SEP事件与连续爆发的“twin-CME”的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳高能粒子(Solar Energetic Particle, SEP)事件与日冕物质抛射(Coronal Mass Ejection, CME)之间的关系是空间天气研究领域的一个重要内容,这一问题的解决有助于建立基于CME爆发的SEP预报模式以及提高现有预报模式的准确率。本文将"twin-CME"模型引入到SEP事件的研究中,采用典型事例分析和统计分析方法,给出由同一活动区相继爆发的"twin-CME"(主CME和先行CME)触发SEP事件的观测依据,并统计分析SEP事件与"twin-CME"爆发之间的关联,给出"twin-CME"比单个快速CME更利于触发SEP事件的依据。本文主要研究内容如下:
     首先,本文利用SOHO/LASCO、STEREO/SECCHI的CME观测结合磁通量管模型(Gradual Cylindral Shell,GCS)分析第24太阳活动周以来的强度较大的两个SEP事件和GLE事件的典型事例,发现这两个事例都能找到来自同一活动区的"twin-CME"爆发,且这两个CME的传播区域之间有一定程度的重叠。文中结合Ⅱ型射电暴、SDO/AIA图像、SDO/HMI磁图及非线性无力场外推(NLFFF)等综合分析了某些CME的爆发过程,进一步确定这些观测到的"twin-CME"为两个独立的CME构成而不是单个快速CME ("single-CME")爆发过程中不同阶段的两个形态。本文给出了触发SEP事件的对应"twin-CME"爆发的观测依据。
     其次,在个例分析的基础上,本文对第23太阳活动周的源区在日面西半球的126个快速CME和59个大型SEP事件进行统计分析,结果显示由"twin-CME"爆发产生的SEP事件的通量峰值与对应关联CME的速度、伴随耀斑的等级和1天前的低能粒子水平等三个参数之间无明显的相关性,而由单个快速CME爆发产生的SEP事件的通量峰值与这三个参数之间呈现明显的正相关。这一结论说明如果快速CME(主CME)之前有先行CME爆发,则主CME不一定需要很快的速度和很强的耀斑伴随,也不需要提前有很高的种子粒子水平,就可能产生很强的SEP事件。本文统计结果显示"twin-CME"会比单个快速CME更容易产生SEP事件(61%VS29%)。
     最后,本文讨论了与SEP事件相关的几个问题:一、通过分析先行CME选择标准中的时间间隔变化对"twin-CME"类SEP事件在SEP事件总数中的比例、单个快速CME不产生SEP事件的比例等的影响,本文给出了判断先行CME的时间阈值参考值,约12小时。二、估算高能粒子(>10MeV)的起始逃逸高度大约在15个太阳半径以下高度。相比单个CME而言,"twin-CME"可以在这一高度范围内产生更有效的粒子加速过程。因为先行CME产生的强烈扰动可以将预加速的日冕物质或耀斑物质长时间保持在这-高度,为激波加速提供需要的种子粒子。三、Ⅱ型射电暴的分析表明,在有无SEP两种情况下,Ⅱ射电暴爆发时的CME高度分布无明显的区别;统计结果显示有SEP事件发生的CME中Ⅱ型射电暴伴随比例较大。四、分析SEP事件时间通量廓线的变化快慢与源区相对磁足点的经度变化关系,结果显示相对磁足点东边的源区爆发的SEP事件的通量增长时间较长,而其增长速度相对较慢,即源区越在磁足点东边,其可能产生的SEP事件的通量峰值也就越小。这与较大强度的SEP事件通常发生在日面西半球的观测事实是一致的。
     综上所述,本文从观测角度研究SEP和CME的因果关联,结果表明由同一源区相继爆发的"twin-CME"比单个快速CME更易产生大SEP事件,文中给出了触发SEP事件的"twin-CME"爆发的观测依据。分析亦表明,在"twin-CME"产生的SEP事件中,快速CME的速度、伴随耀斑的强度等因素对SEP事件的强度决定作用较弱。本文给出了识别先行CME的时间阈值参考值为12小时。
The relationsip between Solar Energetic Particle (SEP) events and Coronal Mass Ejection (CME) is an important problem in space weather study. The answer of this question is of help to establishing the prediction model of SEP events according to CME eruption and/or improving the accuracy of current SEP prediction model. This dissertation extanded the "twin CME" model to large SEP events, and used comprehensive analyses of representive SEP events and statistics of a large number of events, to present some observable evidances of the large SEP events triggered by "twin-CME" erupting from the same source region. We also analyzed the relationship between large SEP events and "twin-CME" eruptions, and gave some evidances of more effective particle acceleration process of the "twin-CME" than the "single-CME". The contents of this dissertation are summarized as the following:
     First, this dissertation analyzed extreme large SEP event and the first Ground Level Enhancement events (GLE) in Solar Cycle24with the help of Gradual Cylindral Shell (GCS) model, using CME observations by coronagraph instruments on board SOHO(LASCO) and Stereo-A/B(SECCHI) spacecrafts. The results showed that "twin-CME" erupting from the same source region were found in all these events. Furthermore, these two CMEs overlapped partially with each other in their propagating path, which were consistent with "twin-CME" scenario. In these events, we also checked the process of CMEs erupting from their source region in low corona, such as the association of type II radio bursts, the associated AIA multi-waveband images on board SDO apacecraft, HMI magnetogram and the magnetic field from the extrapolated Non-Linear Force Free Field (NLFFF) model, and confirmed that these preceding CMEs were not the early phase of the main CME in "twin-CME" observations.
