有功、无功预测及优化理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如今,可耗竭资源日益枯竭,生态环境不断恶化,节能减排势在必行。电网如何应对这一形势显得十分关键。因此,伴随大规模可再生资源发电并网,以及主动负荷的不断融入,未来电网必然是骨干电网、分布式发电以及微网共同发展。
     在这一背景下,如何在电网安全运行前提下,充分挖掘调度和控制的主动性,以应对被动性的波动,达到精细化的优化决策显得尤为重要。由此,在前人研究的基础上,如何提升预测的精度?如何深入研究电压支撑的规律?如何在交流潮流环境下研究机组的启停问题?对未来电网运行效率的提高有重要的理论意义和现实价值。
     对此,本文从电网短期运行优化决策角度出发,将研究焦点放在:电网节点有功、无功变化规律的预测,电网自动电压控制(AVC)中的无功优化,以及交流潮流约束下的机组组合等问题的研究上,其主要研究工作和成果如下:
     (1)针对当前电网中节点负荷自身单独、孤立预测所显现的弱点,提出了节点负荷的立体化预测体系与方法,主要包括:电网能量流按层、区的拓扑结构划分;在节点与负荷总量相关性分析的基础上,选择电网中各节点的预测方式;结合相应预测方法实现任一节点的预测。文中的预测方法分别基于最小二乘支持向量机、卡尔曼滤波以及加权递推最小二乘等技术。立体化预测方法,实现了节点负荷自身变化规律和与负荷总量以及其他节点的牵制规律之间的有机结合,对现有的预测方法具有包容性,能够满足灵活多变的电网安全分析与决策的需求。
     (2)对应三级控制模式,提出在AVC实施中,一定有功模式下,第三级无功优化问题的两阶段处理思路,即动态无功优化体现在未来周期(24小时)内考虑连续量作用的离散量的定位,在此基础上的仅考虑连续量决策的超前无功优化,从而为二级控制确定有效的基点。针对其中的动态无功优化,由于离散调节设备动作次数的限制带来的时间上的耦合,加之连续量对其影响,提出了遗传算法与内点法有机结合的算法。其核心在于:将优化过程分为内层和外层的交替处理,在外层,以融入模拟退火思想的改进遗传算法求解离散变量的最优配置,在内层,则采用非线性原对偶内点法求解离散量确定下的连续优化问题,充分发挥两种算法各自的优势,实现动态无功优化问题的有效求解。
     (3)针对电网电压、无功特性对机组组合的影响,构建考虑交流潮流约束的机组组合模型,并将发电机组的安全运行极限引入其中,以计及有功、无功输出间的耦合。对于该模型依据Benders分解的基本原理,将其分解为主、子两层优化问题,其中主问题是无网络约束的机组组合,用以决策机组的启停及有功输出,子问题是以节点电压约束及支路载流约束所对应的松弛量最小为目标的优化潮流问题,用以实现交流潮流网络约束的校验。以子问题目标函数非零判定主问题决策有功方式不可行,并产生Benders割反馈给主问题,通过主、子问题的迭代,实现对原问题的求解。文中还就电压、无功特性制约机组启停的机理进行了分析。
     (4)提出了计及系统校正再调度能力的安全约束机组组合(SCUC)模型以及求解方法,将机组的启停状态纳入到计及预想事件的调度当中,有利于提高电网运行的安全性。文中基于Benders分解的基本思想,构造主、子问题的两层迭代模式,其中主问题为无网络约束的机组组合,子问题分为正常状态下和预想事件状态下的网络安全校验。SCUC中计及系统的校正控制能力,既能减少预想事件对于正常状态下机组运行点的影响,提高经济性,又能扩大优化调度的空间,提高运行决策的适应能力。同时,该模型采用全交流潮流约束,因此能够计及无功、电压特性的制约,避免了由于直流潮流约束条件不满足而导致的决策结果不可行的情况。
According to the depletion of exhaustible resources and deterioration of the ecological environment, it is imperative to save energy and reduce emission. And it's extremely crucial to deal with this situation for the power grid. So the grid interconnection of large-scale renewable resources generation and the increasing responsive load prompt the coordinated development of backbone power grid, Distributed Generation(DG) and Microgrid in future power grid.
