基于加载条形光波导的极化聚合物电光调制器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代通信、电子以及计算机技术的飞速发展离不开光纤通信网络的支持,而光电子技术中的变频、调制、开关、偏转是光信息处理过程中不可缺少的技术。因此,高速电光调制器已经成为光通信网络中不可替代的重要器件。极化聚合物电光调制器由于制备工艺简单、制作成本低、容易实现高带宽等显著优势,近年来倍受到国内外研究人员的重视。
     本论文的主要工作就是围绕极化聚合物电光调制器的研究展开的。论文重点阐述了利用掺杂型DR1/TiO2/SiO2杂化材料、SU-8紫外负性光刻胶、甲基丙烯酸甲酯共聚物以及铝电极,设计、制备加载条形光波导极化聚合物电光调制器的方法和过程。对器件的材料选择、结构设计、工艺制备以及性能测试进行了详细的论述,并提出了下一步研究工作的展望。
     本论文的主要创新点为:自主合成了掺杂型DR1/TiO2/SiO2杂化材料,并对材料的成膜特性、吸收特性以及电光特性进行了测试表征。针对合成的材料特点,提出了一种偏振不敏感的加载条形波导结构,利用掺杂型DR1/TiO2/SiO2杂化材料和SU-8紫外负性光刻胶,在国际上首次制备出M-Z结构的基于加载条形光波导的极化聚合物电光调制器。自主设计并搭建了包括光学和电学在内的高速电光器件测试系统,对制备成功的器件性能进行了测试分析。利用波导理论和保角变换原理,首次成功计算了加载条形波导结构和共面波导电极结构的电光重叠积分因子。这些工作为今后制备高指标的电光器件奠定了基础。
As the key devices in modern communication network, high-speed electro-optic (EO) modulators play important roles in optical information processing domain. Because of the fast development of information technology and ceaseless pursuing for communication bandwidth, the bandwidth bottleneck of modulator becomes more and more evident. So the demands of high-speed and wide-bandwidth modulators become more and more exigent. Compared with inorganic EO modulators, poled polymer EO modulators show obvious predominance of fast response speed, easy process, low cost, easy integration and wide bandwidth due to the different causation of poling. Much attention is paid on this field.
     The investigation on poled polymer EO modulators starts in the sixties and seventies in the twentieth century. It developed gradually with the invention of laser. Integrating with modern optics, condensed matter physics, organic chemistry, polymer materials and biological physics, poled polymer EO modulators have obtained huge development in the investigation of new material, design of device structure and application during several decades. By the nineties in the twentieth century, the investigation on poled polymer EO modulators has gained great achievement. The laboratory devices with wide bandwidth and low half-wave voltage have been fabricated. Lots of breakthrough appeared on high speed, wide bandwidth low half-wave voltage and loss. In 2008, commercial poled polymer EO modulators with velocity of 100Gbps and bandwidth of 75GHz have been reported. The performance is much higher than inorganic LiNbO3 EO modulators. But the domestic investigation starts much later. So far, there is hardly any investigation institution that can fabricate and test the poled polymer EO modulators, independently. That is because the fabrication of poled polymer EO modulator with high performance includes the choice and design on EO material, waveguide structure and electrodes configuration. The content refers to materials science, integrated optics, microwave photonics, and so on. The main work of this thesis focuses on the design, fabrication and testing of M-Z poled polymer EO modulators based on strip-loaded waveguide. The content and innovations of this thesis are listed as follows:
     1. Based on the theories of quantum mechanics, nonlinear optics, quantum chemistry and waveguide mode, the relation between refractive index changes with EO coefficient and electric field is deduced for polymer EO film which is vertically poled. Combining the characteristic of polymer EO film, the principle of M-Z modulator based on polymer waveguide is analyzed. This work lays the theory foundation for structure design and performance testing of EO modulators.