     Second, we examined126fast CMEs having western hemisphere source regions in Salor Cycle23, which included59CMEs that led to large SEP events. The statistical results indicate that the peak flux intensities of these SEP events associated with "twin-CME" eruptions did not seem to be correlated with the speed of the associated fast CMEs, the class of associated flares, and the daily (24hr) average seed population prior to SEPs onset time. However, for single-CME events, the peak flux intensity of the SEPs and these three parameters had distinct positive correlations. This can be understood naturely within "twin-CME" scenario:the presence of preceding CMEs can previde enough seed population for the main fast CME shock acceleration, so there is no need to have a high CME speed and/or intense flare and/or the seed particles prior to event. The results also indicate that there is a strong correlation between "twin-CME" and the large SEP events, and suggest that the probability of a "twin-CME" event leading to large SEP events (such as the events with peak flux>10pfu at10MeV channel) is significantly higher than "single-CME" events.
     Third, we tried to answer several questions about SEP events:1). The choice of the time interval threshold between preceding CME and main CME, we decide this parameter by examining the tendency of the percentage of the SEP events caused by "twin-CME" eruptions among all SEP events by varying this time interval, and by examining how the probability of single fast CMEs failing to generate large SEP events as a function of this time interval. We chose the time threshhold between1hr to24hr with a bin of1hr. The time of-12hr turns out to be a best choice.2). Using the Velocity Dissipation Analysis (VDA) method, we found that the starting release heights of solar energetic particles from low corona is less than15Rsun. In these heights, the preceding CME can provide seed population more effectively for the main CME than a preceding flare, because the turbulence stimulated by the preceding CME shock can held more seed particles for a longer time ahead of the main fast CME.3). Our findings about type II radio bursts in this paper were shown that there is no indicative difference between SEP events and no SEP events, but the proportion of type II radio bursts associating CME with large SEP events is higher than that of the CMEs with no SEP events.4). We discussed the longitudinal dependence of time delay and enhancement slope of SEP flux profiles for different relative longtitudes comparing to the earth-well-connected footpoint. The more eastern relative longitudes comparing to the footpoints, the longer time delay of SEP onset from background to peak and the slower enhancement slope of SEP flux. This implies that the SEP events with eastern source region usually have weaker intensity and lower peak flux than western events.
     In conclusion, we analyzed the causal association between SEP events and CME eruptions through a comprehensive set of observations. We find that the "twin-CME" erupting consecutively from the same region usually leads to a large SEP events more effectively than a single fast CME. In the "twin-CME" scenario, the traditional variables (such as speed of associated fast CME, or associated flare class et al.) are not deciding factors for the resulting SEP intensity, but the presence of a preceding CME is. We also suggest that the reference value of "twin-CME" time interval between main CME and preceding CME can be set to12hr.
引文
Bisi, M. M., B. V. Jackson, P. P. Hick, A. Buffington, J. M. Clover, M. Tokumaru, and K. Fujiki (2010), THREE-DIMENSIONAL RECONSTRUCTIONS AND MASS DETERMINATION OF THE 2008 JUNE 2 LASCO CORONAL MASS EJECTION USING STELab INTERPLANETARY SCINTILLATION OBSERVATIONS, AstrophysicalJournal Letters,715(2), L104-L108.
    Cane, H. V., W. C. Erickson, and N. P. Prestage (2002), Solar flares, type III radio bursts, coronal mass ejections, and energetic particles, Journal of Geophysical Research (Space Physics),107,1315-1315.
    Cho, K., S. Bong, Y. Kim, Y. Moon, M. Dryer, A. Shanmugaraju, J. Lee, and Y. D. Park (2008), Low coronal observations of metric type II associated CMEs by MLSO coronameters, Astronomy and Astrophysics,882, 873-882.
    Cliver, E. W., S. W. Kahler, and D. V. Reames (2004), Coronal Shocks and Solar Energetic Proton Events, The Astrophysical Journal,605(2),902-910.
    Cohen, C. M. S., R. A. Mewaldt, A. C. Cummings, R. A. Leske, E. C. Stone, T. T. von Rosenvinge, and M. E. Wiedenbeck (2003), Variability of spectra in large solar energetic particle events, edited by B. R. Dennis, T. Kosugi and R. P. Lin, pp.2649-2654, PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND.
