基于能量原理的中深孔台阶爆破振动效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中深孔台阶爆破规模的扩大,工程爆破所带来的危害也随之增加,尤其是爆破振动危害,更受到了普遍的关注和重视。然而由于爆破地震波本身的瞬时性、突变性、爆破介质和赋予条件的复杂性及爆区周围受控结构类型的多样性,导致爆破振动效应的研究及爆破振动灾害的主动控制依然是一个非常复杂的课题。本文通过查阅大量相关参考文献,在国内外爆破振动效应研究成果的基础上,结合“金堆城露天矿装药工艺及起爆网路参数优化研究”、“贵州科技计划项目(SY2010365):混装车现场装药技术研究”、“中联水泥有限公司南阳分公司爆破振动监测”、“宜昌市兴山县香溪河大桥旁宜巴高速路堑开挖控制爆破振动监测”、“华新水泥(恩施)有限公司爆破振动监测”等项目的大量实测数据,利用现场试验、信号分析技术、数值计算及结构动力学理论对爆破地震波频带能量分布特性以及爆破振动作用下结构的弹性、弹塑性能量反应,爆破振动的安全判据和降振最佳微差时间的选取进行了深入系统的探讨。
     (1)通过仿真试验验证了AOK时频分布在爆破地震波时频特性分析中的有效性。利用AOK时频分布与小波分析相结合的方法对不同条件的爆破地震波进行时频分析,研究了爆破条件对爆破地震波频带能量的分布规律。
     (2)针对爆破振动速度信号直接数值微分所获取的加速度时程曲线含有较高的噪声成分,将EEMD引入到爆破地震波的去噪处理。通过仿真试验验证了EEMD可以解决EMD模式混叠的固有缺陷,更能充分保留信号本身所固有的非平稳特性,更合适于爆破振动信号的降噪处理。
     (3)利用实测的爆破地震波并通过人工调整的方法对不同振速峰值、主频以及持续时间的爆破地震波进行反应谱分析,验证了反应谱理论只能反映爆破振动振速峰值、频谱特性,而无法反映持续时间的缺陷和不足。
     (4)为了克服反应谱理论的缺陷和不足,建立了弹性SDOF能量反应方程,并以实测爆破地震波进行了能量反应分析,重点以输入能量谱进行了研究。分析了爆破地震波3要素以及结构的固有参数对输入能量谱的影响规律。
     (5)针对弹性体系输入能量谱并没有考虑到结构塑性累积损伤的不足,利用Newmark-β时程分析方法与双线型恢复力模型对爆破振动作用下弹塑性SDOF结构的能量反应机理进行分析,重点以能反映结构塑性累积损伤的滞回耗能谱进行了研究。分析了爆破地震波3要素、结构固有参数以及恢复力模型参数对滞回耗能谱的影响,探讨了不同爆破条件对滞回耗能谱的影响规律。
     (6)针对结构在爆破地震波作用下发生破坏的2种形式,提出以能反映首次超越破坏的最大瞬时输入能量与能反映塑性累积损伤破坏的滞回耗能作为爆破地震危害的双重准则判据,并结合工程实例验证了该双重准则的全面性、科学性、合理性。
     (7)利用双重准则进行了降振微差间隔时间的选取。首先采用高精度数码雷管进行了现场试验,认为爆心距不同,爆破地震波的叠加位置也不同。因此对于合理降振微差间隔时间的选取应考虑爆心距这个重要因素。然后结合结构在爆破地震波作用下的破坏机理对不同爆心距下降振的最佳微差间隔时间进行了选取,并在实际工程爆破中加以应用,验证了该方法的可行性与有效性。
     本文基于能量的观点对中深孔台阶爆破进行了探索和研究,研究成果为多因素安全判据的确定提供了理论基础,对爆破振动效应的主动控制有着重要的理论意义和工程实用价值。
With the expansion of moderate-long hole bench blasting, the harm caused by engineer blasting increases accordingly, which is widely noticeed by blasting engineers, especially for blasting vibration. However, because of the instantaneity of blasting seismic wave, mutability, complexity of blasting medium and condition, and the diversity of structure type around the blasting area, it is still a very complicated project to study blasting vibration effect and control vibration harm. Through consulting a large number of related references, based on the research achievement of blasting vibration effect home and abroad, combining projects such as parameters optimization of charging and blasting in JinDuiCheng Open-pit mine, Science and Technology Plan Project(SY2010365)——mixing charging technology research of Mixing-loading Truck, blasting vibration monitoring of China United Cement Company Limited Nanyang branch, cutting excavation control blasting vibration monitoring of Yi-Ba High Speed near XiangXi River Bridge in Xingshan County China, blasting vibration monitoring of HuaXin cement(EnShi) Company Limited, blasting seismic wave band energy distribution character and elastic and elastic-plastic energy responses in blasting vibration, safety criterion and active control of blasting vibration were studied with field test, signal analysis technology, numerical calculation and structural dynamics theory.
     (1) Firstly, simulation tests show that it is very effective to use AOK time frequency distribution to analyze time frequency characteristic of blasting seismic wave. And blasting seismic wave frequence band energy under different conditions was studied by combining the AOK time frequency distribution and wavelet analysis method.
     (2) According to acceleration-time curve obtained by blasting vibration velocity signal directly with higher noise contribution, EEMD is used to de-noising treatment of blasting seismic wave. Simulation tests show that EEMD can overcome the defects of EMD model and keep the most of non-stationary character of signal inherent, which is suit to noise reduction of blasting vibration signal.