     2. The DRl/SiO2 (Disperse Red 1) and DRl/TiO2/SiO2 hybrid material are synthesized by sol-gel technology. The EO film with good poling stability is prepared utilizing spin-coating and corona poling process. The material parameters, such as refractive index, absorption spectrometry and film quality are tested by ellipsometer, infrared spectrum analyzer and atomic force microscopy. The results show that the film is very smooth in surface and has low absorption at 1550nm wavelength. The relation between the proportion of TBOT in the source material and the refractive index or EO coefficient of the film is studied. By adjusting the proportion of TBOT in the source material, the refractive index of the EO film can change from 1.47~1.81. Silane coupling agent (KH-560) and polyvinyl alcohol are added to improve the performance of electro-optic film. The poling uniformity and stability of poled polymer film are studied by testing of the EO coefficient with simple reflective technique. This work lays the foundation for waveguide design and process optimization.
     3. A strip-loaded waveguide structure is introduced according to the characteristics of the synthesized organic/inorganic hybrid EO materials. Based on the planar waveguide mode theory, the light field modes are simulated and optimized by OptiBPM software. A polarization-insensitive strip-loaded waveguide structure is obtained by adjusting the propagation constant under different polarization. The optimized sizes and refractive indices of the waveguide are as follows: The width and thickness of the strip are 4um and 3.5um. The thickness of the EO layer is 0.4um. The refractive indices of the two layers are 1.57 and 1.68, respectively. The effective refractive indices of TE and TM modes are 1.568 and 1.563. Based on those parameters, the waveguide photo-mask is designed and prepared. Considering waveguide structure and process condition, the microstrip line travelling wave electrodes with 3dB-bandwidth of 105GHz and coplanar waveguide electrodes with 3dB-bandwidth of 15GHz are designed. The electrodes photo-mask is prepared. The electro-optic overlap integral factor of EO modulator with strip-loaded waveguide and coplanar waveguide electrodes is calculated based on planar waveguide mode theory and conformal mapping principle, it is 47%.
     4. Synthesized hybrid DRl/TiO2/SiO2 hybrid material is chosen as the EO layer. Considering the thermal expansion coefficient and process compatibility, SU-8 epoxy based photoresist and P(MMA-GMA) copolymer are selected as the strip waveguide and up-cladding. Aluminum is utilized as electrode material. By process of spin-coating, photolithography, wet-etching, and corona poling technology, the M-Z poled polymer EO modulator based on strip-loaded waveguide is fabricated for the first time. The modulation function is achieved. The different process conditions to the influence of device parameters are discussed. By reducing the thickness of the strip and enhancing the thickness of the electrodes, the whole performance of the device is improved. The device has a stable state. It can work normally after placed at room temperature for one month.
     5. The optical and electrical testing system including the tunable laser, fine adjustment testing system, photo detector, optical power meter, functional signal generator, oscilloscope, monitor and vector network analyzer is designed and composed. The successfully-fabricated device is measured. The half-wave voltage is about 50V. The electrode bandwidth is larger than 3GHz. The insertion loss is 14dB. The modulation depth is over 5%. The optical power capacity is larger than 160mW. And the damage voltage is about 110V The polarization characteristic of the device is analyzed. The modulation effect of TM mode is 3 times larger than that of TE mode.
     In this thesis, the poled polymer EO modulator based on M-Z strip-loaded waveguide is fabricated for the first time. The work established fundamental for the fabrication of high quality electro-optic devices. Some efforts are made to shorten the difference between international and domestic investigation level. With the optimization of material performance, maturity of fabrication process and improvement of test technique, poled polymer EO modulators will highlight the advantages of high speed, wide bandwidth and easy integration. The much more excellent devices will be realized.
引文
[1] FREDERICK J L. Optoelectronics in Japan and the United States/Guided Wave Devices and Photonic Packaging Technology [EB/OL]. Japanese Technology Evaluation Center, 1996[1996-02].http://www.wtec.org/loyola/welcome.htm.
    [2]斋藤富士郎.超高速光器件[M].北京:科学出版社,2002.