    Desai, M. I., et al. (2004), Spectral properties of heavy ions associated with the passage of interplanetary shocks at 1 AU, Astrophys. J.,611(2, Part 1),1156-1174.
    Ding, L., Y. Jiang, L. Zhao, and G. Li (2013), the "Twin-Cme" Scenario and Large Solar Energetic Particle Events in Solar Cycle 23, The Astrophysical Journal,763(1),30-30.
    Feng, W., Y. Chen, L. Kong, G. Li, Q. Song, S. Feng, and Ying Liu (2011), Radio signatures of CME-streamer interactions and source diagnostics of Type-II radio bursts, The Astrophysical Journal.
    Firoz, K. A., W. Q. Gan, Y. J. Moon, and C. Li (2012), An Interpretation of the Possible Mechanisms of Two Ground-Level Enhancement Events, The Astrophysical Journal,758(2),119.
    Gopalswamy, N. (2005), Type II radio bursts and energetic solar eruptions, Journal of Geophysical Research, 110(A12),1-15.
    Gopalswamy, N., S. Yashiro, and S. Krucker (2004), Intensity variation of large solar energetic particle events associated with coronal mass ejections, Journal of Geophysical Research,109(December),1-18.
    Gopalswamy, N., H. Xie, S. Yashiro, and U.1 (2010a), Ground Level enhancement events of Solar cycle 23, Indian Journal of Radio & Space Physics,39,240-240.
    Gopalswamy, N., H. Xie, S. Yashiro, S. Akiyama, P. Maekelae, and I. G. Usoskin (2012), Properties of Ground Level Enhancement Events and the Associated Solar Eruptions During Solar Cycle 23, Space Science Reviews,171(1-4),23-60.
    Gopalswamy, N., P. Makela, H. Xie, S. Akiyama, S. Yashiro, M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, and F. Pantellini (2010b), Solar Sources of "Driverless" Interplanetary Shocks,452-458.
    He, H.-Q., G. Qin, and M. Zhang (2011), Propagation of Solar Energetic Particles In Three-dimensional Interplanetary Magnetic Fields:In View of Characteristics of Sources, Astrophysical Journal,734(2),74.
    Ho, G. C., G. M. Mason, E. C. Roelof, R. E. Gold, and J. E. Mazur (2003), Peak proton intensities and composition variations of heavy ions during large solar energetic particle events:Uleis observations, in Heliosphere at Solar Maximum, edited, pp.561-566, PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND.
    Howard, T. A. (2011), Three-dimensional reconstruction of coronal mass ejections using heliospheric imager data, Journal of Atmospheric and Solar-Terrestrial Physics,73(10),1242-1253.
    Kahler, S. W. (1982), Radio burst characteristics of solar proton flares, Astrophysical Journal,261,710-719.
    Kahler, S. W. (1996), Coronal mass ejections and solar energetic particle events, AIP Conference Proceedings, 374(1),61-77.
    Kahler, S. W. (2004), Solar Fast-Wind Regions as Sources of Shock Energetic Particle Production, The AstrophysicalJournal,603(1),330-334.
    Kahler, S. W., and D. V. Reames (2003), Solar Energetic Particle Production by Coronal Mass Ejection-driven Shocks in Solar Fast-Wind Regions, The Astrophysical Journal,584(2),1063-1070.
    Kahler, S. W., D. V. Reames, and J. T. Burkepile (2000), A role for ambient energetic particle intensities in shock acceleration of solar energetic particles, ASP Conference,206,468-468.
    Kahler, S. W., S. Akiyama, and N. Gopalswamy (2012), Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events, The Astrophysical Journal,754(2),100.
    Kong, L., Y. Chen, W. Feng, Q. Song, G. Li, F. Guo, and F. R. Jiao (2011), A broken dynamic spectrum of solar type II radio burst induced by a failed eruption, The Astrophysical Journal.
    Le, G., T. YuHua, and H. YanBen (2008), Solar release time of solar energetic particles and associated acceleration source in corona, Chinese Science Bulletin,53(2),161-168.
    Li, C., Y. H. Tang, Y. Dai, C. Fang, and J. C. Vial (2007), Flare magnetic reconnection and relativistic particles in the 2003 October 28 event, Astronomy & Astrophysics,472(1),283-286.
    Li, G, R. Moore, R. A. Mewaldt, L. Zhao, and A. W. Labrador (2012), A Twin-CME Scenario for Ground Level Enhancement Events, Space Science Reviews,171(1-4),141-160.
    Lin, R. P. (2011), Energy Release and Particle Acceleration in Flares:Summary and Future Prospects, Space Science Reviews,159(1-4),421-445.
