动化,2007,140(1):73-74.
    [114]宫玉才,周洪伟,陈璞,等.快速子空间迭代法、迭代Ritz向量法与迭代Lanczos法的比较[J].振动工程学报,2005,18(2):227-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700