非节点连接有限元理论及其软件实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在土木工程中,由于基体材料的性能不足,大量使用各种加筋材料来增强和改善结构的力学性能。普通钢筋混凝土、预应力钢筋混凝土、纤维增强混凝土、型钢混凝土、钢管混凝土以及岩体用锚杆进行锚固等多种复合材料和结构形式被广泛采用。结构的重要性对分析计算提出了更高的要求,建立恰当的有限元模型对加筋结构进行准确模拟,是进行有限元分析首先需要解决的难题。目前,加筋结构的有限元建模方法主要有分离式、组合式和整体式三种。但这三种方法各有缺陷,难以模拟工程实际中的复杂情况。
     针对目前土木工程加筋结构有限元分析缺乏恰当有限元模型的问题,本文开展了以下方面的研究并取得了相应的成果:
     1.在考察现有各种加筋结构中加筋构件力学行为的基础上,指出加筋构件的合理单元模型可以采用杆单元和梁单元,其中梁单元具有综合的力学性能,适用范围更为广泛。
     2.在考察各种加筋构件与基体材料的连接方式基础上,提出了自由度层次的非节点连接方法。基于该方法,加筋单元的各节点可位于一个或多个其它单元内部,节点的自由度也无需全部与母单元的位移场一致,既有别于分离式模型通过节点实现单元连接,又有别于组合式模型要求加筋单元整体位于一个母单元。自由度层次的非节点连接方法建模灵活方便,能准确考虑加筋构件的复杂布置;通过引入节点坐标系,又可自然模拟加筋构件与基体材料之间的位移不连续性(如粘结滑移、无粘结和体外布置等)。
     3.对于采用非节点连接方法建立的有限元模型,为实现其有限元分析,对平面和空间梁单元、平面和空间等参元的含转动位移场进行了深入的研究。将单元内一点的转动分为一点平均转动和特定方向线元转动两种形式,给出了两种形式的具体计算方法。一点转动的深入研究,为带转动自由度的节点与其它单元连接提供了理论基础,使得用梁单元模拟加筋构件得以成功实现。
     4.建立了非节点连接有限元分析方法。将内节点在节点坐标系下的自由度分为一致的自由度和独立的自由度,分别用于模拟内节点与母单元位移场的连续性和不连续性,建立了内节点与母单元之间的粘结弹簧单元用于模拟内节点与母单元之间的粘结滑移。针对多种单元类型,对非节点连接情况下的有限元计算公式进行了系统推证,建立了非节点连接情况下的单元组装方法。
     5.研究和解决了非节点连接情况下的带宽优化问题。带宽优化技术可极大地提高有限元软件的计算速度,是一个实用有限元软件不可缺少的功能。本文研究了非节点连接方式下的自由度情况,对现有图论带宽优化算法提出了新的改进措施,将带宽优化方法深入到自由度层次,解决了节点自由度在整体自由度向量中参与个数不一致的复杂带宽问题,实现了非节点连接情况下的带宽优化。
     6.开发了非节点连接有限元软件。基于面向对象技术,在Windows系统平台采用Visual C++语言开发一个具有3D图形用户界面的有限元软件RCF,对非节点连接有限元理论进行了实现。该软件构造了有限元分析的各种类层次,具体实现了16种单元类型,可在平面和空间两种情况下对各种加筋结构进行非节点连接有限元建模和分析。
     7.利用RCF软件对多个典型问题进行了计算,验证和展示了非节点连接方法及其有限元软件的正确性和可行性。
     非节点连接有限元理论打破了传统的单元之间通过节点连接的限制,为有限元理论注入了新的内涵。单元种类和连接方法的灵活应用,为结构的单元离散方案提供更多的选择空间,为多种土木工程加筋结构提供了单元层次的模型支持,能够更准确地揭示局部关键部位的受力状态和结构整体力学行为,提高这些结构的有限元分析水平,在土木工程中具有广阔的应用前景。
In civil engineering, as the matrix material performance deficiencies, the reinforced materials are used largely to enhance and improve the mechanical properties of the structure. Ordinary reinforced concrete, pre-stressed reinforced concrete, and fiber reinforced concrete, steel reinforced concrete, concrete-filled steel tube, rock with a bolt anchoring, and other composite materials and forms of structural are widely used. Due to the structure’s importance, the high accurate analysis is needed. To accurately analyze the reinforced structure with finite element method, the primary problem to be solved is to establish the appropriate finite element models. At present, the finite element models of the reinforced structure have three types: the discrete model, the embedded model and smeared model. However, for flaws in the three types, it is difficult to simulate the complicated reinforced structures in engineering.