     (3) By analyzing the measured blasting seismic wave and the response spectrum analysis of blasting seismic wave with different peak of vibration velocity and dominant frequency and duration, the results show that the response spectrum analysis can not analyze the duration of blasting vibration wave.
     (4) To overcome the defect of response spectrum theory, elasticity SDOF energy responses equation was established and energy responses analysis was processed with measured blasting seismic wave, especially for input energy spectrum. The influences of three elements and structural inherent parameter to the input energy spectrum were analyzed.
     (5) Newmark-β time-history analysis method and bilinear restoring force model were used to analyze elastic-plastic SDOF structural energy responses mechanism under the action of blasting vibration, especially for hysteresis energy dissipation spectrum that can reflect structural plasticity accumulated damage. The influences of blasting seismic wave three elements, structural inherent parameters and restoring force model parameters to hysteresis energy dissipation spectrum were analyzed, and hysteresis energy dissipation spectrum under different blast conditions was also analyzed.
     (6) According to the two forms of structure destructed under the action of blasting seismic wave, a double standard criterion to blasting seismic wave harm which were the first time exceeding destructive max instantaneous input energy the and hysteresis energy dissipation reflected plasticity accumulated damage was put forward. And the scientificalness and reasonableness were tested by actural projects.
     (7) Double standard was used to control hazard effects of blasting vibration forwardly. Field tests were done using high precision digital detonator showed that different blast center distance would deduce the different overlap position of blasting seismic wave. Therefore, blast center distance should be considered when selecting reasonable decreasing vibration delay time. And reasonable decreasing vibration delay time at different blast center distance was seleced according to the structure breakage mechanism and engineering applications showed that it was feasible and effective.
     Moderate-long hole bench blasting vibration reseach based on energy analysis, was carried out. Research results provide theoretical foundation for confirming final multifactor safety criterions, which have important theoretical significance and engineering practical value for active control of blasting vibration effects.
引文
[1]张雪亮,黄树棠.爆破地震效应[M].北京:地震出版社,1981.
    [2]M A萨道夫斯基.地震预报[M].陈英方等译.北京:地震出版社,1986.
    [3]冯叔瑜,吕毅,顾毅成.城市控制爆破[M].北京:中国铁道出版社,1987.
    [4]孟吉复,惠鸿斌.爆破震动测试技术[M].北京:冶金工业出版社,1992.
    [5]熊代余,顾毅成.岩石爆破理论与技术新进展[M].北京:冶金工业出版社,2002.
    [6]张正宇,张文煊,吴新霞.现代水利水电工程爆破[M].北京:中国水利水电出版社,2003.
    [7]于亚伦.工程爆破理论与技术[M].北京:冶金工业出版社,2004.
    [8]王玉杰.爆破工程[M].武汉:武汉理工大学出版社,2007.
    [9]P.Pal Roy. Vibration control in an opencast mine based on improved blast vibration predictors[J],Mining Science and Technology,1991,12(2):157-165.
    [10]C. H. Dowding. Suggested method for blast vibration monitoring[J], International Journal of Rock Mechanics and Mining Sciences,1992,29(2):145-156.
    [11]Siskind D. E, Stagg M S. Surface mine blasting near transmission pipelines[J], Mining Engineering,1994,46(12):1357-1360.
    [12]Carlos Lopez. Drilling and blasting of rocks[M], Netherlands:Taylor&Francis Group,1995, 1-150.
    [13]Yu T. R, Vongpaisal S. New blast criteria for underground blasting[J], CIM Bulletin, 1996,89(998):139-145.
    [14]Wu YK, Hao H, Zhou YX, et al. Propagation characteristics of blast-induced shock waves in a jointed rock mass[J], Soil Dyn Earthquake Eng,1998,17(6):407-412.
    [15]Roy P. P. Characteristic of ground vibration and structural response to surface and underground blasting[J], Geotechnical and Geological Engineering,1998,16(2):151-166.
    [16]Rudenko D. Understanding blast vibration[J], Pit&Quarry,1998,91(2):30-33.
    [17]Hinzen K. G. Comparison of seismic and explosive energy in five smooth blasting test rounds[J], International Journal of Rock Mechanics and Mining Sciences,1998, 35(7):957-967.
    [18]Ma G. W, Hao H, Zhou YX, et al. Modeling of wave propagation induced by underground explosion[J], Computers and Geotechnics,1998,22(3-4):283-303.
    [19]Hao H, Wu Y, Ma G, et al. Characteristics of surface ground motions induced by blasts in jointed rock mass[J], Soil Dyn Earthquake Eng,2001,21(2):85-98.
    [20]Guowei Ma, Hong Hao, Yingxin Zhou. Assessment of structure damage to blasting induced ground motions[J], Engineering Structures,2001,22(1):1378-1389.
    [21]P. K. Singh. Blast vibration damage to underground coal mines from adjacent open-pit blasting[J], International Journal of Rock Mechanics and Mining Sciences,2002, 39(8):959-973.
    [22]Tripathy GR, Gupta ID. Prediction of ground vibration due to construction blasts in different types of rock[J], Rock Mech Rock Eng,2002,35(3):195-204.
    [23]P.K. Singh. Blast vibration damage to underground coal mines from adjacent open-pit blasting[J]. International Journal of Rock Mechanics & Mining Sciences 39 (2002) 959-973.
