H型钢热轧工艺过程数值分析及其仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来对长型材力学性能的一致性和多样性的要求日趋严格,而其性能主要取决于钢的化学成分、晶粒度、关键的轧制及冷却工艺参数。此前的研究热点主要集中在建立再结晶和相变过程的物理冶金模型,并将其应用于分析板()材或者小截面型材轧制过程的数值分析,而对长型材中复杂断面型钢的热轧工艺过程的研究较少。
     本文选择中型H型钢热轧工艺过程的综合数值分析为研究课题,分析和预测型钢热轧力能参数和轧件中的微观组织演变,深入到微观层面理解影响H型钢性能的工艺因素。其成果对于建立H型钢热轧全过程的尺寸精度和机械性能预报系统、优化轧制工艺参数等,具有重要的实际应用价值和理论意义。
     建立了Q235钢高温整体流变应力模型。利用Gleeble-1500热模拟实验机,对Q235钢的高温变形行为进行了研究,得到了不同温度和变形条件下的流变应力数据。考虑热变形过程中金属动态再结晶的影响,建立了高温整体流变应力模型,在计算流变应力的同时分析了金属内部微观组织的演变过程,突破了传统经验模型仅能对热轧过程进行热力耦合分析的局限,将微观组织分析引入到型钢热轧过程的数值分析中。
     建立了Q235钢的奥氏体晶粒加热长大动力学模型。利用WZK-1可控硅温度控制器的加热炉、MM-6金相显微镜及图像分析仪,研究不同温度下奥氏体晶粒直径与保温时间之间的关系。利用金相实验观测得到的数据,建立了Q235钢的奥氏体晶粒加热长大动力学模型。利用该模型计算热轧坯料的初始奥氏体晶粒尺寸,分析了加热炉保温温度、保温时间对后续奥氏体晶粒的影响。
     建立了Q235钢热变形过程中奥氏体晶粒演变动力学模型。用Gleeble-1500热模拟实验机对Q235圆柱试样进行压缩之后,立即用足量冷水淬火,然后沿试样压缩方向进行纵向剖切、研磨、抛光后制成金相试样,对金相试样浸蚀后,采用MM-6图像分析仪观察变形后试样不同部位的奥氏体晶界。建立了Q235奥氏体再结晶预报模型,利用该模型对不同变形条件下的奥氏体晶粒进行预测的平均误差为13.6%,相对于通用C-Mn钢奥氏体再结晶模型15.4%的平均预测误差,其预测精度进一步提高。
     建立了多道次H型钢粗轧过程轧制负荷、腰部温度、腰部奥氏体晶粒直径的经验计算公式。尽管有限元结果可以提供轧件变形过程中应力、应变、温度、奥氏体晶粒直径、再结晶分数等数据的形象分布云图,但也存在计算时间长、步骤繁琐等不适应现场快速多变的生产节奏的缺点。所以,在对轧制过程有限元分析模型进行验证的基础上,通过4因素3位级的虚拟正交实验确定了影响H型钢轧制负荷、奥氏体晶粒直径各主要因素的主次顺序,建立了计算多道次H型钢孔型轧制的轧制负荷、腰部温度、腰部奥氏体晶粒直径的经验计算公式,避免了利用埃克隆德公式计算轧制负荷时需要确定轧件瞬时温度的困难。
     提出了基于网格重构的多道次型钢热轧过程的数值分析流程。利用PYTHON和FORTRAN程序实现了多道次热轧过程有限元分析模型间节点温度、累积塑性应变、自定义场变量等的数据传递,确保了多道次H型钢大变形塑性过程及其类似变形过程数值分析的完成。并且在改进的ABAQUS软件平台上,成功地对H400×200、H250×125、H200×200规格H型钢粗轧全过程进行了综合数值分析,详细地给出了热轧过程中轧制负荷、轧件温度、轧件变形、以及轧件内奥氏体晶粒的演变过程等的计算结果。并且利用红外测温设备(NEC热像仪TH5104R)及现场监测系统测量的大量数据,验证了轧件温度和轧制负荷数值分析结果的正确性。
     利用FORTRAN语言编写VUMAT(自定义材料模型)、UFRIC(自定义摩擦模型)、USDFLD(自定义场变量模型)、FILM(自定义对流换热模型)等用户子程序,实现了自定义整体流变应力模型和再结晶模型的嵌入,提高了有限元模型的计算精度。
     通过对热轧过程进行热、力、微观三者之间的耦合分析,给出了工艺参数的调整对微观组织影响的结果,避免了进行轧制规程优化时单纯以轧制负荷、温度、外形尺寸为优化依据,为从微观角度出发提高热轧质量提供了理论依据和技术支持。
The demands of the diversity and consistence of mechanical performances for long products have been going high in recent years, and the mechanical performance depends on the chemical elements of the steel, grain size, and the critical rolling and cooling parameters. The researches were mainly focusing on creating metallurgy models for recrystallization and phase transformation, and were utilized to the rolling processes of strip and small cross-section shape-metal, but leaving the complex cross-section shape-metal under-researched.
