镁合金管材热态内压成形失稳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管材热态内压成形是将模具和管材预热到温热状态,然后按照给定的加载路径把管材成形为所需形状的零件。它可以实现室温塑性低比强度高的轻质材料管材的成形,从而进一步减轻结构质量。本文建立了AZ31B镁合金管材在150℃~300℃温度范围内的本构模型,提出并建立了预测管材轴向起皱时临界应力的理论模型,研究了AZ31B镁合金管材在起皱过程中的应力应变状态、皱纹几何形状和壁厚分布变化规律,研究了温度、截面预成形和轴向补料预成形对AZ31B镁合金管材破裂的影响规律,分析了在管材热态内压成形过程中使用起皱件作为预成形坯及采用差温成形非均匀壁厚镁合金管材的变形机理。
     从室温至300℃温度区间、应变速率从0.001s-1到0.1s-1的条件下对AZ31B镁合金无缝挤压管材进行了轴向拉伸试验。结果表明:随温度升高或应变速率降低,镁合金管材的屈服强度和抗拉强度降低,总延伸率增加,均匀延伸率先增大后减小,在175℃或在0.01s-1的应变速率下达到相对最大值。采用Beckofen方程拟合得到了AZ31B镁合金管材的本构方程,该方程可体现镁合金管材流动应力随温度升高而下降的趋势。
     建立了管材在内高压成形过程中发生轴对称起皱失稳时临界轴向应力的数学模型,该模型能综合反映内压及应力比、管材几何尺寸及材料性能、温度场等对临界起皱应力的影响。参数分析的结果表明:当临界起皱应力函数在可发生起皱的应力比上限值处的偏导数为正时,临界起皱应力将随应力比的增大或内压的减小而增大,当该偏导数为负时,临界起皱应力将先减小后增大。当屈服强度和简化模量的相对变化量为负时,临界起皱应力将随之减小,当该相对变化量为正时,临界起皱应力将随之增大。
     研究了不同内压、不同补料量和不同温度下AZ31B镁合金管材起皱过程中的皱纹形状和几何尺寸、起皱位置和皱纹数量、壁厚分布等的变化规律,分析了起皱区域应力应变状态的变化,研究了在管材热态内压成形过程中使用起皱作为预成形坯成形大膨胀率零件的变形机理。结果表明:当内压与屈服强度比小于1 3倍厚径比时,初始屈服时管材壁厚有增加的趋势,反之,则管材壁厚有减薄的趋势。对于给定的内压与屈服强度比,温度越高,则壁厚增加的程度越小。随补料量的增加,皱纹上各点的应力轨迹在平面应力状态屈服轨迹上对应环向应变增加、轴向应变减小、厚向应变先增大后减小的过程。随补料量的增大,皱纹的外径不断增大、宽度不断减小且皱纹向中间移动。随内压的增大或温度的升高,皱纹的外径和宽度均不断增大且皱纹向中间移动。此外,温度越高、内压越大或补料量越大,起皱后管件壁厚整体的减薄越严重,壁厚分布越不均匀。采用起皱预成形坯是管材热态内压成形过程中成形大膨胀率零件的有效方法。如果材料的n值越大,或终成形零件相对于原始管材的最大膨胀率越大,可用更小的补料量来制取起皱预成形坯。
     研究了温度、截面预成形和轴向补料对AZ31B镁合金管材破裂失稳的影响,揭示了镁合金管材破裂压力和极限胀形率的变化规律,分析了采用差温温度场成形初始壁厚非均匀的镁合金管材的变形机理。结果表明:随着温度的升高,管材的初始屈服内压和胀破压力不断下降;管材发生破裂时的极限胀形率先增大后减小。随着胀形前对管材的径向下压量增大,管材的极限胀形率和胀破压力不断下降。随着胀形前管材轴向补料量的增大,管材破裂时的极限胀形率不断增大,有利于大变形量零件的成形。通过在初始壁厚较大的位置设置较高温度,在初始壁厚较小的位置设置较低温度,可以使管材的壁厚在胀形过程中更趋均匀。
Warm tube hydroforming is an advanced process for forming a tubular part by a designed loading path in the warm condition. Due to the improvement of formability at elvated temperature, light-weight metal tubes with high specific strength but low formability can be formed by this method. Therefore, the part weight can be reduced further. In this dissertation, the constitutive equation of AZ31B magnesium alloy tube among the temperature rangs of 150℃and 300℃was built based on experimental results. For forecasting the critical wrinkling stress of a tube, the theoretical model was proposed. The principles of stress states and strain states, wrinkles’shape and wall thickness of an AZ31B magnesium alloy tube during its wrinkling process were investigated. Influences of temperature, cross-section preforming and axial feeding preforming on the bursting of an AZ31B magnesium alloy tube were researched. Moreover, the feasibility about taking wrinkled parts as preforms and the feasibility about forming a tube with a nonuniform initial wall thickness in differential temperature fields were also analyzed.
