胜利褐煤温和气化焦油催化重整研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用两段式石英流化床反应器进行褐煤气化实验,采用四种不同方法制得的半焦催化剂(未活化半焦、水蒸气活化半焦、氨水活化半焦、氨气活化半焦),将气化产生的焦油在半焦催化剂的作用下进行原位重整,并采用冷态溶剂吸收的方式收集未能发生重整的焦油组分。并通过色谱-质谱联用仪检测焦油成分及相对含量、通过气相色谱检测气体成分及相对含量。在与气化实验相同的条件下,进行了褐煤热解实验研究水蒸气对焦油的重整作用,研究了温度、升温速率、催化剂及气氛对焦油和气体的产率、组成的影响。同时通过多种方法对使用前后的半焦催化剂进行了表征,研究并提出半焦催化重整焦油的作用机理。结果表明,半焦催化剂对焦油的重整具有显著的促进作用。在使用氨气活化半焦催化剂时,胜利褐煤900℃气化的焦油产率为0.45%,用GC-MS测试焦油组分仅测出微量的菲,无其它组分测出。与相同条件下不使用催化剂的情况相比,焦油产率下降了88.72%,气体产率增加了5.16%,气体中的有效气体含量从82.90%增加到83.83%。
Coal chars were employed to catalyze the in-situ tar reforming reactions during the pyrolysisand gasification of Shengli brown coal in a two-stage quartz reactor at different temperatures. Fourdifferent chars (inactivated char, steam activated char, ammonia water activated char and ammoniagas activated char) as catalysts were prepared. The tar derived from the gasification of Shenglibrown coal under different conditions was collected by cold solvent. In order to clarify the role ofsteam playing in the tar reduction with and without catalysts, pyrolysis at the same conditionswere always carried out for the purpose of comparison. The effect of temperature, heating rate,steam and catalysts on the yield and composition of tar and gas product were investigated under awide range of experimental conditions. Wherein, the compositions of coal tar were characterizedby GC-MS and the composition of gas were tested by GC. Several kinds of techniques were usedto characterize the char catalysts before and after use to provide the mechanism of tar reformingby char catalyst. It was found that char catalysts showed obvious effect on the tar derived from thepyrolysis/gasification of Shengli brown coal. Ammonia gas activated char showed the mostobvious effect on the reforming of gasification coal tar, and a yield decrease of88.72%in thegasification under900℃was achieved comparing with the same condition that no catalyst wasutilized. No compound was detected except trace phenanthrene. The gas product yield wasincreased by5.16%and the content of H2+CO grew from82.90%to83.83%.
引文
[1]王辅臣,于广锁,龚欣,等.大型煤气化技术的研究与发展[J].化工进展,2009,28(2):173-180.
    [2]徐振刚,陈亚飞.我国煤化工的技术现状与发展对策[J].煤炭科学技术,2007,35(8):6-12.
    [3] Li CZ. Importance of volatile-char interactions during the pyrolysis and gasification oflow-rank fuels–A review [J]. Fuel,2013,112:609-623.
    [4] Zhang S, Min ZH, Tay HL, et al. Effects of volatile-char interactions on the evolution ofchars structure during the gasification of Victorian brown coal in steam [J]. Fuel,2011,90:1529-1535.
    [5] Zhang S, Min ZH, Tay HL, et al. Changes in char structure during the gasification of malleewood: effects of particle size and steam supply [J]. Energy Fuels,2012,26:193-198.
    [6] Kajitani S, Tay HL, Zhang S, et al. Mechanisms and kinetic modeling of steam gasification ofbrown coal in the presence of volatile-char interactions [J]. Fuel,2013,103:7-13.
    [7] Quyn DM, Wu HW, Sankar P, et al. Volatilisation and catalystic effects of alkali and alkalineearth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅱ.Effects of chemical form and valence [J]. Fuel,2002,81:151-158.
    [8] Coll R, Salvado J, Farriol X, et al. Steam reforming model compounds of biomassgasification tars: conversion at different operating conditions and tendency towards cokeformation [J]. Fuel processing technology,2001,74:19-31.
    [9] Zhang R, Wang Y, Brown RC. Steam reforming of tar compounds over Ni/olive catalystsdoped with CeO2[J]. Energy conversion and management,2007,48:68-77.
    [10] Kinoshita CM, Wang Y, Zhou J. Tar formation under different biomass gasificationconditions [J]. Journal of analytical and applied pyrolysis,1994,29:169-181.
