生物柴油磁性纳米固体碱催化剂的构建及作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前生物柴油生产技术主要采用的是液体碱催化酯交换转化技术,该技术存在对设备腐蚀性强、催化剂不能回收、污染环境等问题。而固体催化转化技术是有效解决途径之一,但存在催化剂与产物分离困难、催化剂活性不高等问题。磁性纳米固体催化剂实现了将优异性能的磁性材料与活性物质的组装,具有催化活性高、可重复使用、回收快速简便等优点,近年来成为催化领域研究热点之一。
     本文针对生物柴油绿色催化转化中存在的关键技术问题,设计制备了磁性纳米固体碱催化剂Na_2O SiO_2/Fe_3O_4,采用多种手段对其进行了表征,结果表明其催化性能优于目前国内外报道的同类催化剂;研究建立了磁性纳米固体碱催化油脂酯交换反应动力学模型,并探讨其催化机理;首次将磁性纳米固体碱催化剂应用于磁稳定床中制备生物柴油,通过与现行工艺对比,结果证明磁稳定床可显著提高催化剂的使用效率,降低催化剂的消耗。具体研究结果如下:
     1、优化确定了共沉淀法制备纳米磁性物质Fe_3O_4的工艺条件,并制备出具有较好磁性和顺磁性的Fe_3O_4纳米粒子。
     2、筛选优化确定模数为1的硅酸钠溶液为最合适的固体碱活性物质前体,并采用热分析、X射线衍射、红外表征后得出其碱活性位点为Si-O-Na键。
     3、研究确定了催化剂的最佳制备方法并对其工艺参数进行了优化,采用多种手段对其结构和性能进行表征,制备得到平均粒径87.6nm、比表面积为107.9m~2/g的磁性纳米固体碱催化剂Na_2O SiO_2/Fe_3O_4。
     4、优化了在釜式搅拌反应器中磁性纳米固体催化剂催化棉籽油酯交换制备生物柴油的工艺条件,首次转化率98%以上,催化剂反复使用11次后,催化活性90%以上;优化并确定了催化剂最佳再生工艺参数,再生催化剂首次转化率98%以上,重复使用8次后,活性90%以上,催化剂的回收率为88.3%,磁回收率为86.4%。与国内外相关研究对比,本文研制的催化剂活性高、使用周期长、反应条件温和,反应时间短。
     5、以棉籽油为原料的酯交换生成反应动力学研究结果表明,主要产物的生成反应分为初始阶段、增长阶段和平衡阶段。酯交换反应速率对棉籽油浓度由初始阶段的拟0.5级反应,逐步转变为增长阶段的拟2级反应,最终转化为平衡阶段的零级反应。初始阶段十六酸甲酯、十八酸甲酯和二十酸甲酯反应活化能分别为103.4kJ/mol、154.4kJ/mol、102.6kJ/mol;增长阶段分别为50.4kJ/mol、52.2kJ/mol、43.2kJ/mol。探讨了磁性纳米固体碱Na_2O SiO_2/Fe_3O_4催化棉籽油与甲醇的酯交换反应机理。
     6、研究了将磁性纳米固体碱催化剂应用于磁稳定床中催化酯交换制备生物柴油,结果表明,在优化的操作条件下,催化剂连续使用210h后,催化活性90%以上。
Currently, liquid bases are the primary catalysts used in biodiesel industry, which may bring about problems such as equipment corrosion, catalyst non recyclability, environmental pollution and complex processing. At the same time, nano scale magnetic solid base catalysts, assembled from magnetic materials and living matter, have become one of the research focuses in recent years, due to its high catalytic activity, recyclability, and rapid recycling, etc.
     In this study, nano scale magnetic solid catalyst Na_2O·SiO_3/Fe_3O_4 was produced which aimed to these problems in key technical environmentally friendly for biodiesel production, and the structure and properties of the catalyst were analyzed by various technologies. The result showed that its catalytic performance is better than the same catalysts reported at home and broad. The transesterification reaction kinetics models were established and the mechanism of transesterification reaction was speculated.The nano scale magnetic solid base catalyst was applied for the first time in the magnetically stabilized bed reactor for biodiesel production. Compared with the existing reaction mode, transesterification technics employing magnetically stabilized bed reactor enhanced reaction efficiency of nano scale magnetic catalyst, and reduced the loss of catalyst. The main results are as follows:
     1. Nano scale Fe_3O_4 was prepared by coprecipitation method and the process was optimized. The nano scale Fe_3O_4 particle from our lab has good specific saturation magnetization and paramagnetism.