    [24]Ma, H. J, Quek, S. T, Ang, K. K. Soil-structure interaction effect from blast-induced horizontal and vertical ground vibration[J]. Engineering Structures, 2004,26(12):1661-1675.
    [25]Ali Kahriman. Analysis of parameters of ground vibration produced from bench blasting at a limestone quarry [J]. Soil Dynamics and Earthquake Engineering 24 (2004) 887-892.
    [26]A.K. Chakraborty, P.Guha, B.Chattopadhyay, S.Pal, and J.Das. A Fusion Neural Network for Estimation of Blasting Vibration[J]. N.R. Pal et al. (Eds.):ICONIP 2004, LNCS 3316, pp. 1008.1013,2004.
    [27]Wu, Chengqing, Hao, Hong. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures. Part I. Ground motion characteristics[J]. Soil Dynamics and Earthquake Engineering,2005,25(1):27-38.
    [28]Kuzu C, Ergin H. An assessment of environmental impacts of quarry-blasting operation:a case study in Istanbul, Turkey[J], Environ Geol,2005,48(2):211-217.
    [29]C. Kuzu, H. An assessment of environmental impacts of quarry-blasting operation:a case study in Istanbul, Turkey[J]. Science in China:Environ Geol (2005) 48:211-217.
    [30]Ali Kahriman, Umit Ozer, Mehmet Aksoy, Abdulkadir Karadogan, Gungor Tuncer. Environmental impacts of bench blasting at Hisarcik Boron open pit mine in Turkey[J]. nviron Geol (2006) 50:1015-1023.
    [31]T. Maruyama, K. Akagi, and T. Kobayashi. Effects of Blasting Parameters on Removability of Residual Grit[J]. Journal of Thermal Spray Technology Volume 15(4) December 2006, JTTEE5 15:817-821.
    [32]Yun XY, Yang XL, Mitri HS. Blast vibration control in highway construction near a cultural heritage site[J], Int J Min Reclamation Environ,2007,21(1):75-84.
    [33]Khandelwal M, Singh TN. Evaluation of blast-induced ground vibration predictors[J], Soil Dyn Earthquake Eng,2007,27(2):116-125.
    [34]Dragan Bogunovic, Vladislav Kecojevic. Artificial screen for reducing seismic vibration generated by blasting[J]. Environ Geol,2007,53:517-525.
    [35]Umit Ozer. Environmental impacts of ground vibration induced by blasting at different rock unit on the Kadikoy-Kartal metro tunnel[J], Engineering Geology,2008,100(1-2):82-90.
    [36]P. K. Singh, M. P. Roy. Damage to surface structures due to underground coal mine blasting: apprehension or real cause [J]. Environ Geol,2008,53:1201-1211.
    [37]叶海旺,房泽法,彭志刚,爆破地震对结构的影响,爆破(ISSN1001-487-X),2000(1):86-91
    [38]S. Nima Mahmoodia, Nader Jalilia, Siamak E. Khademb. An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams[J]. Journal of Sound and Vibration 311 (2008) 1409-1419.
    [39]CHEN Zhiyang, FANG Xiang, ZHANG Weiping, ZHONG Mingshou. Damping Ditch Effect Analysis of Blasting Vibration Based on Wavelet Transform [J]. The 1st International Conference on Information Science and Engineering (ICISE2009).
    [40]BRAJANOVSKI Miroslav, MiiLLER Tobias M., PARRA Jorge O A model for strong attenuation and dispersion of seismic P-waves in a partially saturated fractured reservoir[J]. SCIENCE CHINA Physics, Mechanics & Astronomy August 2010 Vol.53 No.8:1383-1387.
    [41]GB6722-2003,爆破安全规程[S].
    [42]顾毅成,史雅语,金骥良.工程爆破安全[M].合肥:中国科学技术大学出版社,2009.
    [43]曹建良.建筑结构对爆破震动响应的研究[D].重庆:重庆大学,2008.
    [44]赵明生.爆破震动作用下建(构)筑物的安全评价研究[D].武汉:武汉理工大学,2008.
    [45]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998.
    [46]张奇,白春华,刘庆明.爆破地震波频谱特性研究[J].北京理工大学学报,1999,19(3):306-308.
    [47]郭学彬,肖正学.爆破地震波的频谱特性研究[J],化工矿物与加工,1999,28(7):18-20.
    [48]林秀英,张志呈.爆破地震波的频谱分析[J].中国矿业,2000(9)6:77-80.
    [49]范磊,沈蔚.爆破振动频谱特性实验研究[J].爆破,2001,18(4):18-20.
    [50]马瑞恒,时党勇.爆破振动信号的时频分析[J].振动与冲击,2005,24(4):92-96.
    [51]Mallat S G. A theory for multi-resolution signal decomposition:The wavelet representation[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980,11(7):674-693
    [52]Morlet J. Wave Propagation and sampling theory[J], Geophysics,1982,47(2):203-236.
    [53]Daubechies I. The wavelet transform, time frequency localization and signal analysis[J],IEEE Transactions on Information Theory,1990,65(5):961-1006.
    [54]Daubechies I. Orthonormal bases of compactly supported wavelets Ⅱ:variations on a theme [J], SIAM Journal on Mathematical Analysis,1993,24(2):499-519.
    [55]林大超,施惠基,白春华等.基于小波变换的爆破振动时频特征分析[J].岩石力学与工程学报.2004,1:101-106.