    Luhmann, J. G., J. T. Gosling, J. T. Hoeksema, and X. Zhao (1998), The relationship between large-scale solar magnetic field evolution and coronal mass ejections, Journal of Geophysical Research-Space Physics, 103(A4),6585-6593.
    Mason, G. M., J. E. Mazur, and J. R. Dwyer (1999), ^3He Enhancements in Large Solar Energetic Particle Events, Astrophys. J.,525, L133-L136.
    Mewaldt, R. A. (2007), Solar Energetic Particle Composition, Energy Spectra, and Space Weather, Space Science Reviews,124(1-4),303-316.
    Mewaldt, R. A., C. M. S. Cohen, A. W. Labrador, R. A. Leske, G. M. Mason, M. I. Desai, M. D. Looper, J. E. Mazur, R. S. Selesnick, and D. K. Haggerty (2005), Proton, helium, and electron spectra during the large solar particle events of October-November 2003, Journal of Geophysical Research-Space Physics,110(A9), 10.1029/2005JA011038.
    Mierla, M., B. Inhester, L. Rodriguez, S. Gissot, A. Zhukov, and N. Srivastava (2011), On 3D reconstruction of coronal mass ejections:II. Longitudinal and latitudinal width analysis of 31 August 2007 event, Journal of Atmospheric and Solar-Terrestrial Physics,73(10),1166-1172.
    Nitta, N., E. Cliver, A. Tylka, and P. Smit (2003), Source Regions of Major Solar Energetic Particle Events, in International Cosmic Ray Conference, edited, p.3363.
    Nitta, N. V., Y. Liu, M. L. DeRosa, and R. W. Nightingale (2012), What Are Special About Ground-Level Events?, Space Science Reviews,171(1-4),61-83.
    Pan, Z. H., C. B. Wang, Y. Wang, and X. H. Xue (2011), Correlation Analyses Between the Characteristic Times of Gradual Solar Energetic Particle Events and the Properties of Associated Coronal Mass Ejections, Solar Physics,270(2),593-607.
    Pneuman, G. W. (1980), ERUPTIVE PROMINENCES AND CORONAL TRANSIENTS, Solar Physics,65(2), 369-385.
    Qin, G., H. Q. He, and M. Zhang (2011), An Effect of Perpendicular Diffusion on the Anisotropy of Solar Energetic Particles from Unconnected Sources, The Astrophysical Journal,738(1),28.
    Qin, G., L. L. Zhao, and H. C. Chen (2012), Despiking of Spacecraft Energetic Proton Flux to Study Galactic Cosmic-Ray Modulation, The Astrophysical Journal,752(2),138.
    Reames, D. V. (1999), Particle acceleration at the Sun and in the heliosphere, Space Sci. Rev.,90,413-491.
    Reames, D. V. (2009a), Solar release times of energetic particles in ground-level events, The Astrophysical Journal.
    Reames, D. V. (2009b), Solar Energetic-Particle Release Times in Historic Ground-Level Events, The Astrophysical Journal,706,844-844.
    Reames, D. V., S. W. Kahler, and C. K. Ng (1997), Spatial and temporal invariance in the spectra of energetic particles in gradual solar events, AstrophysicalJournal,491(1),414-420.
    Rouillard, A. P., et al. (2012), The Longitudinal Properties of a Solar Energetic Particle Event Investigated Using Modern Solar Imaging, The Astrophysical Journal,752(1),44.
    Shen, C., Y. M. Wang, P. Ye, and S. Wang (2006), Is There Any Evident Effect of Coronal Holes on Gradual Solar Energetic Particle Events?, The Astrophysical Journal,639(1),510-515.
    Shen, C., J. Yao, Y. M. Wang, P.-Z. Ye, X.-P. Zhao, and S. Wang (2010), Influence of coronal holes on CMEs in causing SEP events, Research in Astronomy and Astrophysics,10(10),1049-1060.
    Shen, C., G. Li, X. Kong, J. Hu, X. D. Sun, L. Ding, Y. Chen, Y. Wang, and L. Xia (2013), COMPOUND TWIN CORONAL MASS EJECTIONS IN THE 2012 MAY 17 GLE EVENT, The Astrophysical Journal,763(2), 114.
    Thernisien, A. (2011), IMPLEMENTATION OF THE GRADUATED CYLINDRICAL SHELL MODEL FOR THE THREE-DIMENSIONAL RECONSTRUCTION OF CORONAL MASS EJECTIONS, Astrophysical Journal Supplement Series,194(2).
    Thernisien, A., A. Vourlidas, and R. A. Howard (2011), CME reconstruction:Pre-STEREO and STEREO era, Journal of Atmospheric and Solar-Terrestrial Physics,73(10),1156-1165.
    Tylka, A. J., P. R. Boberg, J. H. Adams, L. P. Beahm, W. F. Dietrich, and T. Kleis (1995), The mean ionic charge state of solar energetic Fe ions above 200 MeV per nucleon, Astrophys. J.,444, L109-L113.