    [11] Bridgwater AV. The technical and economic feasibility of biomass gasification for powergeneration [J]. Fuel,1995,74:631-653.
    [12]周志军,赖开忠,周俊虎,等.气化过程中焦油催化裂解的影响因素研究[J].热力发电,2005,(11):26-29,33.
    [13]俞光明,薛江涛.热解和气化过程焦油析出的影响因素分析[J].研究与探讨,2006,(1):4-10.
    [14]步学朋,任向坤,崔永君.煤炭气化技术对煤质的选择及适应性分析[J].神华科技,2005,1(7):73-75.
    [15]王毅.块状褐煤高温蒸汽热解的宏细观特性分析及应用[M].徐州:中国矿业大学出版社,2012.
    [16]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,1999.
    [17]李旭辉.浅析褐煤的煤化工技术与应用[J].煤炭加工与综合利用,2009(5):38-42.
    [18]李春柱.维多利亚褐煤科学进展[M].北京:化学工业出版社,2009.
    [19] Tyler R J. Flash pyrolysis of coals.1. Devolatilization of a Victorian brown coal in a smallfluidized-bed reactor [J]. Fuel,1979,58(9):680-686.
    [20] Tyler R J, Schafer HNS. Flash pyrolysis of coals: influence of cations on the devolatilizationbehaviour of brown coals [J]. Fuel,1980,59(7):487-494.
    [21] Collin PJ, Tyler RJ, Wilson MA.1H n.m.r. study of tars from flash pyrolysis of threeAustralian coals [J]. Fuel,1980,59(7):479-486.
    [22] Xu WC, Tomita A. Effect of coal type on the flash pyrolysis of various coals [J]. Fuel,1987,66(5):627-631.
    [23] Xu WC, Tomita A. Effect of temperature on the flash pyrolysis of various coals [J]. Fuel,1987,66(5):632-636.
    [24] Miura K, Mae K, Asaoka K. New coal flash pyrolysis method utilizing effective radicaltransfer from solvent to coal [J]. Energy Fuels,1991,5(6):340-346.
    [25] Hayashi Ji, Takahashi H, Doi S. Reactions in brown coal pyrolysis responsible for heatingrate effect on tar yield [J]. Energy Fuels,2000,14(2):400-408.
    [26] Sathe C, Pang Y, Li CZ. Effects of heating rate and ion-exchangeable cations on thepyrolysis yields from a Victorian brown coal [J]. Energy Fuels,1999,13(3):748-755.
    [27] Nelson PF, Li CZ. Formation of HNCO from the rapid pyrolysis of coals [J]. Energy Fuels,1996,10(1):1083-1089.
    [28] Kershaw JR, Sathe C, Hayashi Ji. Fluorescence spectroscopic analysis of tars from thepyrolysis of a Victorian brown coal in a wire-mesh reactor [J]. Energy Fuels,2000,14(2):476-482.
    [29]杨国来.生物质在流化床中的催化气化焦油及裂解的试验研究[D].武汉:华中科技大学,2007.
    [30]吕俊复,岳光溪.氧化钙条件下焦油主要组分的催化裂解[J].清华大学学报(自然科学版),1997,37(2):6-10.
    [31] Walawender WP, Ganesan S, Fan LT. Steam gasification of manure in fluid bed. Influence oflimestone as bed additive [C]. Symposium papers on Energy from Biomass and Wastes5,Lake Buena Vista,1981:517-527.
    [32] Franklin HD, Peters WA, Cartello F, et al. Effect of calcium minerals on the rapid pyrolysisof bituminous coal [J]. Ind Eng Chem Process Des&Dev,1981,20(4):670-674
    [33] Lang RJ, Neavel RC. Behavior of calcium as a steam gasification catalyst [J]. Fuel,1982,61(7):620-626
    [34] Olivares A, Aznar MP, Caballero MA el at. Biomass gasification: produced gasup grading byin-bed use of dolomite [J]. Industrial and Engineering Chemistry Research,1997,36(7):5220-5226.
    [35] Corella J, Aznar MP, Gill J, et al. Biomass gasification in fluidised bed: where to locate thedolomite to improve gasification?[J]. Energy Fuels,1999,13(6):1122-1127.
    [36] Gill J, Miguel AC, Juan AM, et al. Biomass gasification with air in a fluidized bed: Effect ofthe in-bed use of dolomite under different operation conditions [J]. Industrial andEngineering Chemistry Research,1999,38(11):4226-4235.