     2. The catalytic activity of sodium silicate was the best when SiO_2 and Na_2O modulus was one through filtrating and optimizing. The results from thermogravimetric analysis, X Ray Diffraction and Infrared spectra indicated that the active site was Na O Si.
     3. The best preparing method and process of the catalyst were confirmed and optimized, the structure and properties of the catalyst were analyzed by various technologies. The nano scale catalysts with mean diameter of 87.63 nm and BET of 107.9 m2/g were prepared.
     4. Process conditions of making biodiesel via the transestrification from cottonseed oil and methanol were investigated in the autoclave stirred reactor. The first transesterification rate exceeded 98% and the catalytic activity exceeded 90% after eleven batches under the optimized conditions. The first catalytic activity of the regenerated catalyst exceeded 98%. The recycle technic of catalyst was optimized, and the catalytic activity of regenerated catalyst exceeded 90% after eight batches, with a mass recycle rate of 88.27% and a magnetism recycle rate of 86.44%. Compared with the results in relevant research, the transesterification reaction conditions using Na_2O·SiO_3/Fe_3O_4 as catalyst were moderate, the catalytic activity of the catalyst was high, and the reaction time was short.
     5. The transesterification reaction kinetics results from cottonseed oil and methanol showed that the reaction can be divided into the initial, growing and equilibrium stages. The reaction orders in the different stages were 0.5, 2.0 and 0 respectively. In the initial stage, the activation energies of C16 methyl esters, C18 methyl esters and C20 methyl esters were 103.41kJ/mol, 154.39kJ/mol and 102.58kJ/mol respectively. In the growing stage, the activation energies were 50.41kJ/mol, 52.17kJ/mol and 43.16kJ/mol respectively. Based on these results, the mechanism of transesterification reaction was speculated.
     6. Biodiesel was prepared with transesterification from cottonseed oil and methanol in the magnetically stabilized bed reactor. The results showed that the catalytic activity of the catalyst exceeded 90% after 210 hours.
引文
1.毕艳兰.油脂化学.北京:化学工业出版社,2005,12~13.
    2.曹德光,苏达根,宋国胜.低模数硅酸钠溶液的结构及其键合反应特性.硅酸盐学报,2004,32(8):1036~1039.
    3.崔建华.脂肪酸甲酯制备表面活性剂的研究与生产现状.河南化工,2009,4:3~6.
    4.崔士贞,刘纯山.固体碱催化大豆油酯交换反应的研究.工业催化,2005, 13(7):32~35.
    5.陈文伟.乌桕籽油制备生物柴油的研究.[硕士学位论文].南昌:南昌大学,2006.
    6.陈伟立.高油价成为生物柴油发展的加速剂——访中国科学院、中国工程院院士闵恩泽教授.中国石化,2005,7:18~19.
    7.陈忠明,陶克毅.固体碱催化剂的研究进展.化工进展,1994(3:12~18.
    8.陈声宗,罗爱民,杨方文.SO_4~(2-) /ZrO_2固体超强酸的失活与再生.工业催化,1994,(3):12~16.
    9.党辉,张宝善.固定化酶的制备及其在食品工业的应用.食品研究与开发,2004,6(25):68~72.
    10.段雪,娇庆泽,李蕾.均分散超细阴离子层状材料的新合成方法.中国,发明专利,CN 9911385, 1999年9月14.
    11. E.P.Wohlfarth.铁磁材料(磁有序物质特性手册卷Ⅱ).北京:电子工业出版社,1993,42.
    12.高鹏,颜姝丽,鲁厚芳,等.氧化锌催化菜籽油制生物柴油.工业催化,2006,14(11):45~48.
    13.郭萍梅,黄凤洪,赵军英,等.固体碱催化剂(K2O/C)的制备及其催化酯交换反应.中国油料作物学报,2009,31(1):81~85.
    14.黄忠兵,唐芳琼.磁性纳米包覆微球的制备和磁性表征.无机化学学报,2004,20(3):363~366.