     Axial tensile tests for a seamless AZ31B alloy tube were conducted when the processing temperature changed from 20℃to 300℃, and strain rate changed from 0.001s-1 to 0.1s-1. Results showed that the yielding strength and the tensile strength decreased as the processing temperature increased or the strain rate decreased. The total elongation increased, but the uniform elongation first increased and then decreased. The maximum uniform elongation was obtained at the condition of 175℃or 0.01s-1. Contitutive equation of the AZ31B magnesium alloy tube was obtained by fitting multiple regression Beckofen equation. The phenonman of work hardening can be reflected by this equation.
     Critical stress for the onset of axisymmetric wrinkling in tube hydroforming was derived. Influences of internal pressure and stress ratio, the geometries and properties of a tube and temperature field on the critical wrinkling stress were analyzed. Results showed that the critical wrinkling stress increased as the stress ratio increased when the partial derivative of the model function was positive. The critical wrinkling stress first deceased and then increased as the stress ratio increased when the partial derivative of the model function was negative. The critical wrinkling stress would decrease if the relative value between the yielding strength and the reduced modulus was negative. Otherwise, it would increase.
     Variety of wrinkles’shape and demension, wrinkling location and quantity, wall tickness distribution and stress and strain states during wirnkling were researched at different internal pressures, temperatures and feedings. The feasibility about taking wrinkled parts as preforms was analyzed. Results showed that the wall thickness in the initial yielding state would increase if the ratio of internal pressure to yielding strength was less than 1 3 times the thickness radius ratio. Otherwise, the wall thickness at initial yielding state would decrease. The increasing magnitude of the tube was lower if the processing temperature was higher. As feeding increased, the circumferential strain increased, but the axial strain decreased. The thickness strain first increased and then decreased. The outer radius of the wrinkles increased but the width decreased. The wrinkles moved vis-a-vis. As internal pressure or temperature was elevated, both the outer radius and the width of the wrinkles increased and the wrinkles also move vis-a-vis. In addition, it was a reasonable method to form parts with large expansion ratio by taking wrinkled parts as preforms.
     Influences of temperature, cross-section preforming and axial feeding preforming on the bursting of an AZ31B magnesium alloy tube were investigated. The feasibility about forming a tube with a nonuniform initial wall thickness in a differential temperature field was analyzed. Results showed that the internal pressure for initial yielding and bursting decreased as the processing temperature increased. The maximum expansion ratio first increased and then decreased. As the flatten displacement increased, both the maximum expansion ratio and the bursting internal pressure decreased. As the axial feeding increased before bulging, the maximum expansion ratio increased which was good for forming parts with large expansion ratio. Besides, the tube wall thickness could be changed more uniform if the tube section with higher initial wall thickness was at higher temperature.
