感应型动力磁轴承结构分析及轴向加载实验平台设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动力磁悬浮轴承也称为无轴承电机,其定子由两套绕组——即输出转矩的转矩绕组和提供悬浮力的悬浮绕组组成。虽然普通交流电机的绕组理论已很成熟,但目前仍没有确定动力磁轴承两套绕组每槽导线数的相关理论依据。
     分析比较了动力磁轴承和普通交流电机的性能特点,总结出动力磁轴承定子结构设计的基本步骤。利用能量守恒原理,推导出两套绕组每槽导线数之间的匹配关系,并计算出两套绕组的功率。
     利用所得的两套绕组每槽导线数之间的关系,将一台普通异步电机改制成动力磁轴承,并对其磁场进行了有限元分析。结果表明:由原电机电磁参数决定的定子尺寸限制了动力磁轴承功率的提高。为此,提出增加原电机轭高以弥补功率损失。通过理论计算和电磁场有限元分析表明:改进后的动力磁轴承具有较高的气隙磁密,意味着提高了动力磁轴承的输出功率。
     结合轴向磁轴承定子电压平衡方程、推力盘的运动方程及磁路基本定律,推导出轴向磁轴承在差动状态下电磁力数学模型与转子轴向运动控制方程。并设计了以定子电压作为控制变量的闭环传递函数框图。为控制电路的设计和控制参数的调节奠定了理论基础。
     为测试轴向磁轴承的力学性能及控制系统,设计了一套轴向磁轴承的实验加载平台。该平台包括轴向磁轴承的支撑装置和施力装置,并用有限元法分析了该平台的可靠性。
Power Magnetic Bearing is also called Bearing-less Motor and its stator is composed of torque winding which outputs torque and suspension winding which outputs magnetic levitation force. Although the winding theory about general AC machine is mature, there is lack of relevant theoretical basis that can confirm the number of wire per slot of two windings of Power Magnetic Bearing.
     Basic steps about structural design to Power stator of Magnetic Bearing is generalized after analyzing and comparing the nature characteristics between Power Magnetic Bearing and general AC machine. Matching relation about the number of wire per slot of two windings is deduced and powers of two windings are calculated by utilizing conservation of energy principle.
     A winding of general AC machine is changed into a one of Power Magnetic Bearing by utilizing the relation, that the number of wire per slot of two windings, and finite element analysis is implemented to the magnetic field of the Power Magnetic Bearing. It turns out that the stator dimensions which are determined by the electromagnetic parameters of former motor limit the increase of power of Power Magnetic Bearing. Therefore a measure to increase the height of the stator yoke is put forward to counter balance the power loss. It shows that Power Magnetic Bearing with improvement has a higher magnetic flux density of air-gap through theoretical arithmetic and electromagnetic field analysis. It means that the power of Power Magnetic Bearing increases.
     A mathematic model of Electromagnetic force and an axial motion control equation of rotor is deduced under differential state of Thrust Magnetic bearing by utilizing balance equation of stator voltage, motion equation of Thrust collar and fundamental law of magnetic circuit. A closed loop transfer function block diagram in which stator voltage is used as a control variable is designed. This diagram establishes a theoretical basis for the design of control circuit and the setting of control variable.
     In order to test the mechanical property and control system of Thrust Magnetic bearing, a set of loading experimental platform is designed. This platform contains support device and force device, and its reliability is analyzed by finite element method.
引文
[1]曾励,陈飞,宋爱平等.动力磁轴承的研究现状及关键技术.中国机械工程.2001,12(11):1319-1321
    [2]邓智泉.无轴承交流电机的原理及应用.机械科学与技术.2002, 21 (5): 730-733.
    [3]朱熀秋,张伟霞,费德成等.磁悬浮无轴承电动机发展、应用和前景.微特电机.2006 (3):39-41
    [4]杨均悦.数控机床高速主轴动力磁轴承研究.大连交通大学硕士学位论文.2008:13-17
    [5]雷美珍,邱建琪,林瑞光.无轴承异步电机的悬浮机理及其气隙磁场定向控制.电机与控制应用.2005,32 (7):35-39
    [6] Schob R,Bichsel J.Vector of the bearingless motor.Fourth International Symposium on Magnetic Bearings,Switzerland,1994: 327-332
    [7]曹建荣.感应电动机的解耦控制与矢量控制的解耦性质.西安交通大学学报.2000, 34 (6): 71-75
    [8] Santisteban J A.Stephan R M.Analysis and control of a loaded bearingless machine.IEEE Trans Mag,1999,35 (5): 3998-4000
    [9] Chiba A.Furuichi R.Aikawa Y. Stable operation of induction-type bearingless motors under loaded conditions.IEEE Trans IAS, 1997, 33 (4): 919-924
    [10]贺益康.感应型无轴承电机的优化气隙磁场定向控制.中国电机工程学报.2004, 24 (6): 116-121.