    15.黄凤洪,黄庆德.生物柴油制造技术.北京:化学工业出版社,2009,5.
    16.贾庆明,郑茂盛,王亚明.性纳米催化剂SO_4~(2-) /TiO_2/Fe_3O_4的制备及表征.西安交通大学学报,2005,39(7):779~782.
    17.金钦汉,戴树珊,黄卡玛.微波化学.北京:科学出版社,2001,25.
    18.李云峰.美国生物燃料发展状况及其展望.农业展望,2009,5(6):39~43.
    19.李为民,郑晓林,徐春明,等.固体碱法制备生物柴油及其能.化工学报,2005,56(4):711~716.
    20.李玉芹,曾虹燕.碳酸根型镁铝复合氢氧化物的合成和表征及其催化性能.工业催化, 2005,13(12):37~42.
    21.李成魁,祁红,璋严彪.磁性纳米四氧化三铁颗粒的化学制备及应用进展.上海金属,2009,31(4):54~58.
    22.李凤铉.磁性纳米固体超强酸催化剂的合成及性能研究.[硕士学位论文].哈尔滨:哈尔滨工程大学,2004.
    23.李凤生,罗付生,杨毅,等.磁响应纳米四氧化三铁/壳聚糖复合微球的制备及特性.磁性材料及器件,2002,33(6):1~4.
    24.李明荣.水玻璃模数的快速测定法.日用化工工业,2001,(2):1~2.
    25.李为民,徐春明.大豆油脚浸出油制备生物柴油及性能研究.中国油脂,2006,31(4):68~71.
    26.李绍芬.化学与催化反应工程.北京:化学工业出版社,1982: 476~479.
    27.刘学军,朴香兰,王玉军,等.甲醇钙催化菜籽油酯交换反应制备生物柴油的研究.石油炼制与化工,2007,38(10):21~24.
    28.刘先桥,官月平,邢建民,等.磁性微球的制备及在细胞分离中的应用.化学通报,2004,67(10):723~728。
    29.鲁新环,夏清华.磁性纳米材料在分离及催化中的应用.石油化工,2008,37(12):1225~1235.
    30.黎汉生,张东翔.磁性催化剂研究进展.材料导报,2005,19(8):5~9.
    31.吕亮,吾国强,汪金良,等.新型固体碱催化剂在油脂酯交换反应中的应用.皮革化工,2001,18(3):37~40.
    32.闵恩泽,张利雄.生物柴油产业链的开拓.北京:中国石化出版社,2006,12:38~40.
    33.梅长松.磁性纳米固体超强酸的合成及催化性能研究.[硕士学位论文].哈尔滨:哈尔滨工程大学,2002.
    34.孟鑫,辛忠.KF/CaO催化剂催化大豆油酯交换反应制备生物柴油.石油化工,2005,34(3):282.
    35.欧阳天生,张俊峰,傅学友.一种无水偏硅酸钠的制备方法.中国专利:CN 101348256A,2009:01~21.
    36.裴培,郑风田,崔海兴.中国生物柴油发展的现状、潜力与障碍分析.林业经济,2009,3:65.
    37.齐泮仑,张国静,曹亦农,等.中国生物柴油大规模发展应首先解决的问题.化工中间体,2009,7:6~11.
    38.齐荣.磁性纳米固体碱催化剂的结构设计与性能研究.[硕士学位论文].北京:北京化工大学,2003.
    39.饶通德.氧化铁磁性纳米粒子的表面修饰及应用.化工文摘,2009,2:59~62.
    40.孙志杰,贺天民,孙昕,等.用于近代物理教学的振动样品磁强计.物理实验,2007,27(4):37~39。
    41.孙锦宜.工业催化剂的失活与再生.北京:化学工业出版社, 2005.5.
    42.舒静,任丽丽,张铁珍,等.微波辐射在催化剂制备中的应用.化工进展. 2008,27(3):352~357.
    43.田部浩三,御园生诚,小野嘉夫,等著.郑禄彬,王公慰,张盈珍,等译.新固体酸和碱及其催化作用.北京:化学工业出版社, 1992,223~225.
    44.王君,杨飘萍,张密林,等.磁性固体超强酸SO_4~(2-) /ZrO_2 Al_2O_3 Fe_3O_4的制备与性能研究.无机化学学报,2007,23(7):1137~1142.