     Against this background and under the precondition of safe operation of power grid, it is very important to realize the refinement decision-making to utilize the initiative of the power grid scheduling and control for dealing with the passive variation. Based on the previous studies, it has important theoretical and practical value for improving the operation efficiency of the future power grid for how to improve the forecast accuracy, analysis the regularity of voltage support and solve the unit commitment problem with AC power flow.
     From the perspective of short-term operation optimization, this dissertation focuses on the load forecasting of the nodal active and reactive power, the research of reactive power optimization in AVC and the unit commitment considering AC power flow constraints. The main works and achievements of the dissertation are as follows:
     1. Considering the weakness of separated nodal load forecasting and based on the correlation analysis, this paper proposes a multi-dimensional nodal load forecast system and corresponding method for effective prediction of any nodal load of the grid. This system includes topology partitioning of the grid energy flow according to layers and regions, basic forecasting unit composed of each layer's total amount of load and its nodal loads, and combination forecasting to any node. The forecasting method is based on techniques including the least square support vector machine, Kalman filtering and weighted recursive least squares. Multi-dimensional load forecasting can realize any nodal load forecasting with the help of energy flow topology, which achieve the organic combination of nodal load variation regularity and association relationship between nodes. The proposed method can meet the demand of security analysis and decision-making in power grid.
     2. Corresponding to the hierachical voltage control mode of AVC, the reactive power optimization in the tertiary voltage control adopts two-stage processing method. The dynamic reactive power optimization aims to determine the discrete variables in advance(the next24hours) with the full use of continuous variables. And based on this, the advanced reactive power optimization only considers the continuous variables, which will help to decide the base point of the secondary voltage control. A new method that combination of genetic algorithm and the interior point method is proposed to solve the coupling of time intervals caused by the action number constraint of the discrete variables:In the outer circle, the improved genetic algorithm is employed to solve the optimal arrangement of discrete variables. In the inner part, the nonlinear primal-dual interior point method is adopted to solve the continuous variables optimization. And this method can solve the dynamic reactive power optimization effectively.
     3. Considering the effects on unit commitment made by voltage and reactive power constraints, the model of unit commitment considering ac power flow constraint is established, which includes the limits for safe operation of the generator. According to the Benders decomposition, the primal problem is decomposed into a master problem and a subproblem. The master problem solves unit commitment without AC constraints, and the subproblem checks the AC constraints for the result of the master problem. Benders cuts which formed by subproblem are introduced to the master problem to reschedule unit commitment. The mechanism of voltage and reactive power characteristic affecting the combination states of the units is analyzed, and the essence of the decision is the compromise and coordination of the economic and security operation of the power grid.
     4. A security-constrained unit commitment method considering corrective control is proposed. It helps to improve the security of power grid operation for introducing the unit states to the pre-contingency dispatch. Base on the Benders decomposition, the optimization problem is decomposed into a master problem and a subproblem. Unit commitment considering corrective ability of the power system can not only reduce the impact of the pre-contingency on normal condition and improve the operation efficiency, but also improve the adaptability of the decision. Meanwhile, ac power flow constraint is introduced to avoid the infeasible solution of the unit commitment problem.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社.2005.
    [2]李文沅.电力系统安全经济运行:模型与方法[M].重庆大学出版社,1989.
    [3]MANDAL J K, SINHA A K. Artificial neural network based hourly load forecasting for decentralized load management [C]. proceedings of the Energy Management and Power Delivery,1995, vol.61:61-66.
    [4]王志勇,郭创新,曹一家.基于模糊粗糙集和神经网络的短期负荷预测方法[J].中国电机工程学报,2005,25(19):7-11.
    [5]DANESHDOOST M, LOTFALIAN M, BUMROONGGIT G, et al. Neural network with fuzzy set-based classification for short-term load forecasting [J]. Power Systems, IEEE Transactions on,1998,13(4):1386-1391.