    [37] Perez P, Aznar PM, Caballero MA, et al. Hot gas cleaning and upgrading with a calcineddolomite located downstream a biomass fluidized bed gasifier operating with steam-oxygenmixtures [J]. Energy Fuels,1997,11(6):1194-1197.
    [38] Rapagana S. Steam gasification of biomass in a fluidized bed of olivine particles [J]. Biomassand bioenergy,2000,19:187-197.
    [39] Abu El-Rub Z, Bramer EA, Brem G. Removal of naphthalene as the model tar compound oncalcined dolomites, olivine and commercial nickel catalyst in a fixed bed tubular reactor [C].12th European conference and technology exhibition on biomass for energy, industry andclimate protection, Amsterdam,2002:607-610.
    [40] Devi L. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine[J].Renewable energy,2005,30:565-587.
    [41] Rapagna S. Steam gasification of biomass in a fluidized bed of olivine particles [J]. Biomassand bioenergy,2000,19:187-197.
    [42] Courson C. Development of Ni catalyst for gas production from biomass gasification:reactivity in steam and dry reforming [J]. Catalysis today,2000,63:427-437.
    [43] Devi L. Catalytic removal of biomass tars: olivine as prospective in-bed catalyst for fluidizedbed gasifiers [D]. Eindhoven: Technical University of Eindhoven,2005.
    [44] Abu El-Rub Z, Biomass char as an insitu catalyst for tar removal in gasification systems [D].Enschede: Twente University,2008.
    [45] Wen YW, Cain E. Catalytic pyrolysis of a coal tar in a fixed bed reactor [J]. Ind. Eng. Chem.Proc. Des.,1984,23(4):627-637.
    [46] Simell PA, Bredenberg JB. Catalytic purification of tarry fuel gas [J]. Fuel,1990,69:1219-1225.
    [47] Adjaye JD, Bakhski NN. Production of hydrocarbon by catalytic upgrading of a fastpyrolysis bio-oil. PartⅡ: Comparative catalyst performance and reaction pathways [J]. Fuelprocessing technology,1995,45:185-202.
    [48] Simell PA, Leppalahti JK, Bredenberg JB. Catalytic purification of tarry fuel gas withcarbonate rocks and ferrous materials [J]. Fuel,1992,71:211-218.
    [49] Tamhankar SS, Tsuchiya K, Riggs JB. Catalytic cracking of benzene on iron oxide silica:Activity and reaction mechanism [J]. Applied catalysis A: General,1985,16:103-121.
    [50] Cypers R, Souden-Moinet C. Pyrolysis of coal and iron oxides mixtures.1. Influence of ironoxides on the pyrolysis of coal [J]. Fuel,1980,59:48-54.
    [51] Engelen K. A novel catalytic filter for tar removal from biomass gasification gas:Improvement of the catalytic activity in presence of H2S [J]. Chemical engineering science,2003,58(3):665-670.
    [52] Richardson SM, Gray MR. Enhancement of residue hydroprocessing catalysts by dopingwith alkali metals [J]. Energy fuels,1997,11(6):1119-1126.
    [53] Aznar MP. Commercial steam reforming catalysts to improve gasification with steam-oxygenmixtures.2. Catalytic tar removal [J]. Ind. Eng. Chem. Res.,1998,37:2668-2680.
    [54] Sada E, Kumazawa H, Kudsy M. Pyrolysis of lignins in molten salt media [J]. Ind. Eng.Chem. Res.,1992,31:612-616.
    [55] Baker EG, Mudge LK, Brown MD. Steam gasification of biomass with nickel secondarycatalysts [J]. Ind. Eng. Chem. Res.,1987,26:1335-1339.
    [56] Hepola J, Simell P. Sulphur poisoning of nickel-based hot gas cleaning catalyst in syntheticgasification gas. Ⅱ. Chemisorption of hydrogen sulphide [J]. Applied catalysis B:Environmental,1997,14:305-321.
    [57] Forzatti P, Lietti L. Catalyst deactivation [J]. Catalyst today,1999,52:165-181.
    [58] Aznar MP. Improved steam gasification of lignocellulosic residues in a fluidized bed withcommercial steam reforming catalysts [J]. Ind. Eng. Chem. Res.,1993,32:1-10.