引文
1苑世剑,刘钢,何祝斌,王小松,韩聪,滕步刚,徐永超.内高压成形机理与关键技术.数字制造科学. 2008, 6(4):1-33
    2 Kuo JL, Sugiyama S,Hsiang SH,Yanagimoto J. Investigating the characteristics of AZ61 Magnesium alloy on the hot and semi-solid compression test. Int J Adv Manuf Technol. 2006, 29(7-8):670-677
    3 Jain CC, Koo CH. Creep and corrosion properties of the extruded magnesium alloy containing rare earth. Mater Trans. 2007, 2:265-272
    4 Blawert C, Hort N, Kainer KV. Automotive applications of magnesium and its alloys.Trans Indian Inst Met.2004, 57(4):397-408
    5 Eliezer D, Aghion E, Froes FH. Magnesium science and technology. Adv Mat Performance 1998, 5:201-212
    6陈振华.镁合金.北京:化学工业出版社, 2004
    7 Medraj M, Parvez A. (2007)Analyse the importance of Magnesium-aluminium-strontium alloys for more fuel-efficient automobiles.Automotive 45-47
    8 H. Friedrich, B.L. Mordike, Magnesium technology, Springer, Germany, 2004
    9 R. L. Edgar, The magnesium industry– past, present and furture, Proceedings of 60th Annual World Magnesium Conference, May 11-12, 2003:1-4
    10 Das S. Magnesium for automotive applications: primary production cost assessment. JOM. 2003, 55(11):22-26
    11 A. Luo et al. Magnesium castings for automotive applications. JOM. 1995, 47(7):28-31
    12 G. S. Cole. Proc of Int. Symp. On Light Metals, ed. C. M. Bickert and R. I. L. Guthrie (Montreal, Canada: The Metallurgical Society of CIM, 1997), pp. 51-67
    13 Baril E, Labelle P, Pekguleryuz MO. Elevated temperature Mg-Al-Sr:Creep resistance, mechanical properties, and microstructure. JOM. 2003, 55(11):A34-A39
    14 Aghion E, Bronfin B, Von Buch F, Schumann S, Friedrich H. Newly developed magnesium alloys for powertrain applications. JOM. 2003, 55(11):A30-A33
    15 Novotny S, Geiger M. Process design for hydroforming of lightweight metalsheets at elevated temperatures. J Mater Process Technol. 2003, 138:594-599
    16 Polmear I J. Magnesium alloys and applications. Mater Sci Technol. 1994,10(1):1-14
    17彭岳华.镁合金材料在汽车中的应用.《汽车与配件》技术与市场. 2008, 9:46-47.
    18宋柯.镁合金在汽车轻量化中的应用发展.机械研究与应用. 2007, 20:14-16.
    19杨程,杜红星,刘晓平.镁合金在3C产品中应用现状及前景展望.铸造设备研究. 2005, 6: 46-49
    20陈礼清,赵志江.从镁合金在汽车及通讯电子领域的应用看其发展趋势.世界有色金属. 2004, (7): 12-20
    21杨利坚.本港镁合金压铸工业.金属工业.2001, (2):48-61
    22 E. Aghion, B. Bronfin, and I. Schwartz. Magnesium Applications in theAerospace Industry
    23 Magnesium Electron Limited, Magnesium Alloy Database, MATUS Databases(Engineering Information Co. Ltd., 1992)
    24 G. Craig. Use of WE-43A-T6 Magnesium in the MD600 Helicopter DriveSystem, in Ref. 8, p. 19
    25 F. H. Forces, D. Eliezer and E. Aghion. How to increase the use of magnesiumin aerospace application, Proceedings of the Second Israel International Conference on Magnesium Science an Technology, Dead sea, 2000: 43-49
    26郭学锋,魏建锋,张忠明.镁合金与超高强度镁合金.铸造技术. 2002, 23(3): 133-136
    27 Sitdikov, R.Kaibvshev. Dynamic Recrvstallization in Pure Magnesium. MaterTrans. 2001,42:1928-1937