    [6]VAPNIK V N. The nature of statistical learning theory [M]. New York: Spring-Verlag,1995.
    [7]李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003(6):55-59.
    [8]牛东晓,谷志红,邢棉等.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006(18):6-12.
    [9]霍明,罗滇生,何井龙.短期负荷预测中SVM参数选取的混沌优化方法[J].电力系统及其自动化学报,2009(5):124-128.
    [10]陆宁,武本令,刘颖.基于自适应粒子群优化的SVM模型在负荷预测中的应用[J].电力系统保护与控制,2011(15):43-46+51.
    [11]李光珍,刘文颖.基于LSSVM和马尔可夫链的母线负荷短期预测[J].电力系统保护与控制,2010,38(11):55-59+66.
    [12]彭信淞,贺辉,姚建刚等.用PSO优化BP神经网络的母线负荷预测方法[J].电力系统及其自动化学报,2010(5):146-151.
    [13]余贻鑫,吴建中.基于事例推理模糊神经网络的中压配电网短期节点负荷 预测[J].中国电机工程学报,2005(12):18-23.
    [14]畅广辉,刘涤尘,熊浩.基于多分辨率SVM回归估计的短期负荷预测[J].电力系统自动化,2007(9):37-41.
    [15]AMJADY N. Short-Term Bus Load Forecasting of Power Systems by a New Hybrid Method[J]. Power Systems, IEEE Transactions on,2007,22(1): 333-341.
    [16]NOSE-FILHO K, LOTUFO A D P, MINUSSI C R. Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network[J]. Power Delivery, IEEE Transactions on,2011,26(4):2862-2869.
    [17]ABU-EL-MAGD M A, SINHA N K. Two New Algorithms for On-Line Modelling and Forecasting of the Load Demand of a Multinode Power System[J]. Power Engineering Review, IEEE,1981, PER-1(7):33-33.
    [18]ABU-EL-MAGD M A, SINHA N K. Univariate and multivariate time series techniques for modeling and forecasting short-term load demand [M]. IFAC Symposium on Theory and Application of Digital Control.1982:329-334.
    [19]韩力,韩学山,负志皓等.多节点超短期负荷预测方法[J].电力系统自动化,2007,31(21):30-34.
    [20]魏少岩,吴俊勇.基于灰色模型和Kalman平滑器的多母线短期负荷预测[J].电工技术学报,2010,25(2):158-162.
    [21]韩力.电力系统超短期负荷与运行态势预估的理论与方法研究[D].山东大学,2008.
    [22]郭志忠,柳焯,方恭寿.总体及多维节点电力负荷模式预报[J].哈尔滨工业大学学报,1985(02):49-56.
    [23]FALCAO D M, BEZERRA U H. Short-term forecasting of nodal active and reactive load in electric power system [M]. IEE.1986:18-22.
    [24]CARPENTIER J. Contribution to the economic dispatch problem[J]. Bull Soc Franc Elect,1962,8(3):431-447.
    [25]DOMMEL H W, TINNEY W F. Optimal power flow solutions[J]. Power Apparatus and Systems, IEEE Transactions on,1968(10):1866-1876.
    [26]SUN D I, ASHLEY B, BREWER B, et al. Optimal power flow by Newton approach[J]. Power Apparatus and Systems, IEEE Transactions on,1984(10): 2864-2880.
    [27]YAN X, QUINTANA V H. Improving an interior-point-based OPF by dynamic adjustments of step sizes and tolerances[J]. Power Systems, IEEE Transactions on,1999,14(2):709-717.
    [28]JABR R A, COONICK A H, CORY B J. A primal-dual interior point method for optimal power flow dispatching [J]. Power Systems, IEEE Transactions on, 2002,17(3):654-662.
    [29]李劲波,周理,陈允平.基于仿射变换内点算法的大电网无功优化[J].电网技术,1997(3):22-24.
    [30]刘明波,陈学军.电力系统无功优化的改进内点算法[J].电力系统自动化,1998(5):33-36.
    [31]李乃湖,丁恰,王晓东.基于原—对偶内点法的电压无功实时优化控制算法[J].电力系统自动化,2000(5):20-23+60.