    [59] Caballero MA. Commercial steam reforming catalysts to improve biomass gasification withsteam-oxygen mixtures.1. Hot gas upgrading by the catalytic reactor [J]. Ind. Eng. Chem.Res.,1997,36:5227-5239.
    [60] Olivares A. Biomass gasification: Produced gas upgrading by in-bed use of dolomite [J]. Ind.Eng. Chem. Res.,1997,36:5220-5226.
    [61] Li C-Z. Some recent advances in the understanding of the pyrolysis and gasificationbehaviour of Victorian brown coal [J]. Fuel,2007,86:1664-1683.
    [62]尤占平.生物质炭催化重整热解焦油技术研究[D].天津:天津大学,2010.
    [63] Zanzi R, Sjostrom K, Bjornbom E. Rapid high-temperature pyrolysis of biomass in a free-fallreactor [J]. Fuel,1996,75:545-550.
    [64] Hayashi J-I, Iwatsuki M, Morishita K, Tsutsumi A, Li C-Z, Chiba T. Roles of inherentmetallic species in secondary reactions of tar and char during rapid pyrolysis of brown coalsin a drop-tube reactor [J]. Fuel,2002,81:1977-1987.
    [65] Hosokai S, Hayashi J-I, Shimada T, et al. Spontaneous generation of tar decompositionpromoter in a biomass steam reformer [J]. Chem Eng Res Des,2005,83:1093-1102.
    [66] Yu J, Tian F-J, Chow MC, McKenzie LJ, et al. Effect of iron on the gasification of Victorianbrown coal with steam: enhancement of hydrogen production [J]. Fuel,2006,85:127-133.
    [67] Yu J, Tian F-J, Mckenzie LJ, Li C-Z. Char-supported nano iron catalyst for water-gas-shiftreaction hydrogen production from coal/biomass gasification [J]. Process Safe Environ Prot,2006,84:125-130.
    [68] Yu J, Tian FJ, Li CZ. Novel water-gas-shift reaction catalyst from iron-loaded Victorianbrown coal [J]. Energy&Fuels,2007,21:395-3988.
    [69] Wornat MJ, Sakurovs R. Proton magnetic resonance thermal analysis of a brown coal: effectsof ion-exchanged metals [J]. Fuel,1996,75(7):867-871.
    [70] Dogru M. Gasification of hazelnut hells in a downdraft gasifier [J]. Energy,2002,27:415-427.
    [71] Brandt P, Larsen E, Henriksen U. High tar reduction in a two-stage gasifier [J]. Energy Fuels,2000,14:816-819.
    [72] Zanzi R, Sjstrm K, Bjrnbom E. Rapid high-temperature pyrolysis of biomass in a free-ballreactor [J]. Fuel,1996,75:545-550.
    [73] Chembukulam SK. Smokeless fuel from carbonized sawdust [J]. Ind. Eng. Chem. Res.,1981,20:714-719.
    [74] Seshardi KS, Shamsi A. Effect of temperature, pressure and carrier gas on the cracking ofcoal tar over a char-dolomite mixture and calcined dolomite in a fixed bed reactor [J]. Ind.Eng. Chem. Res.,1998,37:3830-3837.
    [75] Hayashi J, Takahashi H, Iwatsuki M. Rapid conversion of tar and char from pyrolysis of abrown coal by reactions with steam in a drop-tube reactor [J]. Fuel,2000,79(7):439-447.
    [76] Hayashi J, Iwatsuki M, Morishita K. Roles of inherent metallic species in secondary reactionsof tar and char during rapid pyrolysis of brown coals in a drop-tube reactor [J]. Fuel,2002,81:1977-1987.
    [77] Min ZH, Mohammad A, Piyachat Y, et al. Catalytic reforming of tar during gasification.PartI.Steam reforming of biomass tar using limenite as a catalyst [J]. Fuel,2011,90:1847-1854.
    [78] Min ZH, Piyachat Y, Mohammad A, et al. Catalytic reforming of tar during gasification. PartⅡ.Char as a catalyst or as a catalyst support for tar reforming [J]. Fuel,2011,90:2545-2552.
    [79] Polychronopoulou K, Bakandritsos A, Tzitzios V, et al. Absorption-enhanced reforming ofphenol by steam over supported Fe catalysts [J]. Journal of catalysis,2006,241:132-148.
    [80] Morimoto T, Nagao M, Suda Y. Heat of immersion of zinc oxide in organic liquids.3.Immersion in benzene, toluene, and chlorbenzene [J]. J. Phys. Chem.,1985,89(22):4881-4883.