    28 Gahvev, R.Kaibvshev, G Gottstein. Correlation of Plastic Deformation andDynamic Recrvstallization in Magnesium Alloy ZK60. Acta Mater. 2001, 49:1199-1207
    29 Sitdikov, R.Kaibvshev, T.Sakai. Dynamic Recrvstalhzation Based on Twinningin Coarse-grained Mg. Mater. Sci. Forum. 2003, (419-422): 521-526
    30 A. Mwembela, E.B. Konopleva and H.J. McQueen. Microstructuraldevelopment in Mg alloy AZ31 during hot working. Scripta materialia. 1997,37(11): 1789-1795
    31 J.C. Tan, MJ. Tan. Dynamic continuous recrystallization characteristics in twostage deformation of Mg-3Al-lZn alloy sheet. Mater. Sci. Eng. A. 2003, 339:124-132
    32 S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Eladi. Dynamic recrystallization inAZ31 magnesium alloy. Mater. Sci. Eng. A. 2007, 456: 52-57
    33 Hanlin Ding, Liufa Liu, Shigeharu Kamado, Wenjiang Ding and Yo Kojima.Study of the microstructure, texture and tensile properties of as-extruded A91 magnesium alloy. J. Alloys Compd. 2008, 456: 400-406
    34 Yoshida Y, Cisar L, Kamado S. Texture development of AZ31 magnesium alloysduring ECAE processing. Mater. Sci. Forum, 2003, 533: 419-422
    35 Ion S E, Humphreys F J, White S H. Dynamic recrystallization and thedevelopment of microstructure during the high temperature deformation of magnesium. Acta Metall. 1982,30(10): 1909-1919
    36 Yoshida Y, Cisar L, Kamado S et al. Effect of Microstructural Factors on TensileProperties of an ECAE-Processed AZ31 Magnesium Alloy. Mater Trans. 2003, 44: 468-475
    37 Su-Hai Hsiang, Jer-Liang Kuo. An investigation on the hot extrusion process ofmagnesium alloy sheet. J Mater Process Technol. 2003, 140: 6-12
    38梁书锦,王欣,刘祖岩,王尔德. AZ31镁合金不同温度挤压后组织性能研究.稀有金属材料与工程. 2009, 38(7): 1276-1279
    39尹从娟,张星,张治民.挤压温度和挤压比对AZ31镁合金组织性能的影响.有色金属加工. 2008, 37(1): 45-47
    40陈长江,李静媛,黄东男,陈雨来. AZ91镁合金挤压组织与性能的试验研究.轻合金加工技术. 2009, 37(4): 27-37
    41 Kim S H, You B S, Yim C D, et al. Texture and microstructure changes inasymmetrically hot rolled AZ31 magnesium alloy sheet. Materials Letters. 2005, 59(3): 876-880
    42 Watanabe H, Mukai T, Ishikawa K. Differential speed rolling of an AZ31magnesium alloy and the resulting mechanical properties. J Mater Sci. 2004, 39(1): 477-480
    43张青来,卢晨,朱燕萍,丁文江,贺继泓.轧制方式对AZ31镁合金薄板组织和性能的影响.中国有色金属学报. 2004, 14(3): 391-397
    44陈维平,陈宛德,詹美艳,李元元.轧制温度和变形量对AZ31镁合金板材组织和硬度的影响.特种铸造及有色合金. 2007, 27(5): 338-342
    45张文玉,刘先兰,陈振华.轧制路径对AZ31镁合金薄板组织性能的影响.特种铸造及有色合金. 2007, 27(9): 716-720
    46萨洛金.镁合金板料冲压工艺.机械工业出版社. 1958:15-17
    47 E.Doege, K.Droder. Sheet Metal Forming of Mg Wrought Alloys- Formabihtvand Process Technology. J Mater Process Technol. 2001, 115:14-19
    48 N.Ogawa, M.Shiomi, K.Osakada. Fundamental Study on Forging of MagnesiumAlloys. Proceedings of 2nd International Seminar on Precision Forging. Osaka May 15th-16th, 2000:219-222
    49 H.Takuda, T.Yoshii, N.Hatta. Finite-element Analysis of the Formability ofMagnesium-based Alloy AZ31 Sheet. J Mater Process Technol. 1999, (89-90): 135-140
    50吕炎,徐福昌,薛克敏.镁合金上机匣等温精锻工艺的研究.哈尔滨工业大学学报. 2000 32(4):127-129