     Lacking appropriate finite element analysis model of the reinforced structures in the civil engineering, the following aspects of the study are carried out and the corresponding results are obtained:
     1. Based on inspecting the mechanical behavior of reinforced components in the existing reinforced structure, that the reinforcement component can be meshed with truss elements and beam elements is indicated, and beam element has a wider scope of application as its integrated mechanical properties.
     2. On the basis of inspecting the various types of connectivity between reinforced components and the matrix material, the non-nodal connectivity method at the level of degrees of freedom is raised. Based on this method, the nodes of a reinforced element can be embedded into one or more other elements; while the node’s DOF does not need to match the parent element’s displacement field. This method is different from the discrete model in which the node-node connectivity is needed, and distinct from the embedded model in which the nodes of a reinforced element are all placed in the same parent element. Using the non-nodal connectivity method at the level of degrees of freedom, the reinforcement and its parent material can be meshed independently and expediently, furthermore the complex layout of reinforcements can be accurately considered. By introducing node coordinates, the displacement discontinuity between reinforced components and matrix materials, such as bond-slip, non-bonded, and disposed external, etc., can be simulated naturally.
     3. In order to carry out the finite element analysis while the reinforcing element’s nodes are embedded in one or more other elements, an in-depth study is conducted about the displacement field including rotational DOF in plane beam elements, space beam elements, plane isoparametric elements and space isoparametric elements. The rotational displacements are divided into two types of the point average rotation and the infinitesimal line’s rotation, and their calculation formulas are given. The analysis of rotational displacements provides a theoretical basis to connect beam elements’nodes which have rotational DOFs with other elements, particularly when nodes are embedded in parent elements. Since nodes of a beam element can connect to their parent elements, the reinforcement can be meshed by beam elements successfully.
     4. The non-nodal connectivity finite element analysis method is established. An inner node’s DOFs are divided into two types of dependence and independence. Under the coordinates at an inner node, the inner node’s dependent DOFs are equal to the displacements accounted through its parent element, and the independent the others. A bond spring element between the inner node and its parent element is raised to simulate the bond-slip between the reinforcement and the matrix material. After the finite element formulas for multi types of elements are derived, the element assemble technique in the non-nodal connectivity state is worked out.
     5. The problem of bandwidth optimization in the non-nodal connectivity state is investigated. The bandwidth optimization technique can greatly improve the calculation speed of a FEM software, so is an indispensable function of a practical FEM software. Regarding the complicated circumstances of DOFs in the non-nodal connectivity state, some improvements in algorithm of graph theory are made to decrease the bandwidth; the bandwidth optimization algorithm is implemented at the level of DOF. This method resolves not only the complex issue of bandwidth optimization in the non-nodal connectivity state, but also the problem induced by that the DOFs numbers of various types of node taking part in the structure’s whole DOFs are not equal.
     6. Using the object-oriented technology, a FEM software named RCF is developed to realize the non-nodal connectivity method, which provides a 3D graphical user interface and programmed in visual C++ language under the Windows platform. The levels of FEM classes are constructed in RCF. Making use of RCF and its 10 types of elements, the reinforced structures under plane and space circumstances can be meshed and analyzed by means of non-nodal connectivity method.