    [81] Corella J, Toledo JM, Pilar M. Improving the nodeling of the kinetics of the catalytic tarelimination in biomass gasification [J]. Ind. Eng. Chem. Res.,2002,41(14):3351-3356.
    [82] Pohle W. Infrared study of the adsorption of aromatic molecules onto sillca and chlorinatedsillca [J]. J. Chem. Soc., Faraday Trans.1,1982,78:2101-2109.
    [83] Polychronopoulou K, Costa CN, Efstathiou AM. The role of oxygen and hydroxyl supportspecies on the mechanism of H2production in the steam reforming of phenol over metaloxide-supported-Rh and–Fe catalysts [J]. Catal today,2006,112:89-93.
    [84] Simell PA, Hakala N, Haario HE. Catalytic decomposition of gasification gas tar withbenzene as the model compound [J]. Ind. Eng. Chem. Res.,1997,36:42-51.
    [85] Alden H, Bjorkman E, Carlsson M, et al. Catlytic cracking of naphthalene on dolomite [C].Proceedings of Conference on Advances in Thermochemical Biomass Conversion, Interlaken,Switzerland,1993:216-232.
    [86] Griffiths DML, Mainhood JSR. Cracking of tar vapor and aromatic compounds on activatedcarbon [J]. Fuel,1967,46(3):167-176.
    [87] Hayashi Ji, Iwatsuki M, Morishita K, et al. Roles of inherent metallic species in secondaryreactions of tar and char during rapid pyrolysis of brown coals in a drop-tube reactor [J]. Fuel,2002,81(15):1977-1987.
    [88] Abu El-Rub ZY, Bramer EA, Brem G. Tar reduction in biomass fuelled gasification usingchar as a catalyst, symposium biomass conversion [C]. Proc conference and technologyexhibition on biomass for energy, industry and climate protection, Rome,2005.
    [89] Yu J, Tian FJ, Mckenzie LJ, Li CZ. Char-supported nano iron catalyst for water–gas-shiftreaction-hydrogen production from coal/biomass gasification [J]. Process Saf Environ,2006,84:125-130.
    [90] Yu J, Tian FJ, Li CZ. Novel water–gas-shift reaction catalyst from iron-loaded Victorianbrown coal [J]. Energy Fuel,2007,21(2):395-398.
    [91] Chembukulam SK, Dandge AS, Kovilur NL, Seshagiri RK, Valdyeswaran R. Smokelessfuel from carbonized sawdust [J]. Ind. Eng. Chem. Res.,1981,20(4):714-719.
    [92] Hosokai S, Hayashi Ji, Shimada T, et al. Spontaneous generation of tar decompositionpromoter in a biomass steam reformer [J]. Chem Eng Res Des2005,83:1093-1102.
    [93] Bazardorj B, Sonoyama N, Hosokai S, et al. Inhibition of steam gasification of char byvolatiles in a fluidized bed under continuous feeding of a brown coal [J]. Fuel,2006,85(3):340-349.
    [94] Hosokai S, Kumabe K, Ohshita M, et al. Mechanism of decomposition of aromatics overcharcoal and necessary condition for maintaining its activity [J]. Fuel,2008,87:2914-2922.
    [95]张书,林雄超,王永刚,等.一种焦油捕集装置[P],中国:201320056234.9.
    [96]陈振东,陈晓平,吴烨,等.热态临界流化速度研究[J].中国电机工程学报,2010,30(14):21-25.
    [97] Padban N. Tars in biomass thermochemical conversion processes[C]. Progress report SDEproject primary measures for reduction of tars during fluidized bed gasification of biomass,Enschede,2001.
    [98] Li CZ. Some recent advances in the understanding of the pyrolysis and gasification behaviorof Victorian brown coal [J]. Fuel,2007,86:1664-1683.
    [99]侯斌,吕子安,李晓辉,等.生物质热解产物中焦油的催化裂解[J].燃料化学学报,2001,29(1):70-75.
    [100]周劲松,王铁柱,骆仲泱,等.生物质焦油的催化裂解研究[J].燃料化学学报,2003,31(2):144-148.
    [101]杨小芹.用于生物质焦油水蒸气重整的橄榄石载镍催化剂的研究[D].大连:大连理工大学,2010.