    [32]程莹,刘明波.求解离散无功优化的非线性原—对偶内点算法[J].电力系统自动化,2001(9):23-27+60.
    [33]刘明波,李健,吴捷.求解无功优化的非线性同伦内点法[J].中国电机工程学报,2002(1):2-8.
    [34]赵登福,周文华,张伏生等.遗传算法在无功优化应用中的改进[J].电网技术,1998(10):36-38+45.
    [35]王洪章,熊信艮,吴耀武基于改进Tabu搜索算法的电力系统无功优化[J].电网技术,2002(1):15-18.
    [36]李益华,林文南,李茂军.基于改进Tabu搜索算法的区域电网无功优化[J].高电压技术,2008(7):1463-1468.
    [37]张文,刘玉田.自适应粒子群优化算法及其在无功优化中的应用[J].电网技术,2006(8):19-24.
    [38]梁才浩,钟志勇,黄杰波等.一种改进的进化规划方法及其在电力系统无功优化中的应用[J].电网技术,2006,30(4):16-20.
    [39]刘方.基于遗传算法和内点法的无功优化混合策略[J].中国电机工程学报,2005,25(15).
    [40]丁晓群,王艳华,臧玉龙等.基于内点法和改进遗传算法的无功优化组合策略[J].电网技术,2008,32(11):45-49.
    [41]丁晓莺,王锡凡,陈皓勇.一种求解最优潮流的组合算法[J].中国电机工程学报,2002,22(12):12-17.
    [42]杨扬.基于负荷预测的无功优化控制的研究[D].中国石油大学,2011.
    [43]HSU Y Y, KUO H C. Dispatch of capacitors on distribution system using dynamic programming[J]. Generation, Transmission and Distribution, IEE Proceedings C,1993,140(6):433-438.
    [44]张鹏,刘玉田.配电系统电压控制和无功优化的简化动态规划法[J].电力系统及其自动化学报,1999,11(4):49-53.
    [45]FENG-CHANG L, YUAN-YIH H. Fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation [J]. Power Systems, IEEE Transactions on,1997,12(2):681-688.
    [46]SHARIF S S, TAYLOR J H. Dynamic optimal reactive power flow [C] proceedings of the American Control Conference,1998. vol.3416:3410-3414.
    [47]胡泽春,王锡凡.配电网无功优化的分时段控制策略[J].电力系统自动化,200226(6):45-49.
    [48]YOUMAN D, XIAOJUAN R, CHANGCHENG Z, et al. A heuristic and algorithmic combined approach for reactive power optimization with time-varying load demand in distribution systems[J]. Power Systems, IEEE Transactions on,2002,17(4):1068-1072.
    [49]任晓娟,邓佑满,赵长城等.高中压配电网动态无功优化算法的研究[J].中国电机工程学报,2003,23(01):32-37.
    [50]张勇军,俞悦,任震等.实时环境下动态无功优化建模研究[J].电网技术,2004,28(12):12-15.
    [51]张勇军,任震.电力系统动态无功优化调度的调节代价[J].电力系统自动化,2005,29(2):34-38+60.
    [52]周任军,段献忠,周晖.计及调控成本和次数的配电网无功优化策略[J].中国电机工程学报,2005,25(9):23-28.
    [53]周任军,任铁平,彭高辉,等.配电网运行及设备控制综合经济性的无功电压优化[J].电力系统自动化,2005,27(7):70-74.
    [54]刘明波,朱春明,钱康龄,等.计及控制设备动作次数约束的动态无功优化算法[J].中国电机工程学报,2004,24(3):39-45.
    [55]赖永生,刘明波.电力系统动态无功优化问题的快速解耦算法[J].中国电机工程学报,2008,28(7):32-39.
    [56]缪楠林,刘明波,赵维兴.电力系统动态无功优化并行算法及其实现[J].电工技术学报,2009,24(2):150-157.
    [57]IB A K. Reactive power optimization by genetic algorithm [J]. Power Systems, IEEE Transactions on,1994,9(2):685-692.