    [56]宋光明,曾新吾,陈寿如,等.基于波形预测小波包分析模型的降振微差时间选择[J].爆炸与冲击,2003,23(2):163-168.
    [57]凌同华,李夕兵.爆破振动信号不同频带的能量分布规律[J].中南大学学报,2004,35(2):310-315.
    [58]中国生,敖丽萍,赵奎.基于小波包能量谱爆炸参量对爆破振动信号能量分布的影响[J].爆炸与冲击,2009,29(3):300-305.
    [59]N E Huang, Z Shen, S R long et al.spectrum for nonlinear and nonstationary time empirical mode decomposition and the Hilbert series analysis[J]. Pro. Roy. Soc. London. A, 1998 454:903-995.
    [60]张义平,李宝山,王永明,等.基于Hilbert谱的爆破震动瞬时输入能量模型及计算[J].矿业研究与开发,2009,29(4):88-90.
    [61]Wu Z H and Huang N E.A study of the characteristics of white noise using the empirical mode decomposition method[J].Proceedings of the Royal Society A,2004,460(2046):1597-1611.
    [62]王宏,Narayanan R M,周正欧,等.基于改进EEMD的穿墙雷达动目标微多普勒特性分析[J].电子与信息学报,2010,32(6):1355-1360.
    [63]史秀志.爆破振动信号时频分析与爆破振动特征参量和危害预测研究[D].长沙:中南大学,2007.
    [64]史秀志陈寿如.爆破振动时频特征的段药量及抵抗线效应[J].煤炭学报,2009,34(3):345-349.
    [65]史秀志,陈寿如.爆破振动信号时频特征的微差时间效应[J].湖南科技大学学报(自然科学版),2008,23(3):10-13.
    [66]史秀志,田建军,王怀勇.冬瓜山矿爆破振动测试数据回归与时频分析[J].爆破,2008,25(2):77-80.
    [67]赵明生,张建华,易长平.基于小波分解的爆破振动信号RSPWVD二次型时频分析[J].振动与冲击,2011,30(2):44-47.
    [68]张子瑜,陈进,史习智,等.径向高斯核函数时频分布及在故障诊断中的应用[J].振动工程学报,2001,14(1):53-59.
    [69]刘庆云,李志舜.用于多分量线性调频信号的自适应核分布[J].系统工程与电子技术,2004,26(5):704-707.
    [70]Benioff Hugo. The physical destructiveness of earthquakes. The bulletin of the seismological society of America,1934.
    [71]Biot MA. A mechanical analyzer for the prediction of earthquake stresses. The bulletin of the seismological society of America,1940.
    [72]Park Y J,Reinhorn A M and Kunnath S K.IDARC:Inelastic Damage Analysis of Reinforced Concrete Frame-Shear-Wall Structures[R].Report No.NCEER-87-0008,State University of New York at Buffalo.
    [73]Valles R E,Reinhorn A M,Kunnath S K,Li C and Madan A.IDARC2D Version 4.0:A Computer Program for the Inelastic Damage Analysis of Buildings[R].Report No.NCEER-96-0010.National Center for Earthquake Engineering research.State University of New York at Buffalo,1996.
    [74]刘哲锋.地震能量反应分析方法及其在高层混合结构抗震评估中的应用[D].长沙:湖南大 学,2006.
    [75]于丰.基于性能的结构多维抗震设计方法研究[D].大连:大连理工大学,2007.
    [76]工程地震文献资料编辑委员会.工程地震文献选集第一集[M].北京:建筑工程出版社,1959.
    [77]丁刚德,王伟策,陈小波.微差爆破的爆破地震反应谱分析[J].爆破,1997,14(3):24-30.
    [78]王凯,吴腾芳,季茂荣.微差爆破地震反应谱的研究[J].爆破,1997,14(4):1-6.
    [79]范磊,龙源,郭涛,等.基于反应谱理论的爆破振动破坏评估标准分析[J].爆破,2010,27(1):5-10.
    [80]李夕兵,凌同华.爆炸参量对爆破地震反应谱的影响[J].爆炸与冲击,2004,24(5):443-447.
    [81]唐鸿卿,吴新霞.频率对爆破地震反应谱的影响[J].爆破,2008,25(4):17-19.
    [82]李洪涛,卢文波,舒大强.隧洞开挖爆破地震反应谱特征研究[J].爆炸与冲击,2008,28(4):331-334.
    [83]荣立爽,孙建生.岩塞爆破的振动加速度反应谱分析[J].太原理工大学学报,2008,39(4):415-417.
    [84]魏文晖,李秀.爆破地震波作用下底框结构的非线性动力分析[J].武汉理工大学学报,2004,26(7):58-61.
    [85]陈士海,马方兴,魏海霞.爆破地震动三向荷载分量对结构动态响应研究[J].山东科技大学学报(自然科学版),2006,25(4):39-44.
    [86]魏海霞,陈士海.爆破地震波三要素对多层砌体结构弹塑性地震响应的影响[J].爆炸与冲击,2011,31(1):55-61.
    [87]中永康,邵建华,陈建锋.建筑结构爆破地震反应弹塑性精细时程分析[J].爆炸与冲击,2008,28(1):92-96.
    [88]张宇旭.爆破地震波作用下底层框架砌体结构的弹塑性时程分析[J].四川建筑科学研究,2010.36(1):151-154.