     7. A number of typical problems are calculated by RCF; their numerical results validate and demonstrate the correctness and feasibility of the software and the non-nodal connectivity finite element method.
     The non-nodal connectivity finite element method breaks the traditional restrictions of node-node connecting and adds new content to existing finite element theory. The flexible application of connecting technology and element types provides more choices to mesh a structure and afford new models at element level for a variety of reinforced structures in civil engineering, and can reveal more accurately the mechanical behavior of a structure at overall and its partial key parts, and therefore improve the finite element analysis for reinforced structures. The method has broad application prospects in civil engineering.
引文
[1] Courant R. Variational Methods for the solution of problems of equilibrium and vibrations[J].Bulletin of American Mathematical Society, 1943,49:1-23.
    [2] Turer M J, Clough R W, Martin H C, et al. Stiffness and deflection analysis of complex structures[J].Journal of Aeronautical Science, 1956,23:805-824.
    [3]丁皓江,何福宝,等编.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1989.
    [4]朱伯芳著.有限单元法原理和应用(第2版)[M].北京:中国水利水电出版社,1998.
    [5]王勖成编著.有限单元法[M].北京:清华大学出版社,2003.
    [6]焕定,王伟编著.有限单元法教程[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [7]蒋玉川,张建海,李章政编著.弹性力学及有限单元法[M].北京:科学出版社,2006.154-156.
    [8]沈聚敏,江见鲸编著.钢筋混凝土有限元及板壳极限分析[M].北京:清华大学出版社,1993.
    [9]江见鲸著.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994.
    [10]吕西林,吴晓涵编著.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [11]董哲仁著.钢筋混凝土非线性有限元法原理与应用[M].北京:中国水利水电出版社,2002.
    [12]宋天霞,黄荣杰,杜太生编著.钢筋混凝土非线性有限元及其优化设计[M].武汉:华中科技大学出版社,2003.
    [13]江见鲸,陆新征,叶列平编著.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [14] Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beams[J].ACI Journal,1967,64(14):152-163.
    [15] El-Mezaini N,Citipitioglu. Finite Element analysis of prestressed and reinforced concrete Structures[J].Journal of Structural Engineering, ASCE, 1991,117(10):2851-2864.
    [16] Arafa M,Mehlhorn G.Non linear finite element analysis of concrete structures with a special model[A]. Borst R,Bi?ani? N,Mang H,Meschke G,ed. Computational Modelling of Concrete Structures[C].Procedings of EURO-C 1998, A.A. Balkema, Rotterdam/Brookfield,1998.
    [17] Scanlon A. Time-Dependent Deflections of RC Slabs,Stru.Eng[R]. Research Report No.38, Dept.of civil Eng.Univ.of Alberta, Canada, 1971-12.
    [18] Hand F R,Pecknold D A,Schnobrich W C.Nonlinear layered analysis of RC plates and shells[J].Journal of structural division, ASCE, 1973,99(7):143-151.
    [19] Lin C S,Scordelis A C.Nonlinear analysis of reinforced concrete shells general form[J].Journal of Structural division, ASCE,1975,101(3):345-356.
    [20] Nilson H,et al.State of th Art Report on Finite Element Analysis of Reinforced Concrete ASCE[R].New York,1982.
    [21] Zienkiewicz O C, Owen D R J, Philips D V,et al.Finite Element Method in the Analysis of Reactor Vessels[J].Nuclear Engineering and Design,1972,20(2):507-541.
    [22] Chang T Y,Taniguchi H,Chen W F.Nonlinear finite element analysis of reinforced concrete panels[J].Journal of Structural Engineering, ASCE,1987,113(1):122-140.
    [23] Elwi A E,Hrudey T M.Finite Element Model for Curved Embedded Reinforcement[J].Journal of Engineering Mechanics, ASCE,1989,115(4):740-754.
    [24] Hartl H,Sparowitz L,Elgamal A.The 3D computational Modeling of Reinforced and Prestressed Concrete Structures[A].Bergmeister K,ed. Proceedings of the 3rd.International PhD Symposium in Civil Engineering(vol.2)[C].Vienna, 2000.69-79.