    Tylka, A. J., C. M. S. Cohen, W. F. Dietrich, M. A. Lee, C. G. Maclennan, R. A. Mewaldt, C. K. Ng, and D. V. Reames (2005), Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events, Astrophysical Journal,625(1, Part 1),474-495.
    Tylka, A. J., C. M. S. Cohen, W. F. Dietrich, S. Krucker, R. E. McGuire, R. A. Mewaldt, C. K. Ng, D. V. Reames, and G. H. Share (2003), Onsets and Release Times in Solar Particle Events,28th ICRC Proceedings, SH, 3305-3305.
    Wang, Y, G. Qin, and M. Zhang (2012), Effects of Perpendicular Diffusion on Energetic Particles Accelerated by the Interplanetary Coronal Mass Ejection Shock, The Astrophysical Journal,752(1),37.
    Wiegelmann, T. (2004), Optimization code with weighting function for the reconstruction of coronal magnetic fields, Solar Physics,219(1),87-108.
    Wood, B. E., C. C. Wu, R. A. Howard, D. G. Socker, and A. P. Rouillard (2011), EMPIRICAL RECONSTRUCTION AND NUMERICAL MODELING OF THE FIRST GEOEFFECTIVE CORONAL MASS EJECTION OF SOLAR CYCLE 24, AstrophysicalJournal,729(1).
    Zhang, M., G. Qin, and H. Rassoul (2009), Propagation of Solar Energetic Particles in Three-Dimensional Interplanetary Magnetic Fields, The Astrophysical Journal,692(1),109-132.
    方成(2006),走进我们的新学科-空间天气学,Chinese Journal of Nature,28.
    方成,丁明德,and陈鹏飞(2008),太阳活动区物理,南京大学出版社,南京.
    何宏青(2011),太阳高能粒子在三维行星际磁场中传播的研究,博士论文thesis,中国科学院空间科学与应用研究中心,北京.
    焦维新(2003),空间天气学,气象出版社,北京.
    林元章(2000),太阳物理导论,科学出版社,北京.
    王劲松,and吕建永(2010),空间天气气象出版社,北京.
    魏奉思(2000),空间天气学的基本问题,中国基础科学,7,9-13.
    魏奉思,and于晟(2009),空间天气科学成为国际科技活动热点,in科学时报,edited.
    Drury, L. O. C. (1983), An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas, Reports on Progress in Physics,46(8),973.
    Gopalswamy, N., H. Xie, S. Yashiro, and I. Usoskin (2010), Ground level enhancement events of Solar cycle 23, Indian Journal of Radio & Space Physics, 39(October),240-248.
    Gopalswamy, N., S. Yashiro, S. Krucker, G. Stenborg, and R. A. Howard (2004), Intensity variation of large solar energetic particle events associated with coronal mass ejections, Journal of Geophysical Research, 109(A12), doi:1029/2004JA010602.
    Gopalswamy, N., H. Xie, S. Yashiro, S. Akiyama, P. Maekelae, and I. G. Usoskin (2012), Properties of Ground Level Enhancement Events and the Associated Solar Eruptions During Solar Cycle 23, Space Science Reviews,171(1-4),23-60.
    Kahler, S. W. (2005a), Characteristic Times of Gradual Solar Energetic Particle Events and Their Dependence on Associated Coronal Mass Ejection Properties, The Astrophysical Journal,628(2),1014-1022.
    Kahler, S. W. (2005b), Fast coronal mass ejection environments and the production of solar energetic particle events, Journal of Geophysical Research,110(A12),1-8.
    Kivelson, M. G., and C. T. Russell (1995), Introduction to Space Physics, Cambridge University Press.
    Lee, M. A. (1983), COUPLED HYDROMAGNETIC WAVE EXCITATION AND ION-ACCELERATION AT INTERPLANETARY TRAVELING SHOCKS, Journal of Geophysical Research-Space Physics,88(NA8), 6109-6119.
    Li, G., and Zank (2005a), Upstream turbulence and the particle spectrum at CME-driven Shocks, AIP Conference Proceedings,233-239.
    Li, G, and Zank (2005b), Multiple CMEs and large gradual SEP events,29th 1CRCproceedings,1,173-173.
    Li, G., and R. A. Mewaldt (2009), Can multiple shocks trigger ground level events?, Proceedings of the 31st ICRC, SH, paper no:1362.
    Li, G., R. Moore, R. A. Mewaldt, L. Zhao, and A. W. Labrador (2012), A Twin-CME Scenario for Ground Level Enhancement Events, Space Science Reviews,171(1-4),141-160.
    Lugaz, N., W. B. M. IV, and T. I. Gombosi (2005), Numerical Simulation of the Interaction of Two Coronal Mass Ejections from Sun to Earth, The Astrophysical Journal,634(1),651.
    Melrose, D. B. (1996), Particle acceleration and nonthermal radiation in space plasmas, Astrophys Space Sci, 242(1-2),209-246.