    51 N.Ogawa, M.Shiomi, K.Osakada. Forming Limit of Magnesium Allov atElevated Temperatures for Precision Forging. Int J Mach Tool Manu. 2002, 42:607-614
    52 Gerrit Kurz. Heated Hvdro -Mechanical Deep Drawing of Magnesium SheetMetal. Magnesium Technology. 2004, Ed. by Alan. A. Luo. TMS, 2004: 67-71
    53 TAKUDA H, MORISHITA T, KINOSHITA T, SHIRAKAWA N. Modelling offormula for flow stress of a magnesium alloy AZ31 sheet at elevted temperatures. J Mater Process Technol. 2005, 164/165: 1258-1262
    54 Z. Gronostajski. The constitutive equations of FEM analysis. J Mater ProcessTechnol. 2000, 103(1-3): 40-44.
    55 Yong Qi Cheng, Hui Zhang, Zhen Hua Chen, Kui Feng Xian. Flow stressequation of AZ31 magnesium alloy sheet during warm tensile deformation. J Mater Process Technol. 2008, 208(1-3): 1-6
    56 A. Mwembela, E. B. Konopleva, H. J. McQueen. Scripta Materialia. 1997, 37:1789-1795
    57王忠堂,张士宏,齐广霞,王芳,李艳娟. AZ31镁合金热变形本构方程.中国有色金属学报. 2008, 18(11):1977-1982
    58王智祥,刘雪峰,谢建新. AZ91镁合金高温变形本构关系.金属学报. 2008,44(11): 1378-1383
    59 SELLARS C M, MCTEGART W J. On the mechanism of hot deformation.ACTA Metallurgica. 1966, 14: 1136-1138
    60 DANIEL J, WHITTENBERGER. The influence of grain size and compositionon slow plastic flow in FeAl between 1100 and 1400 K. Mater Sci Eng A. 1986, 77: 103-113
    61黄光胜,汪凌云,黄光杰,卢志文,宋美娟. AZ31镁合金高温本构方程.金属成形工艺. 2004, 22(2):41-44
    62苑世剑.轻合金液力成形技术进展.第九届全国塑性工程学术年会摘要集. pp.14-23
    63 F. Dohmann, C. Hartl. Tube hydroforming—research and practical application. JMater Process Technol, 1997, 71(1): 174-186
    64 F. Dohmann, C. Hartl. Hydroforming components for automotive applications.The Fabricator February, 1998, 28(2): 30-38
    65 J.F. Lin, SJ. Yuan. Influence of internal pressure on hydroforming of doublehandles crankshaft. Mater. Sci. Eng., A. 2009, 499(1): 208-211
    66苑世剑,王小松.内高压成形机理研究及其应用.机械工程学报. 2002, 38(12):12-15
    67 S. J. Yuan, G. Liu, X. R. Huang, X. S. Wang, W. C. Xie and Z. R. Wang.Hydroforming of typical hollow components. J Mater Process Technol, 2004, 151(1-3): 203-207
    68苑世剑.现代液压成形技术.北京:国防工业出版社, 2009
    69 SJ. Yuan, C. Han, X.S. Wang. Hydroforming of automotive structuralcomponents with rectangular-sections. Int J Mach Tool Manu, 2006, 46(11): 1201-1206
    70苑世剑,何祝斌,刘钢.轻合金热态液力成形技术.锻压技术. 2005, (6): 76-77
    71苑世剑,李洪洋,戴昆,郎利辉,王仲仁.轻量化结构内高压成形技术.材料科学与工艺.1999, 17:139-142
    72 Vollertsen E Hydrofornung of alununum alloys using heated oil. 9th InternationalConference on Sheet Metal. Leuven.2001
    73 Vollertsen E Challenges and chances of hydrofornung of alununum alloys.Chinese-Germany ultralight symposium 19th-20th. Beijing, China, 2001:71-79
    74 Siegert K, Jager S, Vulcan. M, Banabic D. An analytical approach ofsuperplastic bulging of magnesium sheet metal. ESAFORM 2003 conference, Salerno, 2003:163-167
    75 Siegert K, Jager S.Vulcan M. Pneumatic bulging of magneaum AZ31 sheetmetal at elevated temperatures. Annals of the CIRP .2003.(l):241-244
    76 Siegert K, Jager S. Warm forming of magneaum sheets. InternationalConference "New Developments in Sheet Metal Forming". Stuttgart. Germany. 2004: 11-12