    [25]巫昌海.三维钢筋混凝土非线性有限元及其工程应用研究[D].河海大学博士学位论文,2000-4.
    [26]黄荣杰,杜太生,宋天霞.钢筋混凝土平面单元研究[J].华中科技大学学报,2001,(10): 93-95.
    [27]朱海堂,吉瑞林,张静.钢筋混凝土平面问题单元模型研究[J].郑州大学学报(工学版),2002 ,23(4):630-631.
    [28]王家林.钢筋混凝土结构空间有限元分析的体梁组合单元[J].工程力学,2002,19(6):131-135.
    [29]王家林,陈山林.钢筋混凝土平面问题的含梁组合单元模型[J].郑州大学学报(工学版),2005,26(2):72-75.
    [30] Suidan M,Schnobrich W C,Finite element analysis of reinforced concrete[J]. Journal of structural division, ASCE,1973,99(10):2109-2122.
    [31]李国平主编.预应力混凝土结构设计原理[M].北京:人民交通出版社,2000.
    [32]房贞政编著.预应力混凝土结构理论与应用[M].北京:中国建筑工业出版社,2005.
    [33] Lin T Y.Load-Balancing Method for Design and Analysis of Prestressed Concrete Structures[J].ACI Journal,1963.
    [34] Kang Y J, Scordelis A C.Nonlinear analysis of prestressed concrete frames[J]. Journal of the structural division,1980,106(ST2):445-462.
    [35] Hofstetter G, Mang H A.Nonlinear finite element analysis of prestressed concrete shells[A].Proceedings of the 3rd International Conference on Numerical Methods for Non-linear Problems, Dubrovnik[C]. Swansea:Pineridge Press Ltd,1986.344-362.
    [36]陈永春,陈国梅.预应力超静定结构的等效荷载计算[J].建筑结构学报,1988,(2):45-54
    [37]孟少平.变截面预应力混凝土结构的广义等效荷载[J].江苏建筑,1992,(4):10-12
    [38]杨建明.预应力混凝土结构的当量荷载计算[J].建筑结构学报,1997,(5):2-11
    [39]曹升铉,冯阿巧.扇形平面曲线无粘结预应力筋设计问题[J].建筑结构, 1998,(3).
    [40] Bijan O Aalami.Structural Modeling of Post-Tensioned Members[J]. Journal of Structural Engineering,ASCE, 2000,126(2).
    [41] Leel,Tumilars,Chinhc.Columnload balancing in prestressed concrete building[J]. Journal of Structural Engineering,1990,116(11):3077-3089.
    [42]王磊,刘寒冰,吴冰暄,等.六面体单元下预应力等代荷载计算[J].计算力学学报,2005,(6):785-787
    [43]赵勇,黄鼎业,李云贵.预应力混凝土板的等效荷载计算[J].建筑科学, 2002, 18(4):8-11.
    [44]李青森,杨文兵,杨新华.预应力梁的组合结构分析方法及其有限元实现[J].华中科技大学学报(城市科学版),2005,22(增刊):84-86, 90
    [45]刘艳萍,杨新华,杨文兵.预应力钢筋混凝土局部有限元分析的ANSYS二次开发[J].华中科技大学学报(城市科学版),2005,22(增刊):87-90
    [46] Figueiras J A,Povoas R H C F.Modelling of prestress in non-linear analysis of concrete structures[M].Computers and Structures,1994,53(1): 173-187.
    [47]胡文发,黄鼎业.预应力混凝土结构非线性分析的新方法[J].四川建筑科学研究,2000,26(4):57-60.
    [48] Allouche E N, Campbell T I, Green M F, et al., Tendon stress in continuous unbonded prestressed concrete members-Part2: parametric study[J]. PCI Journal, 1999, 44(1): 60-73.