    [89]丁玉春SDOF结构中基于性能抗震设计的能量方法[D].北京:北京交通大学,2006.
    [90]黄文华,徐全军,沈蔚,等.小波变换在判断爆破地震危害中的应用[J].工程爆破,2001,7(1):24-28.
    [91]中国生.基于小波变换爆破振动分析的应用基础研究[D].长沙:中南大学,2006.
    [92]李洪涛.基于能量原理的爆破地震效应研究[D].武汉:武汉大学,2007.
    [93]张义平,李夕兵,赵国彦.基于HHT方法的铜室大爆破震动分析[[J].岩石力学与工程学报,200524(s1):4784-4789.
    [94]王振宇,梁旭,陈银鲁,等.基于输入能量的爆破震动安全评价方法研究[J].岩石力学与工程学报,2010,29(12):2492-2499.
    [95]刘波,肖明葵,赖明.结构地震总输人能量的分配[J].重庆建筑大学学报,1996,18(2):100-109.
    [96]肖明葵,刘纲,白绍良,赖明.抗震结构的滞回耗能谱[J].世界地震工程,2002,18(3):110-115.
    [97]Erberik A and Sucuoglu H. Seismic energy dissipation in deteriorating systems through low-cycle fatigue[J].Earthquake Engineering&Structural Dynamics,2004,33:49-67.
    [98]史庆轩,杨文星,门进杰SDOF体系非线性地震能量反应的计算[J].建筑科学与工程学报,2005,22(2):25-30.
    [99]Longerfors, Westerberg, Kihlstrom. Ground vibration in blasting[J],Water Power,1958,335-421.
    [100]Adwards A T, Northwood T D. Experimental studies of the effects of blasting on structures[J], The Engineering,1960,2(10):538-546.
    [101]Duvalland W I, Fogelson D E. Review of criteria for estimating damage to residences from blasting vibration, Washington:U-S-Bureau of Mines Report Investigation,1962,59-68.
    [102]Northwood T D. Blasting vibration and building damage[J]. Engineer,1963,(215):973-978.
    [103]中华人民共和国国家标准编写组.爆破安全规程(GB6722-86)[S].北京:中国标准出版社,1986.
    [104]Wilton T J, Hills R L. Blasting vibration monitoring on anchored retaining walls and within boreholes[A].eds.Proc.conf. Rock Eng. and Excavation in Urban Enviroment[C],Hong Kong,1986,421-427.
    [105]Stephen D B, Direk B A, Peter N C. Analysis of high frequency microseismicity recorded at an underground hardrock mine[J].Pure and appllied geophsics,1997(150):693-704.
    [106]娄建武,龙源,方向,等.基于反应谱值分析的爆破震动破坏评估研究[J].爆炸与冲击,2003,23(1):41-46.
    [107]凌同华.爆破震动效应及灾害的主动控制[D].长沙:中南大学,2004.
    [108]张义平.爆破震动信号的HHT分析与应用研究[D].长沙:中南大学,2006.
    [109]陈银鲁.爆破震动信号的能量分析方法及其应用研究[D].杭州:浙江大学,2010.
    [110]吕淑然,杨军,刘国振.露天矿爆破地震效应与降震技术研究[J].有色金属(矿山部分),2003,55(3):30-32.
    [111]陈寿如,李雁翎,谢圣权.露天采场台阶干扰降震爆破技术试验研究[J].湖南科技大学学报(自然科学版),2004,19(2):10-13.
    [112]田会礼,田运生,于亚伦.露天采场孔间微差爆破技术的试验研究[J].矿业研究与开发,2005,25(6):67-68.
    [113]魏晓林,郑炳旭.干扰减振控制分析与应用实例[J].工程爆破,2009,15(2):1-7.
    [114]张志呈,向开伟.露天深孔爆破地震效应与降振方法[M].成都:四川科学技术出版社,2003.
    [115]张智宇,栾龙发,王成龙,等.改善小龙潭矿务局开采爆破效果的降振技术实践[J].工爆破,2008,14(2):84-86.
    [116]舒西刚,刘新荣,姜德义,等.歌乐山石灰石矿爆破地震波的测试与分析[J].地下空间与工程学报,2008,4(3):586-560.
    [117]工或.金堆城露天矿深孔爆破降震技术探讨[J].有色金属(矿山部分),2010,62(4):36-38.
    [118]叶海旺,石文杰,王二猛.金堆城露天矿生产爆破合理微差时间的探讨[J].爆破,2010,27(1):96-98.
    [119]赵明生,张建华,易长平.基于单段波形叠加的爆破振动信号时频分析[J].煤炭学报,2010,35(8):1279-1282.
    [120]飞思科技产品研发中心MATLAB辅助信号处理技术与应用[M].北京:电子工业出版社.2005.
    [121]赵明生,梁开水,曹跃,等.爆破地震作用下建(构)筑物安全标准探讨[J].爆破.2008,25(4):24-27.
    [122]唐飞勇,王意堂,梁开水.爆破振动信号特征分析的应用探讨[J].爆破,2010,28(4):109-111.
    [123]费鸿禄,马诺诺.坝基开挖爆破振动频带小波能量分析[J].爆破,2010,27(3):99-104.
    [124]徐佩霞.小波分析与应用实例[M].合肥:中国科技大学出版社,1996.
    [125]胡昌华,李国华,刘涛等.基于MATLAB6.x的系统分析与设计-小波分析[M].西安:西安电子科技大学,2004.