    Ng, C. K., D. V. Reames, and A. J. Tylka (2003), Modeling shock-accelerated solar energetic particles coupled to interplanetary Alfven waves, The Astrophysical Journal,591,461-461.
    Parker, E. N. (1965), The passage of energetic charged particles through interplanetary space, Planetary and Space Science,13(1),9-49.
    Reames, D. V. (2009), Solar release times of energetic particles in ground-level events, The Astrophysical Journal.
    Reames, D. V. (2009), Solar Energetic-Particle Release Times in Historic Ground-Level Events, The Astrophysical Journal,706,844-844.
    Tylka, A. J., C. M. S. Cohen, and W. F. Dietrich (2003), Onsets and release times in solar particle events,28th International Cosmic Ray Conference,28-31.
    Wang, A. H., S. T. Wu, and N. Gopalswamy (2005), Magnetohydrodynamic analysis of January 20,2001, CME-CME interaction event, Particle Acceleration in Astrophysical Plasmas:Geospace and Beyond,156, 185-195.
    Zank, G. P., W. K. M. Rice, and C. C. Wu (2000), Particle acceleration and coronal mass ejection driven shocks: A theoretical model, Journal of Geophysical Research-Space Physics,105(A11),25079-25095.
    Zaqarashvili, T. V, R. Oliver, and J. L. Ballester (2006), Spectral line width decrease in the solar corona: resonant energy conversion from Alfven to acoustic waves, Astronomy and Astrophysics,456, L13-L16.
    何宏青(2011),太阳高能粒子在三维行星际磁场中传播的研究,博士论文thesis,中国科学院空间科学与 应用研究中心,北京.
    汪洋(2012),横向扩散对高能粒子在行星际空间中传播的影响,博士论文thesis,中国科学院空间科学与应用研究中心,北京.
    Brueckner, G. E., et al. (1995), The large angle spectroscopic coronagraph (LASCO), Solar Physics,162(1-2), 357-402.
    Colaninno, R. C., and A. Vourlidas (2009), First determination of the true mass of coronal mass ejections:a novel approach to using the two STEREO viewpoints, The Astrophysical Journal,698,852-852.
    Erickson, W. C. (1997), The Bruny Island radio spectrometer, Publications Astronomical Society of Australia, 14(3),278-282.
    Gopalswamy, N., S. Yashiro, M. L. Kaiser, R. A. Howard, and J. L. Bougeret (2001), Radio signatures of coronal mass ejection interaction:Coronal mass ejection cannibalism?, Astrophysical Journal,548(1), L91-L94.
    Howard, R. A., et al. (2008), Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space Science Reviews,136(1-4),67-115.
    Hu, Y. Q., G. Q. Li, and X. Y. Xing (2003), Equilibrium and catastrophe of coronal flux ropes in axisymmetrical magnetic field, Journal of Geophysical Research-Space Physics,108(A2).
    Lemen, J. R., et al. (2012), The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Solar Physics,275(1-2),17-40.
    Li, G., R. Moore, R. A. Mewaldt, L. Zhao, and A. W. Labrador (2012), A Twin-CME Scenario for Ground Level Enhancement Events, Space Science Reviews,171(1-4),141-160.
    Moore, R. L., A. C. Sterling, H. S. Hudson, and J. R. Lemen (2001), Onset of the magnetic explosion in solar flares and coronal mass ejections, Astrophysical Journal, 552(2),833-848.
    Newkirk, G (1961), THE SOLAR CORONA IN ACTIVE REGIONS AND THE THERMAL ORIGIN OF THE SLOWLY VARYING COMPONENT OF SOLAR RADIO RADIATION, Astrophysical Journal,133(3), 983-1013.
    Oliveros, J. C. M., C. L. Raftery, H. M. Bain, Y. Liu, V. Krupar, S. Bale, and S. Krucker (2012), THE 2010 AUGUST 1 TYPE II BURST:A CME-CME INTERACTION AND ITS RADIO AND WHITE-LIGHT MANIFESTATIONS, Astrophysical Journal,748(1).
    Reiner, M. J., A. Vourlidas, O. C. St Cyr, J. T. Burkepile, R. A. Howard, M. L. Kaiser, N. P. Prestage, and J. L. Bougeret (2003), Constraints on coronal mass ejection dynamics from simultaneous radio and white-light observations, Astrophysical Journal,590(1),533-546.
    Schou, J., J. M. Borrero, A. A. Norton, S. Tomczyk, D. Elmore, and G. L. Card (2012), Polarization Calibration of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO), Solar Physics,275(1-2),327-355.
    Shen, C., G. Li, X. Kong, J. Hu, X. D. Sun, L. Ding, Y. Chen, Y. Wang, and L. Xia (2013), COMPOUND TWIN CORONAL MASS EJECTIONS IN THE 2012 MAY 17 GLE EVENT, The Astrophysical Journal,763(2), 114.