    [49] Allouche E N.The behavior of unbonded partially prestressed continuous concrete beams[D].Kingston: Queen's University,1996.
    [50]楼铁炯.无粘结预应力梁的有限元建模与性能分析研究[D].杭州:浙江大学,2005.
    [51] Wu X H, Otani S, Shiohara H.Tendon model for nonlinear analysis of prestressed concrete structures[J].Journal of Structural Engineering, ASCE,2001,127(4):398-405.
    [52] Ariyawardena N.Prestressed concrete with internal or external tendons: Behavior and analysis[D].Calgary:University of Calgary,2000.
    [53] Ariyawardena N,Ghali A.Prestressing with unbonded internal or external tendons: Analysis and computer model[J].Journal of Structural Engineering, ASCE, 2002, 128(12): 1493-1501.
    [54]司炳杰,孙治国,谢永杰.ANSYS软件在无粘结预应力混凝土箱型梁承载力分析中的应用[J].四川建筑科学,2006,32(6):8-11.
    [55]刘天成,贾艳敏.无粘结预应力混凝土结构非线性数值分析[J].长沙交通学院学报,2006,22(2):8-11.
    [56]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005-3.
    [57]白玲.超静定组合结构桥梁受力特性的3D_FEM模拟分析[D].博士学位论文,铁道部科学研究院,2003.
    [58]刘伦州,刘继明,周年强.湿式外包钢法加固钢筋混凝土柱复合受力构件的有限元分析[J].广东建材,2006,(12):12-14.
    [59]韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [60]秦泽豹.钢管混凝土单圆管肋拱极限承载力研究[D].福州:福州大学,2002.
    [61]丁发兴,余志武,蒋丽忠.圆钢管混凝土结构非线性有限元分析[J]建筑结构学报,2006,(4):110-115.
    [62]陈宝春,陈友杰,王来永,等.钢管混凝土偏心受压应力-应变关系模型研究[J].中国公路学报,2004,17(1):24-28.
    [63] Hsuan T H, ASCE M, Huang C S. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect[J].J.Struct.Eng, 2003,129(10):1329-1332.
    [64]卢方伟,李四平,孙国钧.方钢管混凝土轴压短柱的非线性有限元分析[J].工程力学,2007,24(3):110-114.
    [65]杨勇,郭子雄,聂建国,赵鸿铁.型钢混凝土结构ANSYS数值模拟技术研究[J].工程力学,2006,23(4):79-85.
    [66]张乐文,汪稔.岩土锚固理论研究之现状[J].岩石力学,2002,23(5):627-631.
    [67]李梅.三维锚杆的数值模拟方法[J].福州大学学报(自然科学版),2003,31(5):588-592.
    [68]蔡永昌,朱合华,李晓军.一种用于锚杆支护数值模拟的单元处理方法[J].岩石力学与工程学报,2003,22(7):1137-1140.
    [69]孙统立,肖志乔.任意岩石锚杆计算模型及其算法[J].地下空间与工程学报,2006,1(1):120-123.
    [70]陈胜宏,强晟,陈尚法.加锚岩体的三维复合单元模型研究[J].岩石力学与工程学报,2003,22(1):1-8.
    [71]孙林松,郭兴文.考虑界面特性的加锚岩体组合单元模型[J].河海大学学报(自然科学版),2005,33(4):418-421.
    [72] Forde B W R, Foschi R O, Stiemer S F.Object-oriented finite element analysis[J]. Computers & Structures, 2002, 34(3): 200-206.
    [73] Fenves G L.Object-oriented programming of the finite element method[J]. Engineering with Computers,1990,(6):1-15.
    [74] Miller G R.An Object-oriented approach to structural analysis and design[J].Computers & structures,1991,40(1):75-82.
    [75] Mackie R L.Object-oriented programming of finite element method[J]. International Journalfor Numerical Method in Engineering,1992,35(2): 425-436.