    45.王明华.超细磁性固体超强酸催化合成乳酸乙酯的研究.[硕士学位论文].天津:河北工业大学,2005.
    46.王威,宋雅娟,周玮,等.掺锆磁性纳米固体超强酸SO_4~(2-) /TiO_2/Fe_3O_4的制备与表征.化学通报,2006,69(6):421~424.
    47.王建昕,于超.用含氧生物燃料降低柴油机排放的研究——生物柴油在汽车中的应用.2009年中国生物柴油行业发展研讨会.
    48.王建勋,李鹏.美国和加拿大动物油脂及回收油脂资源及其在本土生物柴油行业中的应用. 2009年中国生物柴油行业发展研讨会.
    49.王玫,宋芳,汪世龙,等.磁性纳米颗粒Fe_3O_4固定化纤维素酶的光谱学研究.光谱学与光谱分析,2006,26(5):895~898.
    50.邬国英,林西平,巫森鑫,等.棉籽油间歇式酯交换反应动力学研究.高等化学工程学报,2003,3(17):314~318.
    51.谢文磊.强碱阴离子交换树脂多相催化油脂的酯交换.应用化学,2001,18(10):846~848.
    52.谢何融.纳米磁性固体酸催化剂和生物柴油的制备研究.[硕士学位研究论文].南昌:南昌大学,2007.
    53.薛群基,徐康.纳米化学.化学进展,2000,12 (4):431~442.
    54.徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社,2001:523~542.
    55.杨志斌,李德安.能源植物制备生物柴油的研究现状及发展趋势.湖北林业科技,2009,158:40~42.
    56.杨廷芝.非均相油脂酯交换法制备生物柴油工艺研究.四川理工学院学报(自然科学版).2005, 18 (3): 32~34.
    57.杨玉东,于忠淇,潘卫三,等.超顺磁性造影剂的研究进展.现代生物医学进展,2007,7(9):1387~1390.
    58.杨永辉.磁性微球形氧化铝载体与催化剂制备及性能研究.[硕士学位研究论文].北京:北京化工大学,2006.
    59.杨辉,梁逵,胡军,等.微波辐照石油焦制备双电层电容器用活化炭.电子元件与材料. 2007, 26(7): 11~13.
    60.杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社,2000.
    61.尹克荣,亢淑娟,丁凯.生物柴油的现状及存在的问题.农业装备与车辆工程,2009,5:3~7.
    62.尹芳华,李为民,姚超,等.钙基负载型固体碱催化菜籽油酯交换反应动力学.粮油加工,2008,11:55~59.
    63.俞丹群,刘纯山,崔士贞.制备生物柴油的固体碱催化剂的研究.工业催化,2005,13:368~370.
    64.资讯集粹.美开发低成本水藻生物柴油生产法.中国石油与化工,2009(5):64~67.
    65.赵军英,黄凤洪,黄庆德,等.生物柴油磁性碱催化剂的载体制备条件对活性的影响.中国油脂,2008,33(6)40~43.
    66.张汝冰,刘宏英,李风生.纳米材料在催化领域的应用及研究进展.化工新型材料,1999(5):3~5.
    67.张冠东,官月平,单国彬,等.纳米Fe_3O_4颗粒的表面包覆及其在磁性氧化铝载体制备中的应用.过程工程学报,2002,2(4):319~324.
    68.张汝冰,刘宏英,李风生.纳米材料在催化领域的应用及研究进展.化工新型材料,1999,5:3~5.
    69.张海永,景晓燕,张密林.磁性镁铝水滑石固体碱的制备与表征.应用科技,2002,29(3):61~63.
    70.张慈,徐彦红,Evans D G,等.磁性纳米固体碱催化剂MgAl OH LDHs/NiFe_2O_4的合成、表征与性能研究.化学学报,2004,62(8):750~756.
    71.张家仁,白荣献,李光兴.KF/Al_2O_3催化菜籽油与甲醇合成生物柴油的研究.现代化工,2006,26(11):46~48.
    72.张鑫,李鑫钢,姜斌.四氧化三铁纳米粒子合成及表征.化学工业与工程,2006,23(1):45~48.
    73.张进平,雷振天,应浩,等.钯-炭催化剂制备与回收工艺及设备设计.林产化工通讯,1996,(5):12~16.