    [58]WEI Y, FANG L, CHUNG C Y, et al. A hybrid genetic algorithm-interior point method for optimal reactive power flow[J]. Power Systems, IEEE Transactions on,2006,21(3):1163-1169.
    [59]刘方,颜伟,徐国禹,等.求解动态无功优化问题的混合免疫遗传算法[J].中国电力,2006,39(8):6-11.
    [60]颜伟,田甜,张海兵,等.考虑相邻时段投切次数约束的动态无功优化启发式策略[J].电力系统自动化,2008,32(10):71-75.
    [61]何禹清,彭建春,文明,等.基于改进遗传算法的配电网动态无功优化[J].湖南大学学报(自然科学版),2010,37(3):38-43.
    [62]DEL VALLE Y, VENAYAGAMOORTHY G K, MOHAGHEGHI S, et al. Particle Swarm Optimization:Basic Concepts, Variants and Applications in Power Systems [J]. Evolutionary Computation, IEEE Transactions on,2008, 12(2):171-195.
    [63]沈茂亚,丁晓群,王宽,等.自适应免疫粒子群算法在动态无功优化中应用[J].电力自动化设备,2007,27(1):31-35.
    [64]肖军,刘天琪,苏鹏.基于双种群粒子群算法的分时段电力系统无功优化[J].电网技术,2009,33(8):72-77.
    [65]颜伟,张海兵,田甜,等.交直流系统的动态无功优化[J].电力系统自动化,2009,33(10):43-46.
    [66]颜伟,张海兵,田甜等.考虑虚拟电源电压特性的区域电网动态无功优化[J].电力系统自动化,2009,33(11):29-32.
    [67]黄安平,蒋金良.考虑分布式发电的无功电压优化控制研究[J].华东电力,2010,38(08):1231-1236.
    [68]邓美玉.计及风电的输电网无功优化[D].西南交通大学,2011.
    [69]BALDWIN C J, DALE K M, DITTRICH R F. A Study of the Economic Shutdown of Generating Units in Daily Dispatch[J]. Power Apparatus and Systems, Part Ⅲ Transactions of the American Institute of Electrical Engineers, 1959,78(4):1272-1282.
    [70]张利.电力市场中的机组组合理论研究[D].山东大学,2006.
    [71]LEE F N. The application of commitment utilization factor (CUF) to thermal unit commitment[J]. Power Systems, IEEE Transactions on,1991,6(2): 691-698.
    [72]LI C, JOHNSON R B, SVOBODA A J. A new unit commitment method[J]. Power Systems, IEEE Transactions on,1997,12(1):113-119.
    [73]PANG C, CHEN H. Optimal short-term thermal unit commitment [J]. Power Apparatus and Systems, IEEE Transactions on,1976,95(4):1336-1346.
    [74]PANG C K, SHEBLE G B, ALBUYEH F. Evaluation of Dynamic Programming Based Methods and Multiple area Representation for Thermal Unit Commitments[J]. Power Apparatus and Systems, IEEE Transactions on, 1981,PAS-100(3):1212-1218.
    [75]VAN DEN BOSCH P P J, HONDERD G. A Solution of the Unit Commitment Problem Via Decomposition and Dynamic Programming[J]. Power Apparatus and Systems, IEEE Transactions on,1985, PAS-104(7):1684-1690.
    [76]MUCKSTADT J A, KOENIG S A. An application of Lagrangian relaxation to scheduling in power-generation systems[J]. Operations research,1977: 387-403.
    [77]MERLIN A, SANDRIN P. A New Method for Unit Commitment at Electricite De France[J]. Power Apparatus and Systems, IEEE Transactions on,1983, PAS-102(5):1218-1225.
    [78]COHEN A I, WAN S. A method for solving the fuel constrained unit commitment problem[J]. Power Systems, IEEE Transactions on,1987,2(3): 608-614.
    [79]GUAN X, LUH P B, YAN H, et al. Short-term scheduling of thermal power systems [C] proceedings of the Power Industry Computer Application Conference,1991.120-126.