    Thernisien, A., R. A. Howard, and A. Vourlidas (2006), Modeling of Flux Rope Coronal Mass Ejections, The Astrophysical Journal,652(1),763.
    Thernisien, A., A. Vourlidas, and R. A. Howard (2009), Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data, Solar Physics,256(1-2),111-130.
    Thernisien, A., A. Vourlidas, and R. A. Howard (2011), CME reconstruction:Pre-STEREO and STEREO era, Journal of Atmospheric and Solar-Terrestrial Physics,73(10),1156-1165.
    Vanballegooijen, A. A., and P. C. H. Martens (1989), FORMATION AND ERUPTION OF SOLAR PROMINENCES, Astrophysical Journal,343(2),971-984.
    Veselovsky, I. S., and O. A. Panasenco (2006), Coronal mass ejection and solar flare initiation processes without appreciable changes of the large-scale magnetic field topology, in Reconnection at Sun and in Magnetospheres, edited by J. Buchner and X. Deng, pp.1305-1312.
    Wang, J. (2006), Reconnection in the lower solar atmosphere and coronal mass ejections, Advances in Space Research,38(8),1887-1893.
    Wiegelmann, T. (2004), Optimization code with weighting function for the reconstruction of coronal magnetic fields, Solar Physics,219(1),87-108.
    Wiegelmann, T. (2008), Nonlinear force-free modeling of the solar coronal magnetic field, Journal of Geophysical Research-Space Physics,113(A3).
    Cane, H. V., I. G. Richardson, and T. T. Von Rosenvinge (2010), A study of solar energetic particle events of 1997-2006:Their composition and associations, Journal of Geophysical Research-Space Physics,115.
    Cane, H. V., R. A. Mewaldt, C. M. S. Cohen, and T. T. von Rosenvinge (2006), Role of flares and shocks in determining solar energetic particle abundances, Journal of Geophysical Research, I11(A6), doi:1029/2005 JA011071-doi:011029/012005 J A011071.
    Chen, C., Y. Wang, C. Shen, P. Ye, J. Zhang, and S. Wang (2011), Statistical Study of Coronal Mass Ejection Source Locations:Ⅱ. Role of Active Regions in CME Production, Journal of Geophysical Research,1-48.
    Evans, R. M., and M. Opher (2008), Alfven Profile In The Lower Corona:Implication for Shock Formation, The Astrophysical Journal,687,1355-1362.
    Gopalswamy, N., S. Yashiro, and S. Krucker (2004a), Intensity variation of large solar energetic particle events associated with coronal mass ejections, Journal of Geophysical Research,109(December),1-18.
    Gopalswamy, N., H. Xie, S. Yashiro, and U. I (2010a), Ground Level enhancement events of Solar cycle 23, Indian Journal of Radio & Space Physics,39,240-240.
    Gopalswamy, N., S. Yashiro, S. Krucker, G. Stenborg, and R. A. Howard (2004b), Intensity variation of large solar energetic particle events associated with coronal mass ejections, Journal of Geophysical Research, 109(A12), doi:1029/2004JA010602.
    Gopalswamy, N., P. Makela, H. Xie, S. Akiyama, S. Yashiro, M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, and F. Pantellini (2010b), Solar Sources of "Driverless" Interplanetary Shocks,452-458.
    Kahler, S. W. (1982), Radio burst characteristics of solar proton flares, Astrophysical Journal,261,710-719.
    Kahler, S. W., and D. V. Reames (2003), Solar Energetic Particle Production by Coronal Mass Ejection-driven Shocks in Solar Fast-Wind Regions, The Astrophysical Journal,584(2),1063-1063.
    Lee, M. A., R. A. Mewaldt, and J. Giacalone (2012), Shock Acceleration of Ions in the Heliosphere, Space Science Reviews,173(1-4),247-281.
    Li, G. (2005), Acceleration and transport of heavy ions at coronal mass ejection-driven shocks, Journal of Geophysical Research,110(A6),1-14.
    Li, G., and Zank (2005), Upstream turbulence and the particle spectrum at CME-driven Shocks, AIP Conference Proceedings,233-239.
    Li, G., R. Moore, R. A. Mewaldt, L. Zhao, and A. W. Labrador (2012a), A Twin-CME Scenario for Ground Level Enhancement Events, Space Science Reviews,171(1-4),141-160.
    Li, G., A. Shalchi, X. Ao, G. Zank, and O. P. Verkhoglyadova (2012b), Particle acceleration and transport at an oblique CME-driven shock, Advances in Space Research,49(6),1067-1075.
    Li, G., G. P. Zank, O. Verkhoglyadova, R. a. Mewaldt, C. M. S. Cohen, G. M. Mason, and M. I. Desai (2009), Shock Geometry and Spectral Breaks in Large Sep Events, The AstrophysicalJournal,702(2),998-1004.