    74.郑畅,赵军英,郭萍梅,等.硅酸钠固体催化剂的制备及催化酯交换反应.中国油脂,2009(5):42 45.
    75.邹涛.磁性纳米固体酸催化剂的制备及催化性能研究.[硕士学位论文].北京:北京化工大学,2003.
    76.仲鸣.固体碱催化制备生物柴油研究.[硕士学位论文].南京:东南大学,2007.
    77.朱华平,吴宗斌,陈元雄,等.固体超强碱氧化钙催化制备生物柴油及其精制工艺.催化学报,2006,27(5):387~391.
    78.朱炳辰.化学反应工程(第三版).北京:化学工业出版社,2001:46~50.
    79. Ahmad Zuhairi Abdullah, Noraini Razali, Keat Teong Lee. Optimization of mesoporous K/SBA 15 catalyzed transesterification of palm oil using response surface methodology. Fuel Processing Technology, 2009, 90(7 8):958~964.
    80. A. Jitianu, M. Raileanu, M. Crisan, et al. Fe_3O_4 SiO_2 nanocomposites obtained via alkoxide and colloidal route. Journal of Sol Gel Science and Technology, 2006,40(2 3):317~323.
    81. Allen C.A.W., Watts K.C., Ackman R.G. Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel, 1999, 78(2):1319 1326.
    82. Al Sayari S.,Carley A. F.,Taylor S.H.,et a1.Au/ZnO and Au/Fe_2O_3 catalysts for CO oxidation at ambient temperature:comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation.Topics in Catalysis,2007,44(1 2):123~128.
    83. Ana C.A.R., JoséS.G., Josefa M.M.R., et a1. Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catalysis Today, 2009,in press.
    84. An hui L., Salabas E.L., Schiith F.. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 2007,46:1222~1244.
    85. Ayato K,Kawashima,Koh Matsubara,et a1. Development of heterogeneous base catalysts for biodiesel production. Bioresource Technology,2008(9),99:3439 3443.
    86. Ayato K, Koh M, Katsuhisa H. Development of heterogeneous base catalysts for biodiesel production. Bioresource Technology, 2008, (99): 3439 3443.
    87. Azhar Uddin,Tsuda H.,Wu S.,et a1. Catalytic decomposition of biomass tars with iron oxide catalysts. Fuel, 2008,87(4 5):451~459.
    88. A.Zieba,L.Matachowski,J.Gurgul, et a1.Transesterification reaction of triglycerides in the presence of Ag doped H3PW12O40. Journal of Molecular Catalysis A: Chemical, 2009,In Press, Corrected Proof.
    89. Bancouart S, Vanhove C. Glycerol transesterifica!tion with methyl stearate over solid basic catalysts I. Relationship between activity and basicity.Applied Catalysis A: General, 2001, 218: 1 11.
    90. Barnard T M,Leadbeater N E,Boucher M B,et a1.Continuous flow preparation of biodiesel using microwave heating. Energy Fuels,2007,21(3):1777~1781.
    91. Benjamin O. Aderemi, B.H. Hameed. Alum as a heterogeneous catalyst for the transesterification of palm oil. Applied Catalysis A: General, 2009,370(1 2):54~58.
    92. Brahme H, Doralswamy L K. Modeling of Slurry reaction and hydrogenation of glucose on raney nickel. Industrial & Engineering Chemistry Process Design and Development, 1976, 15(1): 130~132.
    93. Carla Cristina C.M. Silva, Nielson F.P. Ribeiro, Mariana M.V.M. Souza, et a1..Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst. Fuel Processing Technology,2009,In Press, Corrected Proof.
    94. Carmen Stavarache, M Vinatoru, R Nishimura, et al. Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrasonics Sonochemistry, 2005, 12(5):367 372.
    95. Chawalit N., Prangsinan T., Kunchana B.. Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Applied Catalysis A: General, 2008, 341(1 2):77~85.
    96. DoradoM P, Ballesteros E, Almeida J A, et al. An alkali catalyzed transesterificat ion process for high free fatty acid waste oil. Transactions of ASAE. 2002, 45(3):5259.