    [3]杨斌,王磊,裴丽,等.新型电光调制器[J].科技资讯,2006(35):175—176.
    [4] LEE S S, ANAND H U, HERNAN E, et al. Demonstration of a photonically controlled RF phase shifter [J]. IEEE Microwave and Guided Wave Letters, 1999, 9(9): 357-359.
    [5]钱士雄,王恭明.非线性光学——原理与进展[M].上海:复旦大学出版社,2001:362.
    [6]钱士雄,王恭明.非线性光学——原理与进展[M].上海:复旦大学出版社,2001:379.
    [7]余志滨,杨洲,和亚宁,等.异氰酸酯交联的环氧树脂基二阶非线性光学聚合物[J].高分子学报,2004(3):345—349.
    [8] LEBEAU B, BRASSELET S, ZYSS J, et al. Design. Characterization, andProcessing of Hybrid Organic-Inorganic Coatings with Very High Second-OrderOptical Nonlinearities [J]. Chemistry Materials, 1997, 9 (4): 1012-1020.
    [9] CHEN D T, FETTERMAN H R, CHEN A T, et al. Demonstration of 110 GHzelectro-optic polymer modulators [J]. Applied Physics Letters, 1997. 70(25):3335-3337.
    [10] LEE H M, HWANG W Y, OH M C. et al. High performance electro-opticpolymer waveguide device [J]. Applied Physics Letters, 1997, 71(26): 3779-3781.
    [11] CHEN D T, BHATTACHARYA D, UDUPA A, et al. High-frequency polymermodulators with integrated finline transitions and low Vπ[J]. IEEE PhotonicsTechnology Letters, 1999, 11(1): 54-56.
    [12] CHEN A T, CHUYANOV V, ZHANG H, et al. DC biased electro-optic polymerwaveguide modulators with low half-wave voltage and high thermal stability [J].Optical Engineering, 1999, 38(12): 2000-2008.
    [13] AN D C, SHI Z, SUN L, et al. Polymeric electro-optic modulator based on 1x2Y-fed directional coupler [J]. Applied Physics Letters, 2000. 76(15): 1972-1974.
    [14] LEE S S, GARNER S M, CHUYANOV V, et al. Optical intensity modulatorbased on a novel electrooptic polymer incorporating a highμβchromophore [J].IEEE Journal of Quantum Electronics. 2000. 36(5): 527-532.
    [15]SHI Y Q, ZHANG C, ZHANG H, et al. Low (Sub-1-Volt) Halfwave VoltagePolymeric Electro-optic Modulators Achieved by Controlling ChromophoreShape [J]. Science, 2000, 288(5463): 119-122.
    [16]OH M C, ZHANG H, SZEP A, et al. Electro-optic polymer modulators for 1.55mu m wavelength using phenyltetraene bridged chromophore in polycarbonate[J]. Applied Physics Letters, 2000, 76(24): 3525-3527.
    [17]ZHANG H, OH M C, SZEP A, et al. Push-pull electro-optic polymer modulatorswith low half-wave voltage and low loss at both 1310 and 1550 nm [J]. AppliedPhysics Letters, 2001, 78(20): 3136-3138.
    [18] LEE M, KATZ H E, ERBEN C, et al. Broadband modulation of light by using anelectro-optic polymer [J]. Science, 2002, 298(5597): 1401-1403.
    [19]ENAMI Y, MEREDITH G PEYGHAMBAR1AN N, et al. Hybrid electro-opticpolymer/sol-gel waveguide modulator fabricated by all-wet etching process [J].Applied Physics Letters, 2003, 83(23):4692-4694.
    [20]PALOCZI G T, HUANG Y, YARIV A, et al. Replica-molded electro-opticpolymer Mach-Zehnder modulator [J]. Applied Physics Letters, 2004, 85(10):1662-1664.
    [21]Park S, JU J J, DO J Y, et al. 16-arrayed electrooptic polymer modulator [J]. IEEEPhotonics Technology Letters, 2004, 16(8): 1834-1836.