    Mason, G. M., J. E. Mazur, and J. R. Dwyer (1999), ^3He Enhancements in Large Solar Energetic Particle Events, Astrophys. J.,525, L133-L136.
    Mason, G. M., J. R. Dwyer, and J. E. Mazur (2000), New properties of He-3-rich solar flares deduced from low-energy particle spectra, Astrophysical Journal,545(2), L157-L160.
    Mason, G. M., J. E. Mazur, and J. R. Dwyer (2002), A new heavy ion abundance enrichment pattern in He-3-rich solar particle events, AstrophysicalJournal,565(1), L51-L54.
    Mason, G. M., J. E. Mazur, J. R. Dwyer, J. R. Jokipii, R. E. Gold, and S. M. Krimigis (2004), Abundances of heavy and ultraheavy ions in He-3-rich solar flares, Astrophysical Journal,606(1, Part 1),555-564.
    Olmedo, O., J. Zhang, H. Wechsler, a. Poland, and K. Borne (2008), Automatic Detection and Tracking of Coronal Mass Ejections in Coronagraph Time Series, Solar Physics,248(2),485-499.
    Shen, C., J. Yao, Y. M. Wang, P.-Z. Ye, X.-P. Zhao, and S. Wang (2010), Influence of coronal holes on CMEs in causing SEP events, Research in Astronomy and Astrophysics,10(10),1049-1060.
    Tylka, A. J., C. M. S. Cohen, W. F. Dietrich, M. A. Lee, C. G. Maclennan, R. A. Mewaldt, C. K. Ng, and D. V. Reames (2005), Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events, Astrophysical Journal,625(1, Part 1),474-495.
    Cane, H. V., W. C. Erickson, and N. P. Prestage (2002), Solar flares, type III radio bursts, coronal mass ejections, and energetic particles, Journal of Geophysical Research (Space Physics), 107,1315-1315.
    Cho, K., S. Bong, Y. Kim, Y. Moon, M. Dryer, A. Shanmugaraju, J. Lee, and Y. D. Park (2008), Low coronal observations of metric type Ⅱ associated CMEs by MLSO coronameters, Astronomy and Astrophysics,882, 873-882.
    Cliver, E. W., S. W. Kahler, and D. V. Reames (2004), Coronal Shocks and Solar Energetic Proton Events, The Astrophysical Journal,605(2),902-910.
    Feng, W., Y. Chen, L. Kong, G. Li, Q. Song, S. Feng, and Ying Liu (2011), Radio signatures of CME-streamer interactions and source diagnostics of Type-II radio bursts, The Astrophysical Journal.
    Gopalswamy, N. (2005), Type II radio bursts and energetic solar eruptions, Journal of Geophysical Research, 110(A12),1-15.
    Gopalswamy, N., H. Xie, S. Yashiro, S. Akiyama, P. Makela, and I. G. Usoskin (2012), Properties of Ground Level Enhancement Events and the Associated Solar Eruptions During Solar Cycle 23, Space Science Reviews,171(1-4),23-60.
    Kahler, S. W. (1982), Radio burst characteristics of solar proton flares, Astrophysical Journal,261,710-719.
    Kahler, S. W., D. V. Reames, and J. T. Burkepile (2000), A role for ambient energetic particle intensities in shock acceleration of solar energetic particles, ASP Conference,206,468-468.
    Kong, L., Y. Chen, W. Feng, Q. Song, G. Li, F. Guo, and F. R. Jiao (2011), A broken dynamic spectrum of solar type II radio burst induced by a failed eruption, The Astrophysical Journal.
    Li, G., R. Moore, R. A. Mewaldt, L. Zhao, and A. W. Labrador (2012), A Twin-CME Scenario for Ground Level Enhancement Events, Space Science Reviews,171(1-4),141-160.
    Reames, D. V. (1995), SOLAR ENERGETIC PARTICLES-A PARADIGM SHIFT, Reviews of Geophysics,33, 585-589.
    Reames, D. V. (2009a), Solar release times of energetic particles in ground-level events, The Astrophysical Journal.
    Reames, D. V. (2009b), Solar Energetic-Particle Release Times in Historic Ground-Level Events, The Astrophysical Journal,706,844-844.
    Reiner, M. J., M. L. Kaiser, N. Gopalswamy, H. Aurass, G. Mann, A. Vourlidas, and M. Maksimovic (2001), Statistical analysis of coronal shock dynamics implied by radio and white-light observations, Journal of Geophysical Research,106(A11),25225-25279.
    Tylka, A. J., C. M. S. Cohen, W. F. Dietrich, S. Krucker, R. E. McGuire, R. A. Mewaldt, C. K. Ng, D. V. Reames, and G. H. Share (2003), Onsets and Release Times in Solar Particle Events,28th 1CRC Proceedings, SH, 3305-3305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700