    97. Daniel R. de Mendon?a, Jhosianna P.V. da Silva, Rusiene M. de Almeida, et a1. Transesterification of soybean oil in the presence of diverse alcoholysis agents and Sn(IV) organometallic complexes as catalysts, employing two different types of reactors. Applied Catalysis A: General, 2009,365(1):105 109
    98. Demisbtas A. Biodiesel from vegetable oil via transesterification in supercritical methanol. Energy Conversion and Management. 2002,43(17):2349 2356.
    99. Diandra L,Leslie P. Magnetic Properties of Nanostructured Materials.Chem Mater,1996,8(8):1770 1783.
    100. Dossat V,Combes Marty A. Continuous enzymatic transesterification of high oleic sunflower oil in a parked bed reactor: influence of the glycerol production. Enzyme Microb Tech, 1999, 25(3 5):194 200.
    101. D. Royon, M. Daz, G. Ellenrieder, et a1. Enzymatic production of biodiesel from cotton seed oil using t butanol as a solvent. Bioresource Technology, 2007,98(3):648~653.
    102. Eiji minsmi, Shiro Saka. Kinetics of hydrolysis and methyl esterification for biodieselproduction in two step supercritical proces. Fule, 2006, 85: 2479~2483.
    103. Freedman B, Butterfield R O, Pryde E H. Transesterification kinetics of soybean oil.JAm Oil Chem Soc, 1986, 63(10): 1375~1380.
    104. Galen J.S.,Mohanprasad A. D., Ericjdoskocil. Transesteriftcation of soybean oil with zeolite and metal catalysts. Applied Catalysis A:General, 2004, 257: 214~223.
    105. Goya G F. Handling the particle size and distribution of Fe_3O_4 nanoparticles throughball milling. Solid State Commun, 2004, 130: 783~787.
    106. Georges G., Florence V.. Polyratrogen solid bases as immobilized catalysts for the transesteriftcation of vegetable oil.Surface Chemistry and Catalysis, 2000, 3: 563~567.
    107. Granados M. L, Zafra M D, Alonso D M, et al. Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 2007, 73 (3 4): 314~326.
    108. Hak Joo Kim, Bo Seung Kang, Min Ju Kim, et a1. Transesterification of vegetable using heterogeneous base catalyst. Catalyst Today, 2004, 65(93 95): 315~320.
    109. Huang H J. Practical Computer simulation of chemical processes .Beijing: Chemical Industry Press, 2004.201.
    110. Hui Sun, Yuqi Ding, Jinzhao Duan, et a1.Transesterification of sunflower oil to biodiesel on ZrO_2 supported La2O3 catalyst. Bioresource Technology, 2010, 101(3): 953~958.
    111. I. Luki?, J. Krsti?, D. Jovanovi?, et a1. Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil. Bioresource Technology, 2009, 100(20):4690~4696.
    112. J. Link Shumaker, Czarena Crofcheck, S. Adam Tackett, et a1. Biodiesel synthesis using calcined layered double hydroxide catalysts. Applied Catalysis B: Environmental, In Press, 2008,82(1 2):20~23.
    113. Jiang W., Kim B.Y.S, Rutka J.T., et al. Advances and challenges of application as a contrast agent for MR imaging of the liver.Radiology,1988,168: 297~301.
    114. Jitputti,Jaturong,Kitiyanan,et a1.Transesterification of crude palm kernel oil an d crude coconut oil by diferent solid catalysts.Chemical Engineering Journal,2006,ll6(1):61~66.
    115. Jonggol, Tantirungrotechai, Pannapat, et a1. Synthesis, characterization, and activity in transesterification of mesoporous Mg–Al mixed metal oxides. Microporous and Mesoporous Materials, 2009, In Press, Corrected Proof.
    116. Juan Miguel Rubio Caballero, JoséSantamaría González, Josefa Mérida Robles, et a1. Calcium zincate as precursor of active catalysts for biodiesel production under mild conditions. Applied Catalysis B: Environmental, 2009, 91(1 2):339~346.
    117. Kouzu M,Kasuno T,Tajika M,et a1. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesol production.Fuel,2008,87:2798.
    118. Lee J.H., Jun Y. W.,Yeon S.I.,et a1. Dual Mode nanoparticle probes for high performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew. Chem. Int.,2006, 45, 8160~8162.