    [22] MICHALAK R J, KUO Y H, NASH F D, et al. High-speed AJL8/APC polymermodulator [J]. IEEE Photonics Technology Letters, 2006, 18(9-12): 1207-1209. [23]ENAMI Y, MATHINE D, DEROSE C T, et al. Hybrid cross-linkablepolymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm[J]. Applied Physics Letters, 2007, 91(9):093505-3.
    [24] DEROSE C T, MATHINE D, ENAMI Y, et al. Electrooptic Polymer ModulatorWith Single-Mode to Multimode Waveguide Transitions [J]. IEEE PhotonicsTechnology Letters, 2008, 20(12):1051-1053.
    [25]黄章勇.光纤通信用光电子器件和组件[M].北京:北京邮电大学山版社,2007:151.
    [26]董孝义.光波电子学[M].天津:南开大学出版社,1987:312.
    [27]BLOEMBERGEN N. Nonlinear Spectroscopy [M]. Cambridge: Springer BerlinHeidelberg, 1975.
    [28] YOSHITO S, MICHIYUKI A. Reflection measurement technique of electro-opticcoefficients in lithium niobate crystals and poled polymer films [J]. Journal ofApplied Physics, 1995, 77(9):4632-4638.
    [29]OUDAR J L, CHEMLA D S. Theory of second-order optical susceptibilities ofbenzene substitutes [J]. Optics Communications, 1975, 13(2): 164-168.
    [30]侯阿临.极化聚合物电光调制器的基础研究[D].长春:吉林大学电子科学与工程学院,2007.
    [31] YE C, MINAMI N, MARKS T J. Persistent, efficient frequency doubling by poled annealed films of a chromophore-functionalized poly (p-hydroxystyrene) [J]. Macromolecules, 1988, 21(9): 2899-2901.
    [32]徐建东,鲍信先,李淳飞.非线性光学聚合物的极化技术[J].高技术通讯,1997.10:59—61.
    [33]THACKARA J, STILLER M, LIPSCOMB G F, et al. Conference on lasers andelectro-optics, technical digest series [C]. Washington, DC: Optical Society ofAmerica, 1987: 260.
    [34]MOHLMANN G R, Proceeding of SPIE [C]. 1987, 866(80).
    [35]TNMOLILLO T A, ASHLEY P R. A novel pulse-poling technique for EOpolymer waveguide devices using device electrode poling [J]. IEEE PhotonicsTechnology Letters, 1992,4(2): 142-145.
    [36]JONSCHER A K. The universal dielectric response [C]. Pocono Manor, PA:Electrical Insulation and Dielectric Phenomena, Annual Report. Pennsylvania.1990.
    [37]SEKKAT Z, KNOLL W. Creation of second-order nonlinear optical effects byphotoisomerization of polar azo dyes in polymeric films: theoretical study ofsteady-state and transient properties [J]. Journal of the Optical Society of AmericaB-Optical Physics, 1995, 12(10): 1855-1867.
    [38]TENG C C, MAN H T. Simple reflection technique for measuring theelectro-optic coefficient of poled polymers [J]. Applied Physics Letters, 1990.56(18): 1734-1736.
    [39]YOSHITO S, MICHIYUKI A. Reflection measurement technique of electro-opticcoefficients in lithium niobate crystals and poled polymer films [J]. Journal ofApplied Physics, 1995, 77(9): 4632-4638.
    [40]徐建东,杨昆,刘树田,等.椭偏法测量极化聚合物的电光系数[J].中国激光,1995(09):661—665.
    [41]尹鑫,史伟,房昌水.测量聚合物薄膜电光系数的一种简单方法——干涉法[J].压电与声光,2001(03):230—239.
    [42]HERMINGHAUS S, SMITH B A, SWALEN J D, et al. Electro-optic coefficients in electric-field-poled polymer waveguides [J]. Journal of the Optical Society of America B-Optical Physics, 1991, 8(11): 2311-2317.