    77 Klaus Siegert, Markus Haussermann, Bruno Losch, et al. Recent developmentsin hydroforming technology. J Mater Process Technol. 2000, 98: 251-258
    78 Mult E H. Geiger M. Sheet and Tube Hydroforming at Elevated Temperatures.International Conference on Hydroforming. Fellbach-Germany. on October, 28th to 29th, 2003: 259-278
    79 Novotny S. Geiger M. Process design for hydroforming of light-weight metalsheets at elevated temperatures. J Mater Process Technol. 2003. 138:594-599
    80 Vollertsen F. Hydroforming of aluminum alloys using heated oil. 9thInternational Conference on Sheet Metal. Leuven .2001
    81 The thirdfrontier company, wright Capital Project Fund, Proposal Abstract[EB/OL]. http://www.thirdfrontier. com/pdf/WCPF _ proposal_abstracts pdf, 2004
    82 Taylan Altan. Precision Forming Technology-Forging, Stamping andhydroforming[EB/OL].http://nsmwww.eng.ohio-state.edu/ Precision_Forming_ Proposal, pdf, 2003
    83 Taylan Altan. Warm forming of Aluminum alloys, Academic exercise orpractical opportunity?. http://www.thefabricator.com/ToolandDie/ToolandDie_ Article.cfm?ID =196, 2002
    84 Rajiv Shivpuri .Center for Excellence in Forging Technology. Overview,http://www-iwse.eng. ohio-state.edu/ ISEFaculty/shivpuri/CEFT/CEFTovervie watOSU.htm.[EB/OL] 2003
    85 Li Daoming, Ghosh Amit.Tensile deformation behavior of aluminum alloys atwarm forming temperatures. Mater. Sci. Eng. 2003. 352 (11-2): 279-286
    86 Li Daoming, Ghosh Amit. Xia Xiaoxin. Warm forming of Aluminum sheet-Areview[EB/OL]. http://msewww.engin. umich.edu/research/groups/ghosh/publications/2002
    87 Bolt P J. Lamboo NAPM .Rozier P J C M. Feasibility of warm drawing ofaluminum products. J Mater Process Technol. 2001, 115(1): 118-121
    88 Makoto SU GAMATA. Junichi KANEKO. Masahiro NUMA. Conical cup anderichsen testing of light metal sheets at elevated temperatures. 6th ICTP. 1999: 19-24
    89 Y Abe.M Yoshida. Warm forming of 5182 aluminum alloy sheets into doublesquare sinks. J. Jpn. Inst. Light Met. 1994,44: 240
    90 Gant UKLtd. Gant Advanced Manufacturing Technology. Fluid FormTMTechnology[EB/ OL]. http://www. giant-bicycles.com/uk/050.000.000/050.015. 200.asp 2002
    91 Yingyot Aue-u-lan, Jon Ander Esnaloa, David Guza, and Taylan Altan. Warmforming magnesium, aluminum tubes A high-temperature process for lightweight alloys.http://www.thefabricator.com/Hydroforming/Hydroforming_ Article.cfm?ID= 1463. 2006
    92 M. Liewald, R. Pop. Magnesium tube hydroforming. Materialwissenschaft undWerkstofftechnik. 2008, 39(4-5): 343-348
    93何祝斌,王小松,苑世剑,许爱军. AZ31B镁合金挤压管材的内高压成形性能.金属学报2007. 43(5):534-538
    94 J.A. Esnaola, I. Torca, L. Galdos, C. Garcia. Determination of the optimumforming conditions for warm tube hydroforming of ZM21 magnesium alloy. Journal of achievements in materials and manufacturing engineering. 2009. 32(2): 188-195
    95 Technological Guide Lines for ASE-Components. Wilnsdorf, Germany: SchulerHydroforming GmbH and Co., April, 1996