    119. Leilei Xu, Wei Li, Jianglei Hu, et a1. Biodiesel production from soybean oil catalyzed by multifunctionalized Ta2O5/SiO2 [H3PW12O40/R] (R = Me or Ph) hybrid catalyst. Applied Catalysis B: Environmental, 2009, 90(3 4):587~594.
    120. Lin C R,Chu Y M,Wang S C.Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction.Mater. Lett, 2006,60:447~450.
    121. Liu x J,He H Y,Wang Y J,et a1. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst.Fuel,2008,87:216.
    122. Lopez G M,Zafra P M D,Martin A D,et al. Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B:Environmental, 2007, 73(1 2): 317~326.
    123. Lotero E,Liu Y J,Lopez D E,et a1.Synthesis of biodiesel via acid catalysis.Ind Eng Chem Res,2005,44(14):5353~5356.
    124. Lu A H,Salabas E L,Schuth F. Magnetic nanaoparticles:synthesis,production,functionalization,and application. Angewandte Chemie International Edition, 2007, 46: 1222~1244.
    125. Ma F R,Hanna M A. Biodiesel production:a Review.Bioresour Techenol, 1999, 70(1):1~15.
    126. Marco T, Rodiguez, Heriberto P. Sodium metasilicate (Na_2SiO_3): A thermo kinetic analysis of its CO_2 chemical sorption. Thermochimica Acta, 2008, 473 (1 2): 92~95.
    127. Marco T, Rodiguez, Heriberto P. Sodium metasilicate (Na_2SiO_3): A thermo kinetic analysis of its CO_2 chemical sorption. Thermochimica Acta, 2008, 473 (1 2): 92~95.
    128. Masoud Zabeti, Wan Mohd Ashri Wan Daud, Mohamed Kheireddine Aroua. Biodiesel production using alumina supported calcium oxide: An optimization study.Fuel Processing Technology, 2009,In Press, Corrected Proof.
    129. M.A.Olutoye, B.H. Hameed. KyMg~(1-x)Zn~(1+x)O_3 as a heterogeneous catalyst in the transesterification of palm oil to fatty acid methyl esters . Applied Catalysis A: General, 2009,In Press, Corrected Proof.
    130. Masoud Zabeti, Wan Mohd Ashri Wan Daud, Mohamed Kheireddine Aroua. Optimization of the activity of CaO/Al_2O_3 catalyst for biodiesel production using response surface methodology. Applied Catalysis A: General, 2009, 366(1):154~159.
    131. Meher L C, Vidya S D, Naik S N. Technical aspects of biodiesel production by transesterification—a review.Renew Sustain Energ Rev,2006, 10(3): 248~268.
    132. M. Kim, S. Yan, S.O. Salley, et a1. The effect of sodium on the catalytic activity of ZnO–Al_2O_3/ZSM 5 and SnO–Al2O3/ZSM 5 for the transesterification of vegetable oil with methanol.Catalysis Communications, 2009, 10(14):1913~1919.
    133. M?nica C.G.A, Inmaculada J.U, JoséS.G., et al. CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Applied Catalysis A: General, 2008, 334(1 2):35~43.
    134. M.S.Kotwal, P. S. Niphadkar, S. S. Deshpande, et a1. Joshi. Transesterification of sunflower oil catalyzed by flyash based solid catalysts . Fuel, 2009, 88(9):1773~1778.
    135. Naomi S. K., Hiroki H., Homare Kuribayashi, et a1. Biodiesel production using anionic ion exchange resin as heterogeneous catalyst. Bioresource Technology, 2007, 98(2): 416~421.
    136. Neouze M.A., Schubert U.. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte fur Chemie, 2008,139: 183~195.
    137. Noureddini H, Zhu D. Kinetics of transesterification of soybean oil. Am Oil Chem Soc, 1997, 74:1457~1463.
    138. Peng Lim Boey, Gaanty Pragas Maniam, Shafida Abd Hamid. Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst.Bioresource Technology, 2009, 100(24): 6362~6368.
    139. Pryde E H,Butterfield R O.Transesterification kinetics of soybean oil.J Am Oil Chem Soc,1996,63(10): 357~380.
    140. S.T. Kolaczkowski, U.A. Asli, M.G. Davidson. A new heterogeneous ZnL_2 catalyst on a structured support for biodiesel production. Catalysis Today, 2009, 147(1):S220~S224.