    [43]尚有魁,沈启舜,史坚.用ATR法测量晶体的压电系数和电光系数[J].光电工程,2005(04):63—65.
    [44]HAYDEN L M, SAUTER G F. ORE F R. et al. Second-order nonlinear opticalmeasurements in guest-host and side-chain polymers [J]. Journal of AppliedPhysics, 1990, 68(2): 456-465.
    [45] WANG Y P, CHEN J P, LI X W. et al. Measuring electro-optic coefficients ofpoled polymers using fiber-optic Mach—Zehnder interferometer [J]. AppliedPhysics Letters, 2004, 85(21): 5102-5103.
    [46]PAGE R H,JURICH M C,RECK B.et al.Electrochrmic and optical waveguide studies of corona-poled electro-optic polymer films [J].Journal of the Optical Society of America B-Optical Physics,1990,7(7):1239-1250.
    [47]孟凡青,任诠,马常宝,等.光谱法求解极化聚合物薄膜的电光系数[J].半导体光电,2000(06):402—409.
    [48]HAYDEN L M, SAUTER G F, ORE F R, et al. Second-order nonlinear opticalmeasurements in guest-host and side-chain polymers [J]. Journal of AppliedPhysics, 1990, 68(2):456-465.
    [49]BRJNKER, C J, SCHERER G W. Sol→gel→glass: I. Gelation and gel structure[J]. Journal of Non-Crystalline Solids, 1985, 70(3): 301-322.
    [50] WEN J, WILKES G L. Organic/inorganic hybrid network materials by the sol-gelapproach [J]. Chemistry of Materials, 1996, 8(8): 1667-1681.
    [51]黄剑锋.溶胶一凝胶原理与技术[M].北京:化学工业山版社,2005.
    [52]HELMUT D. New routes to multicomponent oxide glasses [J]. AngewandteChemie International Edition in English, 1971, 10(6): 363-370.
    [53]JUDEINSTEIN P, SANCHEZ C. Hybrid organic-inorganic materials: a land ofmultidisciplinarity [J]. Journal of Materals Chemistry, 1996, 6(4): 511-525.
    [54] BRUCE M N. Hybrid nanocomposite materials - between inorganic glasses andorganic polymers [J]. Advanced Materials, 1993, 5(6): 422-433.
    [55]LEBEAU B, SANCHEZ C, Sol-gel derived hybrid inorganic-organicnanocomposites for optics [J]. Current Opinion in Solid State and MaterialsScience, 1999,4(1): 11-23.
    [56] HAY J N, RAVAL H M. Synthesis of organic-inorganic hybrids via thenon-hydrolytic sol-gel process [J]. Chemistry of Materials, 2001. 13(10):3396-3403.
    [57]SCHOTTNER G. Hybrid sol-gel-derived polymers: applications ofmultifunctional materials [J]. Chemistry of Materials, 2001, 13(10): 3422-3435.
    [58]POMOGAILO A D, Hybrid polymer-inorganic nanocomposites [J]. RussianChemical Reviews, 2000, 69(1): 53-80.
    [59]SANCHEZ C, RIBOT F, LEBEAU B. Molecular design of hybridorganic-inorganic nanocomposites synthesized via sol-gel chemistry [J]. J. Mater.Chem. 1999,9(l):35-44.
    [60]李彬.溶胶一凝胶法及其在无机材料合成中的应用[J].材料科学与工程学报、1 990(02):26—30.
    [61]吴擘耀,张超灿,章文贡.有机/无机杂化材料及其应用[M1.北京:化学工业出版社,2005.
    [62]冯绪胜,刘洪国,郝京诚.胶体化学[M].北京:化学工业出版社.2005:10.
    [63] ASSINK R A, KAY B D. Sol-gel kinetics I. Functional group kinetics [J]. Journal of Non-Crystalline Solids, 1988, 99(2-3): 359-370.