    [126]胡昌华,张军波,夏军等.基于MATLAB的系统分析与设计[M].西安:西安电子科技大学出版社,1999
    [127]徐红梅,郝志勇,贾维新,等.基于S变换的内燃机气缸盖振动特性研究[J].内燃机工程,2008,29(3):68-72.
    [128]王殿伟,李言俊,张科.基于s变换的时频特征提取与目标识别[J].航空学报,2009,30(2):305-310.
    [129]葛哲学,陈仲生MATLAB时频分析技术及其应用[M].北京:人民邮电出版社.2006.
    [130]张宁.自适应时频分析及其时频属性提取方法研究[D].青岛:中国海洋大学.2008.
    [131]李亚安,王军,李钢虎.基于自适应高斯核函数时频分布的水声信号处理研究[J].系统仿真学报,2006,18(11):3230-3233.
    [132]于晓凯,高静怀,何洋洋.基于时频自适应最优核的时频分析方法[J].系统工程与电子技术,2010,32(1):22-26.
    [133]于军,李然威,杜栓平.基于自适应时频分布的瞬时频率估计算法[J].兵工学报,2009,30(10):1315-1319.
    [134]毕明芽,李名山,刘朝红,等.爆破振动预测误差的因素分析[J].爆破,2009,(26)2:96-98.
    [135]任祖华.基于窗函数的FFT谐波参数估计算法[J].电测与仪表,2010,47(5):8-12.
    [136]刘凤钱,赵明生,池恩安.爆破振动与车辆振动信号时频特性对比分析[J].爆破,2010,27(4):105-108.
    [137]凌同华,李夕兵,王桂尧.爆破震动灾害主动控制方法研究[J].岩土力学,2007,28(7):1439-1442.
    [138]张丹,段恒建,曾福洪.分段爆破地震强度的试验研究[J].爆炸与冲击,2006,26(3):279-283.
    [139]冯万慧.大型土石方爆破无限分段起爆网路技术研究[J].工程爆破,2009,(15)1:38-40.
    [140]张丹.爆源因素对爆破地震强度分布特征的试验研究[D].成都:西南交通大学,2007.
    [141]张志呈,张渝疆,李春晓.爆破地震波的频率特征及其影响因素[J].四川冶金,2005,27(1):1-5.
    [142]Riddell R, Garcia J E. Hysteretic energy spectrum anddamage control [J]. Earthquake Engineering and Structure Dynamics,2001,30(12):1791-1816.
    [143]白绍良,黄宗明,肖明葵.结构抗震设计的能量分析方法与研究评述[J].建筑结构,1997,(4):54-58.
    [144]徐彤,周云,贺明玄.能量反应谱及其影响因素的研究[J].地震工程与工程振动,2000,20(1):198-203.
    [145]程光煜,叶列平.弹性SDOF系统的地震输入能量谱[J].工程抗震与加固改造,2006,28(5):1-8.
    [146]周云,乐登,邓雪松.设计用地震动总输入能量谱研究[J].工程抗震与加固改造,2008,30(5):1-7.
    [147]滕军,董志君,容柏生.弹性SDOF体系能量反应谱研究[J].建筑结构学报,2009(S1):129-134.
    [148]吕西林,周德源,李思明等.建筑结构抗震设计理论与实例[M].上海:同济大学出版社,2002.
    [149]李国豪主编.工程结构抗爆动力学[M].上海:上海科学技术出版社,1989.
    [150]张晓志,谢礼立,于海英.地震动反应谱的数值计算精度和相关问题[J].地震工程与工程振动,2004,(6):15-26.
    [151]李洪涛,卢文波,舒大强.小波分析在爆破振动加速度推求中的应用[J].爆破器材,2006,35(5):4-7.
    [152]中村小一郎.科学计算引论:基于MATLAB的数值分析[M].梁恒,刘晓艳,译.北京:电子工业出版社,2002.
    [153]高勇军,陈小波,王伟策.小波分析在爆破地震信号降噪中的应用[J].爆破,1999,16(3):3-7.
    [154]谢全民,龙源,钟明寿.基于小波、小波包两种方法的爆破振动信号对比分析[J].工程爆破,2009,15(1):5-9.
    [155]徐学勇,程康.爆破震动信号模极大值小波消噪方法的改进[J].爆炸与冲击,2009,29(3):194-198.
    [156]熊正明,中国生.基于平移不变小波爆破振动信号去噪的应用研究[J].金属矿山,2006,2:12-15.
    [157]李夕兵,张义平,左宇军,等.岩石爆破振动信号的EMD滤波与消噪[J].中南大学学报(自然科学版),2006,37(1):150-154.
    [158]文莉,刘正士,葛运建.小波去噪的几种方法[J].合肥工业大学学报,2002,25(2):167-172.
    [159]陈可,李野,陈澜.EEMD分解在电力系统故障信号检测中的应用[J].计算机仿真,2010,27(3):263-266.
    [160]WU Zhao-hua, HUANG E. Ensemble Empirical Mode Decomposition-A Noise-Assisted Data Analysis Method[R]. Calverton:Center for Ocean-Land-Atmosphere Studies,2005.
    [161]李永勤,王清,邓亲恺.EMD及其在生物医学信号处理中的应用研究[J].生物医学工程学杂志,2005,22(5):1058-1062.