    96 TIMOSHENKO S. Theory of plates ana shells. New York: McGraw-Hill, 1959
    97 TIMOShENKO S. Theory of structure. New York: McGraw-Hill, 1945
    98 G. Nefussi. A. Combescure. Coupled buckling and plastic instability for tubehydroforming. Int. J. Mech. Sci. 2002, 44: 899-914
    99 Muammer Koc,Taylan Altan. Prediction of forming limits and parameters in thetube hydroforming process. Int J Mach Tool Manu. 2002, 42: 123-138
    100 Z. C. Xia. Failure Analysis of Tubular Hydroforming. J Eng Mater-T. 2001, 123:423-429
    101 Sungtae Kim, Youngsuk Kim. Analytical study for tube hydroforming. J Mater Process Technol. 2002, 128: 232-239
    102 E. Chu and Yu Xu. Hydroforming of aluminum extrusion tubes for automotive applications. Part I: buckling, wrinkling and bursting analyses of aluminum tubes, Int. J. Mech. Sci. 2004, 46: 263-283
    103吴洪飞,苑世剑,王仲仁.轴压柱壳弹塑性稳定性分析的通用方程推导. 2002, 34(1):35-39
    104 C. Back and M. Miyagawa. The plastic deformation and strength of circularcylindrical shells under internal pressure and/or axial force (1st report,experiment), Trans. Jpn. Soc. Mech. Eng. 1996, 32: 447-456 105Fuchizawa Proceedings of the 38th Japanese Joint Conference for theTechnology of Plasticity, 1987, 339
    106 F.C. Bardi, S. Kyriakides. Plastic buckling of circular tubes under axial compression—part I: Experiments. Int. J. Mech. Sci. 2006, 48: 830 - 841
    107 Shijian Yuan, Wenjian Yuan, Xiaosong Wang. Effect of wrinkling behavior on formability and thickness distribution in tube hydroforming. J Mater Process Technol. 2006, 177: 668-71
    108 Shijian Yuan, Xiaosong Wang, Gang Liu, Z.R. Wang. Control and use of wrinkles in tube hydroforming. J Mater Process Technol. 2007, 182: 6-11
    109 Hill, R. A general theory of plastic deformation and instability in thin-walled tubes under combined loading. J. Mech. Phys. Solids. 1996, 44: 2041-2057HOYamada, Y. Aoki, L. On the tensile plastic instability in axi-symmetric deformation of sheet metals. J. JSTP 1966, 7:393-406
    111 Xing, H.L. Makinouchi, A. Numerical analysis and design for tubular hydroforming. Int. J. Mech. Sci. 2001, 43: 1009-1026
    112 Jeong Kim, Sand-Woo Kim, Hoon-Jae Park, Beom-Soo Kang. A prediction of bursting failure in tube hydroforming process based on plastic instability. Int J AdvManuf Technol. 2006, 27: 518-524
    113 Jeong Kim, Sang-Woo Kim, Woo-Jin Song, Beom-Soo Kang. Analytical and numerical approach to prediction of forming limit in tube hydroforming. Int. J. Mech. Sci. 2005, 47: 1023-1037
    114M.Brunet, S.Boumaiza, G.Nefussi. Unified failure analysis for tubularhydroforming. J Mater Process Technol. 2004, 149: 217-225
    115 Mellor, PB. Tensile instability in thin-walled tubes. J. Mech. Eng. Sci. 1962, 4: 251-56
    116 J.Kim, B.S.Kang, S.M.Hwang, HJ.Park. Numerical prediction of bursting failure in tube hydroforming by the FEM considering plastic anisotropy. J Mater Process Technol. 2004, 153: 544-549