    [64]刘毅飞.基于溶胶-凝胶的光功能性杂化膜层的制备与表征[D].长春:吉林大学化学学院,2008.
    [65]曹立新,袁迅道,万海宝.溶胶-凝胶法制备有机一无机纳米复合材料[J].应用化学,1998(03):1-5.
    [66]余桂郁,杨南如.溶胶-凝胶法简介第三讲溶胶一凝胶法工艺过程[J].硅酸盐通报,1993(06):60-66.
    [67]YOKO T, KAMIYA K, YUASA A, et al. Formation of H2O2 at the illuminatedTiO2 film electrode prepared by the Sol—Gel method and its chemical states [J].Journal of Electroanalytical Chemistry, 1986, 209(2): 399-404.
    [68]JENG R J, CHANG C C, CHEN C P, et al. Thermally stable crosslinked NLOmaterials based on maleimides [J]. Polymer, 2003, 44(1): 143-155.
    [69]BARKIEWICZ S, MINIEWICZ A, SAHRAOUI B. et al. Dynamiccharge-carrier-mobility-mediated holography in thin layers of photoconductingpolymers [J]. Applied Physics Letters, 2002, 81(20): 3705-3707.
    [70]CHAUMEL F, JIANG H, KAKKAR A, et al. Sol-gel materials for second-ordernonlinear optics [J]. Chemistry of Materials, 2001, 13(10): 3389-3395.
    [71]KLEIN L C. Sol-Gel Optical: Processing and Applications [M]. Boston: KluwerAcademic Publisher, 1994: 417.
    [72]MASAKI M, MASAYUKI S, MASAHIRO H. et al. Survey of enhanced.thermally stable, and soluble second-order nonlinear optical azo chromophores[J]. Chem In form, 2003, 34(24):607-612.
    [73] ASSINK R A, KAY B D, Sol-gel kinetics III. Test of the statistical reaction model[J]. Journal of Non-Crystalline Solids, 1988, 107(1): 35-40.
    [74] SAKKA S, KAMIYA K, Structure and properties of TiO2-SiO2 and TiO2-GeO2glasses [J]. Journal de Physique Colloques, 43(C9): 235-238.
    [75]PUYANE R. GONZALEZ-OLIVER C J R. Thin Film Deposition Using Sol-GelTechnology [J]. Proceedings of SPIE-The International Society for OpticalEngineering. 1983.401: 307-311.
    [76]刘关心,奚红霞,郑顺涛,等.Sol—Gel法制备键合型有机/无机复合非线性光学材料[J].离子交换与吸附,2004.20(3):260—266.
    [77]廖辉伟.正硅酸乙酯(TEOS)的sol—gel法应用研究[J].新技术新工艺·材料与表面处理.2004.4:45-47.
    [78]王秀华,孙红霞,刘守华,等.有机硅氧烷的水解-缩聚机理研究[J].胶体与聚合物,2006,24(1):9-10.
    [79]方俊鑫.曹庄琪,杨傅子.光波导技术物理基础[M].上海:上海交通大学出版社,1987.
    [80]国分泰雄.光波工程[M].北京:科学出版社,2002.
    [81]赵策洲,高勇.半导体硅基材料及其光波导[M].北京:电子工业出版社,1997.
    [82]马春牛,刘式墉.金属包层对脊形波导光学特性的影响[J].电子学报,1989,1(17):85—89.
    [83]佘守宪.导波工程物理基础[M].北京:北方交通大学出版社,2002.
    [84]鹿飞,梁琨,宋琼.聚合物电光调制器行波电极系统[J].光电子.激光.2005,16(03):267—270.
    [85]鹿飞.聚合物电光调制器行波电极系统研究[D].清华大学,2004:24—26.
    [86]薛良金.毫米波工程基础[M].哈尔滨:哈尔滨工业大学山版社,2004:115-143.
    [87]揣晓红.有机/无机杂化非线性材料的合成与调制器波导器件的制备[R].吉林大学博士后山站报告,2003:40-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700