    [162]De-Xiang Zhang, Xiao-Pei Wu, Zhao Lu. Speech Endpoint Detection in Noisy Environments Using EMD and Teager Energy Operator[J]. JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY,2010,8(2):183-186.
    [163]钱昌松,刘志刚.基于新的模态单元滤波消除地震信号中的汽车噪声[J].振动与冲击,2010,29(5):207-211.
    [164]韩海明,沈涛虹,宋汉文.工况模态分析的EMD方法[J].振动与冲击,2002,21(4):69-72.
    [165]蔡艳平,李艾华,王涛,等.基于EMD-Wigner-Ville的内燃机振动时频分析[J].振动工程学报,2010,23(8):430-437.
    [166]曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD降噪方法[J].振动与冲击,2009,28(9):33-39.
    [167]李海涛,王成国,许跃生,等.基于EEMD的轨道—车辆系统垂向动力学的时频分析[J].中国铁道科学,2007,28(5):24-30.
    [168]卢文波,赖世骧,舒大强,等.关于爆破振动速度和加速度等效性问题的讨论[J].爆破,2000,17(s1):11-14.
    [169]公茂盛.地震动能量衰减规律的研究[D].哈尔滨:中国地震局工程力学研究所,2002.
    [170]徐建.建筑结构设计常见及疑难问题解析[M].北京,中国建筑工业出版社,2007.
    [171]周云.耗能减震加固技术与设计方法[M].北京,科学出版社,2006.
    [172]李宏男.结构多维抗震理论[M].北京,科学出版社,2006.
    [173]吕西林,蒋欢军.结构地震作用和抗震概念设计[M].武汉,武汉理工大学出版社,2004.
    [174]陆新征,叶列平,廖志伟,等.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SPA2000上的实践[M].北京,中国建筑工业出版社,2009.
    [175]田启强.地震动作用下结构能量反应研究及能量法应用初步[D].哈尔滨:中国地震局工程力学研究所,2010.
    [176]程光煜,叶列平.弹塑性SDOF系统的地震输入能量谱[J].工程力学,2008,25(2):28-39.
    [177]Sucuoglu H, Nurtug A. Prediction of seismic energy dissipation in SDOF systems[J].Earthquake Engineering &Structural Dynamics,1995,(24):1215-1223.
    [178]Fajfar P, Vidic T and Fischinger M. Seismic demand in medium and long period structures[J]. Earthquake Engineering & Structural Dynamics,1989, (18):1133-1144.
    [179]刘哲锋,沈蒲生.地震动输入能量谱的研究[J].工程抗震与加固改造,2006,28(4):1-5.
    [180]丁玉春,朱晞.地震动中输入能量的探讨[J].北京交通大学学报,2007,31(4):49-51.
    [181]阳生权.爆破震动累积效应理论和应用初步研究[D].长沙:中南大学,2002.
    [182]Manfredi G. Evaluation of seismic energy demand [J].Earthquake Engineering & Structural Dynamics,2001,30:485-499.
    [183]翟长海,谢礼立,吴知丰.基于台湾集集地震的结构滞回耗能影响分析[J].哈尔滨工业大学学报,2006,38(1):59-62.
    [184]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51.
    [185]肖明葵.基于性能的抗震结构位移及能量反应分析方法研究[D].重庆.重庆大学.2004.
    [186]徐赵东,郭迎庆MATLAB语言在建筑抗震工程中的应用[M].北京,科学出版社,2004.
    [187]盛明强.基于滞回耗能的结构抗震性能评价方法研究[D].上海.同济大学.2008.
    [188]肖明葵,刘纲,白绍良.滞回恢复力模型中求折点的一种方法[J].重庆大学学报(自然科学版),2002,25(1):13-16.
    [189]朱镜清.论结构动力分析中的数值稳定性[J].力学学报,1983,27(4):388-395
    [190]朱镜清,朱晓力,王东升.非弹性反应谱计算的一个改进算法[J].地震工程与工程振动,2005,25(5):50-54.
    [191]Decanini L D and Mollaioli F. Formulation of elastic earthquake input energy spectra[J].Earthquake Engineering&Structural Dynamics,1998,27:1503-1522.
    [192]公茂盛,翟长海,谢礼立,等.地震动滞回能量谱衰减规律研究[J].地震工程与工程振动,2004,24(2):8-16.
    [193]Riddell R and Garcia J E.Hysteretic energy spectrum and damage control[J].Earthquake Engineering & Structural Dynamics,2001,30:1791-1816.
    [194]AnilK.Chopra.Dynamics of structures:Theory and applications to Earthquake Engineering[M].New Jersey:Prentice,2004.
    [195]刘哲峰.地震能量反应分析方法及其在高层混合结构抗震评估中的应用[D].长沙:湖南大学,2006.
    [196]田启强,丰彪,王自法,等.地震总输入能自抵耗效应研究[J].地震工程与工程振动,2010,30(6):65-70.
    [197]吴波,李洪泉,欧进萍.地震后有损伤结构的耗能减震加同设计[J].世界地震工程,1995,2:1-7.
    [198]WEN-HSIUNG LIN, ANIL K. CHOPRA. Earthquake response of elastic SDF systems with non-linear fluid viscous dampers[J].Earthquake Engineering and Structural Dynamics,2002(31):1623-1642.
    [199]李森,黄坤耀,郑亮,等.耗能减震技术在加固改造工程中的应用[J].建筑结构,2010,40(3):68-70.