    141. Sercheli R., Vargas R. M., Schuchardt U.. Alkylguanidine catalyzed heterogeneous transesterification of soybeam oil.J Am Chem Soc, 1999,76: 1207~1210.
    142. Salis A, Pinna M, Monduzzi M, et a1. Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol, 2005, 119(3): 291 299.
    143. Samukawa T, Kaieda M, Matsumoto T, et a1. Pretreatment of Immobilized Candida antarctica Lipase for Biodiesel Fuel Production from Plant Oil. J Biosci Bioeng, 2000, 90(2): 180 183.
    144. Schuchardt U,Sercheli R V R.Transesterifiction of vegetable oils:a review .J Braz Chem Soc,1998, 9(1): 199 210.
    145. Schwab A W,Bagby M O,Freedman B.Preparation and properties of diesel fuels from vegetable oils.Fuel,1987,66: 1372~1378.
    146. Shieh C J, Liao H F, Lee C C. Optimization of lipase catalyzed biodiesel by response surface methodology. Bioresource Technol, 2003, 88: 103 106.
    147. Shimada Y, Watanabe Y, Sugihara A, et a1. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B enzym, 2002, 17: 133 142.
    148. Sinisterra J V. Application of ultrasound to biotechnology: an overview. Ultrasonics, 1992, 30(3): 180 185.
    149. Stavarache C, Vinatoru M, Nishimura R, et a1. Conversion of vegetable oil to biobiesel using ultrasonic irradiation. Chemlett, 2003, 32(8): 716 717.
    150. Stavarache C, Vinatoru M, Nishimura R, et a1. Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrason Sonochem, 2005, 12: 367 372.
    151. Tanguy F. D, Marie F? Oise R, et a1. Simulation of heterogeneously MgO catalyzed transesterification for fine chemical and biodiesel industrial production. Applied Catalysis B: Environmental. 2006,67(1 2): 136~148.
    152. Tartaj P,Morales M P,González Carreno T. J. Magn. Magn. Mater. Advances in magnetic nanoparticles for biotechnology applications. Journal of Magnetism and Magnetic Materials,2005,290 291(2001):28~34.
    153. Uosukainen E, Lamsa M, Linko Y Y, et a1. Optimization of enzymatic transesterification ofrapeseed oil ester using response surface and principal component methodology. Enzyme Microb Tech, 1999, 25: 236 243.
    154. Vanhove C., Pouilloux Y.,Barrault J.. Glycerol transesterification with methyl stearate over solid basic catalysts: I. Relationship between activity and basicity. Applied Catalysis A: General,2003,281(1 2):121 132.
    155. Vlada B. Veljkovi?, Olivera S. Stamenkovi?, Zoran B. Todorovi?, et a1. Kinetics of sunflower oil methanolysis catalyzed by calcium oxide. Fuel, 2009, 88(9): 1554~1562.
    156. Wei Wu,Quanguo He,Hong Chen, et a1.Sonochemical synthesis, structure and magnetic properties of air stable Fe_3O_4/Au nanoparticles. Nanotechnology, 2007,18: 1~8.
    157. Wu K. T., Kuo P. C., Yao Y. D., et a1. Magnetic and optical properties of Fe_3O_4 nanoparticle ferrofluids prepared by coprecipitation technique, I EEE Trans .Magn., 2001, 37 (4), 2651 2653.
    158. Xianqiao Liu , Zhiya Ma , Jjanmjn Xing, et al. Synthesis of amino silane modified superparamagnetic silica supports and their use for protein immobilization.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004,238(1 3):127~131.
    159. Xie W L,Huang X M. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst.Cata1.Lett., 2006, 107: 53.
    160. Yuanzhou Xi, Robert J. Davis. Influence of textural properties and trace water on the reactivity and deactivation of reconstructed layered hydroxide catalysts for transesterification of tributyrin with methanol. Journal of Catalysis, 2009,in press.
    161. Zhang R.J.,Huang J.J.,Zhao H.T.,et a1.Solgel autocombustion synthesis of zinc forrite for mod erate temperature desulfurization.Energy&Fuels, 2007, 21(5):2682~2687.
    162. Zhou Z. H., Wang J.,Liu X., et a1. Synthesis of Fe304 Nanoparticles from emulsions, J. Mater.Chem., 2001, 11, 1704~1709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700