    [11] Bichsel J. Beitraege zum lagerlosen Elektromotor. Schweiz:Eidgenoessische Technische Hochschule Zuerich, 1990
    [12] Barletta N. Der lagerlose Scheibenmoto. Schweiz:Eidgenoessische TechnischeHochschule Zuerich, 1998
    [13]卜文绍,黄声华,刘文胜,万山明.无轴承异步电机研究现状及应用前景.微电机.2006,39 (6):67-70
    [14]辜承林,陈乔夫,熊永前.电机学.武汉:华中科技大学出版社,2005:185
    [15]杨天明.三相电机绕组展开图描述形式的改进.潍坊高等专科学校学报.2000, (1):29-30
    [16]杜永明.槽电动势星形图-分析交流电机绕组连接规律的工具.训练技法.1998, (6):42
    [17]潘品英.新编电动机绕组布线接线彩色图集.北京:机械工业出版社,2006 :2-3
    [18]魏秉国,王素霞.谈电机绕组布线的灵活性.濮阳职业技术学院学报.2005,18 (2):21-22
    [19] Bichsel J.The bearingless electrical machine.Proc.Int.Symp.Magnetic Suspension Technology. NASA Langley Res. Center,Hampton,1991, 561-573
    [20] Chiba A.Rahman M A.Fukao T. Radial Force in a bearingless reluctance motor.IEEE Transactions on Magnetics.1991, 27 (2): 786-790
    [21] Chiba A.Dedio T.Fukao T.Analysis of bearingless AC motors. IEEE Transactions on Energy Conversion.1994, 9 (1): 61-68
    [22]王宝国,王凤翔.磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析.中国电机工程学报.2002,22 (5):106-108
    [23]上海电器科学研究所.中小型电机设计手册.北京:机械工业出版社,1994:33
    [24]电机工程手册编辑委员会.电机工程手册.北京:机械工业出版社,1982, (4):20-32
    [25]刘一平,许上明等.新编电动机绕组修理.上海:上海科学技术出版社,1994:328-329,338-320
    [26]汤蕴璆,史乃,沈文豹.电机理论与运行上册.北京:水利电力出版社,1983:325-326
    [27]文湘隆,陈龙,胡业发.线圈出线孔对轴向磁轴承影响的研究.轴承.2005,4:1-3
    [28]沈强.轴向磁轴承及其转子动力学研究.大连交通大学硕士学位论文.2008:30-32
    [29]葛研军,杨均悦,蒋成勇,张文跃.磁悬浮推力轴承结构参数优化设计.2007,(2):1-3
    [30]陈钢,胡业发.轴向磁轴承数学模型研究.湖北工学院学报.1998,(3):90-93
    [31]雷家友,贾延林,李静伟.轴向磁轴承控制系统的分析与设计.机械科技.1992, (7):34-36
    [32]董霞,陈康宁,李天石.机械控制理论基础.西安:西安交通大学出版社,2005:274
    [33]西北工业大学机械原理及机械零件教研室编著;濮良贵,纪名刚主编.机械设计第七版.北京:高等教育出版社,2003:74-90
    [34]成大先.机械设计手册单行本联接与紧固.北京:化学工业出版社,2004:4-99
    [35]成大先.机械设计手册单行本弹簧.起重运输件.五金件.北京:化学工业出版社,2004:7-3
    [36]唐兴伦,范群波,张朝晖,李春阳.ANSYS工程应用教程热与电磁学篇.北京:中国铁道出版社,2003:167
    [37]李黎明.Ansys有限元分析实用教程.北京:清华大学出版社,2005
    [38]西安交通大学电机专业.异步电机.北京:人民教育出版社,1976:22
    [39]陈碧秀,李明,黄玉麟等编.实用中小电机手册.沈阳:辽宁科学技术出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700