    [200]吴学淑.基于设计使用年限和位移的耗能减震加固设计[J].建筑结构,2010,40(S1):99-102.
    [201]杜永峰,耿继芳.利用简易耗能装置提高填充墙耗能减震能力的数值模拟[J].工程抗震与力固改造,2011,33(1):38-42.
    [202]李同林.应用弹塑性力学[M].武汉:中国地质大学出版社,2002.
    [203]Hall J F, Heaton T H, Hailing M W, et al. Near-source Ground Motion and its Effects on Flexible Buildings[J]. EarthquakeSpectra,1995,11(4):569-604.
    [204]Norio H,Tomaya T, Norio I. Damaging properties of ground motions and response behavior of stmetures based on momentary energy response. Pro of 12th WCEE, New Zealand.2000.
    [205]左琼,吴强,陈少林.速度脉冲型地震动瞬时输入能特性研究[J].工业建筑,2009,39(S1):186-190.
    [206]胡冗冗,王亚勇.地震动瞬时能量与结构最大位移反应关系研究[J].建筑结构学报,2000,21(1):71-76.
    [207]胡冗冗,王亚勇.基于瞬时输入能量的SDOF弹塑性结构最大位移反应分析[J].世界地震工程,2002,18(4):155-158.
    [208]胡冗冗,王亚勇.地震动瞬时输入能量谱探讨[J].工程抗震,2004,26(1):9-13.
    [209]Yutaka H. Momentary energy absorption and effective loading cycles of structures during earthquakes. Pro of 12th WCEE, New Zealand.2000.
    [210]Hori Norio, Inoue Norio. Damaging properties of ground motions and prediction of maximum response of structures based on momentary energy response [J].Earthquake Engineering and Structur Dynamics,2002,31:1657-1679.
    [211]Makris N, Black C. Dimensional Analysis of Inelastic Structures Subjected to Near-fault Ground Motions[R].Berkeley, Califor-nia:Earthquake Engineering Research Center, University of Cal-ifornia,2003, Report No.03-05:89-91.
    [212]刘强,周瑞忠,刘宇航.地震动瞬时能量谱与结构位移响应关系研究[J].地震工程与工程振动,2009,29(5):48-53.
    [213]刘哲锋,沈蒲生,胡习兵.地震总输入能量与瞬时输入能量谱的研究[J].地震工程与工程振动,2006,26(6):31-36.
    [214]陈逵,刘哲锋,沈蒲生.结构瞬时输入能量反应持时谱的研究[J].工程力学,2011,28(1):19-26.
    [215]Park YJ, Ang AHS. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering (ASCE),1985,111(4):722-739.
    [216]瞿伟廉,李桂青.建筑结构基于双重破坏准则的抗震可靠性[J].土木工程学报,1989,22(1):76-85.
    [217]Gilbert Sardo. Damage calibrated seismic design spectra[D].University of California. Davis,1999.
    [218]王亚勇.关于设计反应谱、时程法和能量方法的探讨[J].建筑结构学报,2000,21(1):21-27.
    [219]肖正学,张志臣,李朝鼎.爆破地震波动力学基础与地震效应[M].成都:电子科技大学出版社,2004.
    [220]周铎,袁绍国.地震振动与爆破振动对建筑物影响的区别与联系[J].露天采矿技术,2010,16(3):68-69.
    [221]Ye Lieping, Shunsuke Otani. Maximum seismic displace-ment of inelastic systems based on energy concept. Earthquake Engineering and Structure Dynamics, Dyn.28, 1999:1483-1499.
    [222]Hori N, Iwasaki T,Inoue N. Damaging properties of ground motions and response behavior of structures based on momentary energy response[A].Proc.12st WCEE[C].Auckland,New Zealand,2000.
    [223]工常峰,朱东生,田琪.基于瞬时能量的双线性系统最大位移研究[J].振动工程学报,2003,16(1):105-108.
    [224]王常峰,朱东生.双线性系统地震动瞬时能量研究[J].兰州铁道学院学报(自然科学版),2001,20(4):54-59.
    [225]Fajfar P,Vldic T,FIschinger M.On energy demand and supply in SDOF systems[A].Nonlinear seismic analysis and design of reinforced concrete buildings[C].eds. by Peter Fajfar and Helmut Krawinkler, Elsevier,1992.
    [226]魏海霞.爆破地震波作用下建筑结构的动力响应及安全判据研究[D].青岛:山东科技大学,2010.
    [227]刘援农.基于瞬时输入能量的爆破震动安全标准分析[J].采矿技术,2011,11(2):83-86.
    [228]杨志勇,李桂青,瞿伟廉.结构阻尼的发展及其研究近况[J].武汉工业大学学报,2000,22(3):38-41.
    [229]卜建清,郭奕清.钢筋混凝土简支梁不同工况下自振频率和阻尼比试验研究[J].中国铁道科学,2008,29(1):36-40.
    [230]张卫东,张益群.传递矩阵法计算建筑结构的固有特性[J].昆明理工大学学报,1999,24(3):88-91.
    [231]于永德,王日松.脉动法测试建筑结构的动力学参数[J].武汉水运工程学院学报,1993,17(3):339-342.
    [232]吴立,饶杨安,黄常波.爆破振动分析预测与控制方法综述[J].水文地质工程地质,2004,(S1):136-140.
    [233]徐全军,龙源,张庆明,等.微差爆破震动叠加起始位置数值模拟[J].力学与实践,2000,22(5):45-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700