    [80]ONGSAKUL W, PETCHARAKS N. Unit commitment by enhanced adaptive Lagrangian relaxation[J]. Power Systems, IEEE Transactions on,2004,19(1): 620-628.
    [81]COHEN A I, YOSHIMURA M. A branch-and-bound algorithm for unit commitment[J]. Power Apparatus and Systems, IEEE Transactions on,1983(2): 444-451.
    [82]袁晓辉,袁艳斌,张勇传.电力系统中机组组合的现代智能优化方法综述[J].电力自动化设备,2003,23(2):73-78.
    [83]杨俊杰,周建中,喻菁等.一种求解大规模机组组合问题的混合智能遗传算法[J].电网技术,2004,28(19):47-50.
    [84]袁晓辉,王乘,张勇传等.粒子群优化算法在电力系统中的应用[J].电网技术,2004,28(19):14-19.
    [85]陈海良,郭瑞鹏.基于改进离散粒子群算法的电力系统机组组合问题[J].电网技术,2011,35(12):94-99.
    [86]RUZIC S, RAJAKOVIC N. A new approach for solving extended unit commitment problem[J]. Power Systems, IEEE Transactions on,1991,6(1): 269-277.
    [87]BATUT J, RENAUD A. Daily generation scheduling optimization with transmission constraints:a new class of algorithms[J]. Power Systems, IEEE Transactions on,1992,7(3):982-989.
    [88]张利,赵建国,韩学山.考虑网络安全约束的机组组合新算法[J].电网技术,2006,30(21):50-55.
    [89]BENDERS J F. Partitioning procedures for solving mixed-variables programming problems [J]. Numerische Mathematik,1962,4(1):238-252.
    [90]MA H, SHAHIDEHPOUR S M, MARWALI M K C. Transmission constrained unit commitment based on Benders decomposition [C] proceedings of the American Control Conference,1997. vol.2264:2263-2267.
    [91]赵宏伟,任震.计及线路安全约束的机组最优投入[J].电力系统自动化,1997,21(05):41-45.
    [92]POOMMALEE W, DAMRONGKULKAMJORN P. Unit commitment considering security-constrained optimal power flow by lagrangian relaxation with genetic algorithm [C] proceedings of the Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology,,2008.893-896.
    [93]王敏蔚,杨莉.考虑安全约束的机组组合免疫算法模型[J].电力系统自动化,2010,34(22):57-61.
    [94]MA H, SHAHIDEHPOUR S M. Decomposition approach to unit commitment with reactive constraints[J]. Generation, Transmission and Distribution, IEE Proceedings-,1997,144(2):113-117.
    [95]MA H, SHAHIDEHPOUR S M. Unit commitment with transmission security and voltage constraints[J]. Power Systems, IEEE Transactions on,1999,14(2): 757-764.
    [96]FU Y, SHAHIDEHPOUR M, LI Z. Security-Constrained Unit Commitment With AC Constraints*[J]. Power Systems, IEEE Transactions on,2005,20(3): 1538-1550.
    [97]BAI X, WEI H. Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints [J]. Generation, Transmission & Distribution, IET,2009,3(2): 182-197.
    [98]江全元,张铭泽,高强.考虑交流潮流约束的机组组合并行解法[J].电工技术学报,2009,24(8):120-126.
    [99]ALSAC O, STOTT B. Optimal load flow with steady-state security [J]. Power Apparatus and Systems, IEEE Transactions on,1974(3):745-751.
    [100]MONTICELLI A, PEREIRA M, GRANVILLE S. Security-constrained optimal power flow with post-contingency corrective rescheduling[J]. Power Systems, IEEE Transactions on,1987,2(1):175-180.
    [101]钟世民,韩学山,刘道伟等.计及校正控制的安全约束最优潮流的奔德斯分解算法[J].中国电机工程学报,2011,31(1):65-71.
    [102]YONG F, SHAHIDEHPOUR M, ZUYI L. AC contingency dispatch based on security-constrained unit commitment[J]. Power Systems, IEEE Transactions on,2006,21(2):897-908.