    117Chu, E., Xu, Y > Davies, R.W ,Grant, G.J., 2006. Failure predictions foraluminum tube hydroforming processes. SAE Technical Paper Series, 2006-01-0543
    118 Hillier, M.J., 1962. Tensile plastic instability under complex stress. Int. J. Mech.Sci. 1962, 5: 57-67
    119E. Chu.Yu Xu. Influences of generalized loading parameters predictions foraluminum tube hydroforming on FLD. J Mater Process Technol. 2008, 196:1-9
    120 M. Jain, J. Allin, D. J. Lloyd. Fracture limit prediction using ductile fracture criteria for forming of an automotive aluminum sheet. Int J Mech Sci. 1999, 41(10): 1273-1288
    121 LEMA ITRE J.Continuous damage mechanics model for ductile fracture. J Eng Mater-T. 1985, 107(1): 83-89
    122 WU Shichun, L IANG Hua. A kinetic equation for ductile damage at large p lastic strain. J Mater Process Technol. 1990, 21(3): 295-302
    123 OYANE M, SATO T, OKMIOTO K.Criteria for ductile fracture and their app lications. Journal of Mechanical Working Technology. 1980, 4(1):65-81
    124COCKCROFT M G, LATHAM D J. Ductility and the workability of metals. Journal of the Institute of Metals. 1968, 96(2):33-39
    125 BROZZO P, DELUCA B, REND INA R. A new method for the p rediction of formability limits in metal sheets[C]//Proceedings of the seventh B iennial Conference of the International Deep D raw ing Research Group. Amsterdam,Netherlands:[s.n.], 1972:28-37
    126 CLIFT S E, HARTLEY P, STURGESS C E N. Fracture p rediction in p lastic deformation processes. Int J Mech Sci,1990,32(1): 1-17
    127 ATKINS A G. Possible explanation for unexpected departures in hydrostatic tension-fracture strain relations. Metal Science. 1981, 15(2):81-83
    128 TAKUDA H, MOR I K, HATTA N. The application of some criteria for ductilefracture to the prediction of the forming limit of sheet metals. J Mater Process Technol. 1999, 95(1-3): 116-121
    129方刚,曾攀.金属板材冲裁过程的有限元模拟.金属学报. 2001, 37(6):653-657
    130Fahrettin Ozturk, Daeyong Lee. Analysis of forming limits using ductile fracture criteria. J Mater Process Technol. 2004, 147(3): 397-404
    131 Jeong Kim, Sung-Jong Kang, Beom-Soo Kang. A prediction of bursting failure in tube hydroforming processes based on ductile fracture criterion. Int J Adv Manuf Technol. 2003, 22: 357-362
    132 Woo-Jin Song, Sang-Woo Kim, Jeong Kim, Beom-Soo Kang. Analytical and numerical analysis of bursting failure prediction in tube hydroforming. J Mater Process Technol. 2005, 164-165: 1618-1623
    133 Li-Ping Lei, Jeong Kim, Beom-Soo Kang. Bursting failure prediction in tube hydroforming processes by using rigid-plastic FEM combined with ductile fracture criterion. Int J Mech Sci. 2002, 44:1411-1428
    134 R. Hill. On discontinuous plastic states with special reference to localized necking in the sheet. J. Mech. Phys. Solids. 1952, 1:19-30.
    135 S.J. Liang, Z.Y. Liu, E.D. Wang. Simulation of extrusion process of AZ31 magnesium alloy. Mater. Sci. Eng., A. 2009, 499: 221-224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700