    [76] Thomas Zimmermann,Yves Dubois-Pelerin,Particia Bomme. Object-oriented finite element programming:I.Governing principles[J]. Computer Methods in Applied Mechanics and Engineering,1992,98(2):291-303.
    [77] Thomas Zimmermann,Yves Dubois-Pelerin,Particia Bomme.Object-oriented finite element programming: II.A Prototype program in smalltalk[J].Computer Methods in Applied Mechanics and Engineering, 1992,98(3):361-397.
    [78] Yves Dubois-Pelerin,Thomas Zimmermann.Object-oriented finite element programming: An efficient implementation in C++[J].Computer Methods in Applied Mechanics and Engineering,1992,108(1-2):165-183.
    [79]孔祥安,等.面向对象有限元程序的数据设计[J].西南交通大学学报,1996, 31(4): 335-360.
    [80]周本宽,等.面向对象有限元程序类的设计[J].计算结构力学及其应用,1996, 13(3):269-278.
    [81]谭也平.工程CAD系统中的有限元对象的实现[J].计算机辅助工程,1996,9(3):25-29.
    [82]张向,许晶月,等.面向对象有限元程序设计[J].计算力学学报,1999,16(2): 216-226.
    [83]王家林.平面杆系结构有限元分析CAI系统[J].重庆交通学院学报,2000,19(4):118-123,128.
    [84]魏永涛,于建华,等.面向对象的有限元程序框架[J].四川大学学报,2000, 32 (3): 35-38.
    [85]袁政强.用面向对象的方法实现有限元的子结构法[J].重庆大学学报,2001, 24 (3):35-37.
    [86]袁政强,白绍良,等.面向对象的有限元程序设计[J].重庆建筑大学学报,2002,22(增刊):141-151.
    [87]马永其,等.面向对象有限元程序的研究[J].计算机工程与应用,2001,(9): 120-122.
    [88]李会平,曹中清,周本宽.弹塑性分析的面向对象有限元法[J].西南交通大学学报,1997,32(4):401-406.
    [89]俞铭华,吴剑国,曹骥,等.有限元法与面向对象编程[M].北京:科学出版社,2004.
    [90]侯新录编著.结构分析中的有限元法与程序设计——用Visual C++实现[M].北京:中国建材工业出版社,2004.
    [91] Gurari E , Sudborough I. Improved dynamic programming algorithms for bandwidth minimization and the min-cut linear arrangement problem[J]. Journal of Algorithms, 1984,(5):531-546.
    [92] Corso G D,Manzini G. Finding exact solutions to the bandwidth minimization problem[J]. Computing, 1999,62(3):189-203.
    [93] Papadimitriou C. The NP-Completeness of the bandwidth minimization problem[J]. Journal on Computing,1976,(16):263-270.
    [94] Cuthill E H, Mckee J M. Reducing the bandwidth of sparse symmetric matrices [A].Proc.24thNational Conference Association for Computing Machinery[C]. New York:Barndon Systems Press,1969.157-172.
    [95] Gibbs N E, Poole W G, Stockmeyer P K. An algorithm for reducing the bandwidth and profile of a sparse matrix[J]. SIAM J.Num. Anal., 1976, 13(2): 236-250.
    [96] Burgess I W, Lai P K F. A new mode renumbering algorithm for bandwidth reduction[J]. International Journal for Numerical Methods in Engineering, 1986,(23): 1693-1704.
    [97]贾建军,彭颖红.三种基于图论的有限元结点编号优化算法[J].机械科学与技术,1998,17(5):725-731.
    [98] Puttonen J.Simple and effective bandwidth reduction algorithm[J]. International Journal for Numerical Methods in Engineering,1983,(19):1139-1152.
    [99] Akhras G, Dhatt G.An automatic node relabelling scheme for minimizing a matrix or network bandwidth[J].International Journal for Numerical Methods in Engineering,1976,(10):78-79.
    [100]邢渊,董林峰.有限元网格节点优化排序方法研究[J].计算力学学报, 1999,16(3):366-369.