    [103]JIANHUI W, SHAHIDEHPOUR M, ZUYI L. Security-Constrained Unit Commitment With Volatile Wind Power Generation[J]. Power Systems, IEEE Transactions on,2008,23(3):1319-1327.
    [104]LOTFJOU A, SHAHIDEHPOUR M, YONG F, et al. Security-Constrained Unit Commitment With AC/DC Transmission Systems[J]. Power Systems, IEEE Transactions on,2010,25(1):531-542.
    [105]汪洋,夏清,康重庆.考虑电网N-1闭环安全校核的最优安全发电计划[J].中国电机工程学报,2011,31(10):39-45.
    [106]汪洋,夏清,朱明祥等.最优校正型安全机组组合模型及其求解算法[J].电力系统自动化,2011,35(9):19-24.
    [107]杨朋朋,韩学山,查浩.一种计及静态安全约束机组组合的有效算法[J].电力系统自动化,2009,33(8):39-43.
    [108]张智刚,夏清.智能电网调度发电计划体系架构及关键技术[J].电网技术,2009,33(20):1-8.
    [109]杜贵和,王正风.智能电网调度一体化设计与研究[J].电力系统保护与控制,2010,38(15):127-131.
    [110]康重庆,牟涛,夏清.电力系统多级负荷预测及其协调问题(一)研究框架[J].电力系统自动化,2008,32(7):34-38.
    [111]牟涛,康重庆,夏清等.电力系统多级负荷预测及其协调问题(二)基本协调模型[J].电力系统自动化,2008,32(8):14-18.
    [112]牟涛,康重庆,夏清等.电力系统多级负荷预测及其协调问题(三)关联协调模型[J].电力系统自动化,2008,32(9):20-24.
    [113]SUYKENS J A K, VANDEWALLE J. Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters,1999,9(3):293-300.
    [114]SUYKENS J A K, VANDEWALLE J. Multiclass least squares support vector machines [C],1999. IEEE:vol.902:900-903.
    [115]A.J.SMOLA. Learning with kernels [D]. Berlin; Technical University of Berlin, 1998.
    [116]吴琼,杨以涵,刘文颖.基于最小二乘支持向量机的电力系统暂态稳定在线预测[J].中国电机工程学报,2007,27(25):38-43.
    [117]耿艳,韩学山,韩力.基于最小二乘支持向量机的短期负荷预测[J].电网技术,2008(18):72-76.
    [118]王雁平,乐春峡.电力系统负荷建模的数据预处理技术[J].电网技术,2007(S2):292-294.
    [119]谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报,2006,26(22):17-22.
    [120]邓自立.最优估计理论及其应用:建模,滤波,信息融合估计[M].哈尔滨工业大学出版社,2005.
    [121]康重庆,夏清,沈瑜等.电力系统负荷预测的综合模型[J].清华大学学报(自然科学版),1999,39(1):8-11.
    [122]蔡昌春,丁晓群,王宽等.动态无功优化的简化方法及实现[J].电力系统自动化,2008,32(05):43-46+58.
    [123]潘珂,韩学山,孟祥星.无功优化内点法中非线性方程组求解规律研究[J].电网技术,2006,30(19):59-65.
    [124]周明,孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社.1999.
    [125]范磊,陈珩.静态电压稳定分析中发电机的无功功率及其越限处理[J].电力系统自动化,1998,22(12):20-23.
    [126]刘宁宁.优化旋转备用配置的机组组合研究[D].山东大学,2010.
    [127]CARRION M, ARROYO J M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem [J]. Power Systems, IEEE Transactions on,2006,21(3):1371-1378.
    [128]CIGRE T.38.03.12 (RJ Marceau and J. Endrenyi, Chairmen),"Power system security assessment:A position paper,"[J]. Electra,1997(175):48-78.
    [129]YONG F, SHAHIDEHPOUR M. Fast SCUC for Large-Scale Power Systems[J]. Power Systems, IEEE Transactions on,2007,22(4):2144-2151.
    [130]汪晶.基于Bender's分解的安全约束机组组合问题.中国科技论文在线.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700