    [102]卜宪昵,岳宝华,戴智铭,等.橄榄石对高温焦炉煤气中焦油组分的催化裂解[J].煤炭转化,2008,31(2):31-36.
    [103]鲍卫仁,薛晓丽,曹青,等. MCM-41/SBA-15中孔分子筛对生物质热解油的催化裂解研究[J].燃料化学学报,2006,34(6):675-679.
    [104]吕俊复,岳光溪.焦油主要组分在循环灰下催化裂解的实验研究[J].燃料科学与技术,1998,4(4):410-416.
    [105]谢威,郭瓦力,周世贤,等.生物质焦油在氧化钙上的催化裂解研究[J].沈阳化工学院学报,2009,14(3):205-208.
    [106]豆斌林,任建兴.生物质气化发电过程中焦油蒸汽催化裂解的研究[J].上海电力学院学报,2006,26(1):89-93.
    [107]王铁军,常杰,吴创之,等.生物质气化焦油催化裂解特性[J].太阳能学报,2003,24(3):376-379.
    [108]王兴栋,韩江则,陆江银,等.半焦基催化剂裂解煤热解产物提高油气品质[J].化工学报,2012,63(12):3897-3905.
    [109]尤占平,由世俊,李宪莉,等.生物质炭催化裂解焦油的实验研究[J].太阳能学报,2011,32(5):718-723.
    [110]吴文广.生物质焦油均相转化及其在焦炭中异相脱除的实验研究[D].上海:上海交通大学,2012.
    [111] Li X, Hayashi J, Li C. FT-Raman spectroscopic study of the evolution of char structureduring the pyrolysis of a Victorian brown coal [J]. Fuel,2006,85:1700-1707.
    [112] Tuinstra F, Koenig JL. Raman spectrum of graphite [J]. The journal of chemical Physics,1970,53:1126.
    [113] Quirico E, Rouzaud JN, Bonal L, et al. Maturation grade of coals as revealed by Ramanspectroscopy: progress and problems [J]. Spectrochimica acta part A: molecular andbiomolecular spectroscopy,2005,61:2368-2377.
    [114] Sekine Y, Ishikawa K, Kikuchi E, et al. Reactivity and structural change of coal char duringsteam gasification [J]. Fuel,2006,85:122-126.
    [115] Guedes A, Valentim B, Prieto AC, et al. Raman spectroscopy of coal macerals andfluidized bed char morphotypes [J], Fuel,2012,97:443-449.
    [116] Tay HL, Li CZ. Changes in char reactivity and structure during the gasification of avictorian brown coal: comparison between gasification in O2and CO2[J]. Fuel processingtechnology,2010,91:800-804.
    [117] Dresselhaus MS, Eklund PC. Phonons in carbon nanotubes [J]. Advances in physics,2000,49:705-814.
    [118] Li X, Li C. Volatilisation and catalytic effects of alkali and alkaline earth metallic speciesduring the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis andchanges in char structure during gasification in steam [J]. Fuel,2006,85:1518-1525.
    [119] Li X, Hayashi J, Li C. Volatilisation and catalytic effects of alkali and alkaline earthmetallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅶ.Raman spectroscopic study on the changes in char structure during the catalytic gasificationin air [J]. Fuel,2006,85:1509-1517.
    [120] Mangun CL, Benak KR, Economy J, etal. Surface chemistry, pore sizes and adsorptionproperties of activated carbon fibers and precursors treated with ammonia [J]. Carbon,2001,39:1809-1820.
    [121]张晓东,周劲松,骆仲泱,等.催化裂化生物质焦油构成变化[J].燃料化学学报,2005,33(5):582-585.
    [122]王磊,吴创之,赵增立.热解焦对生物质焦油催化裂解的影响[J].太阳能学报,2006,27(5):514-518.
    [123] Corella J, Toledo JM, Aznar MP. Improving the modeling of the kinetics of the catalytic tarelimination in biomass gasification [J]. Ind. Eng. Chem. Res.,2002,41(14):3351-3356.
    [124]郑万东,由世俊,张欢,等.生物质炭催化重整焦油反应动力学模型[J].煤气与热力,2012,32(10):16-20.
    [125]韦杰,董长青,杨勇平.生物质气化气中焦油催化裂解模型[J].可再生能源,2007,25(5):35-39.
    [126]徐杰,杜宝石,王文祥.由DTG曲线确定反应级数的新方法[J].物理化学学报,1991,7(6):730-734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700