    [101]郭晓霞,刘建生,陈慧琴.有限元网格节点编号优化方法[J].太原重型机械学院学报,2003,24(2):124-127.
    [102] Dueck G,Jeffs J. A heuristic bandwidth reduction algorithm[J].Journal of Combinatorial Mathematics and Computers,1995,(18):97-108.
    [103] MartíR, Laguna M, Glover F, Campos V. Reducing the bandwidth of a sparse matrix with tabu search[J]. European Journal of Operational Research,2001, 135(2):211-220.
    [104]姜涛,王安麟,朱灯林.有限元结点编号的综合带宽优化算法[J].机械设计,2005,22(11):1-6.
    [105]贾乃波,刘祥高,张维国,周韶峰.预应力及普通钢筋混凝土有限单元模型的应用研究[J].水利水电技术,2003,34(2):16-19.
    [106]王家林,陈山林,肖盛燮.有限元分析中三维体元和梁元的非节点连接[J].重庆交通学院学报,2006,25(2):28-30,48.
    [107]王家林,朱增辉,肖盛燮.变截面平面梁单元的双线性模型[J].重庆交通学院学报,2004,23(2):21-25.
    [108]王家林,陈山林,彭凯,肖盛燮.平面梁单元的单元复合技术及应用[J].应用力学学报,2005,22(1):147-150.
    [109]王家林,陈山林,彭凯,肖盛燮.平面梁单元的非节点连接方法[J].重庆大学学报(自然科学版),2005,28(11):134-137.
    [110]龙渝川,张楚汉,周元德,钢筋混凝土嵌入式滑移模型[J].工程力学,2007,Vol.24(Sup.I):41-45.
    [111]徐国艳,杜发荣,高峰,张立玲.网格节点编号优化算法研究[J].塑性工程学报,2006,13(2):29-31.
    [112]孙战金,张其林.有限元计算建模过程中不同单元的连接[J].建筑结构学报,2005,35(9):62-65.
    [113] Allman D J. A compatible triangular element including vertex rotations for plane elasticity analysis[J]. Computers & Structures, 1984, 19(1-2):1-8.
    [114]冯仲齐,梅占馨.有旋转自由度的高精度四边形单元[J].应用力学学报, 2002, 19(1):119-123.
    [115]文学章,龙驭球,何放龙.带旋转自由度的广义协调三角形膜元[J].工程力学,2002, 19(6):11-15.
    [116]王勇,郑海虹.采用四边形面积坐标带旋转自由度的平面膜单元[J].华南理工大学学报(自然科学版),2002,30(3):27-30.
    [117]申长雨,黄明,赵振峰,郭恒亚.改进的Allman无零能模式平面三角形单元[J].郑州大学学报(工学版),2005,26(1):13-15,23.
    [118] Shah M Yunus, Timothy P Pawlak. Solid elements with rotational degrees of freedom: Part 1—Hexahedron elements[J]. International Journal For Numerical Methods In Engineering,1991,31:573-592.
    [119] Shah M Yunus, Timothy P Pawlak. Solid elements with rotational degrees of freedom: Part II—Tetrahedron Elements[J]. International Journal For Numerical Methods In Engineering,1991,31:592-610.
    [120] Sze K Y,Soh A K,Sim Y S. Solid elements with rotational DOFs by explicit hybrid stabilization[J]. International Journal for Numerical Methods in Engineering, 1996, 39(17):2987-3005.
    [121] Kutlu Darilmaz. A hybrid 8-node hexahedral element for static and free vibration analysis[J]. Structural Engineering and Mechanics,2005,21(5):571-590.
    [122]荣冠,朱焕春,杨松林,王涛.三峡工程永久船闸高强锚杆现场试验研究[J].岩土力学,2001,22(2):171-175.
    [123]李传习,夏桂云,贺玲凤,刘光栋.体外预应力混凝土梁有限元分析[J].华南理工大学学报(自然科学版),2003,31(Suppl.):104-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700