     This dissertation focuses on the integrated numerical analysis of the medial size H-beam rolling process. The rolling force, temperature and the microstructure were analyzed during the rolling process, so get the knowledge of the effects on the H-beam performances from a microstructure point of view. The results play a vital role in constructing the dimension precision and mechanical performances predications system, optimizing rolling parameters et al.
     The dissertation is consisted of the following parts:
     First, a unitary flow stress model of Q235 steel was developed. Gleeble-1500 tester system was used to study the plastic deformation behaviors of the material under high temperature. A unitary flow stress model, capable of taking the stress softening caused by recrystallization into account, was created based on the experiments results. The model can be used to calculate the size and volume fraction of the austemte grains, including the flow stress inside the stock during the hot deformation process. So, the interactions between the deformation parameters and microstructure can also be studied at the same time of performing temperature-displacement finite element method (FEM) analyses.
     Second, an austenite grain growth model of Q235 steel during the heat up process was developed. Relationship between the austenite grain size and the heat preservation time was studied at different temperature using the WZK-1 heater and the MM-6 graphic analyzer. The model coefficients were figured out by regression analysis of the test results, and it's capable of calculating the origin austenite grain size of the hot stock. So the effects on the grain size of the heater temperature and preservation time could be studied during the following deformation process.
     Third, an austenite grain evolution model of Q235 steel during the hot deformation was developed. Hardly after compressed by the punchers of the Gleeble-1500 tester, the cylindrical samples were quenched. Samples were made by splitting along the direction of compressing and polished for austenite grain observation. Eroded in the corrosive mixed by supersaturation picric acid and scour for 5 to 10 minutes at the temperature of 50-70℃, the austenite grain boundaries at different zones of the cross-section , when the compression was barely completed, can be observed by the MM-6 graphic analyzer. The austenite grain recrystallization model of the Q235 material was developed on the results, with a prediction error of 13.6%. Compared with the prediction error of 15.4% of the general C-Mn model, its prediction precision is 11.7% higher.
     Fourth, an analysis approaches for numerical analysis of multi-pass shape metal hot rolling process was developed based on element re-mesh. The data transfer between different passes analyses, mainly including the node temperature, the accumulated plastic strain and user defined filed variables, were completed by PYTHON and FORTRAN program. The numerical analysis of the H-Beam hot rolling, a big plastic deformation process, could be completed successfully utilizing the approaches. The efficiency and precision were assured by the re-mesh, data transfer provided by the user-defined programs and the steady state detection provide by the ABAQUS.
     Fifth, the experiential formulas were developed for computing the rolling force, temperature, and the austenite grain size at the middle part of H-shape cross section. Although the stress, strain, temperature, and austenite grain size could be presented in detail from the FEM analysis results, it also has the following shortcomings, such as long calculating time, complicated steps etc. And this makes it difficulty to meet with real-time production requirements. The parameters affecting the rolling force and austenite grain size were investigated through four parameters and three levels numerical experiments after the FEM model has been validated by the measuring results.
     Sixth, user subroutines were programmed to implement the user-defined models. All kinds of user-defined models could be embedded into the numerical calculating process of the ABAQUS. The following subroutines, including user-defined material (VUMAT), user-defined friction (VFRIC), user-defined field (VSDFLD), and user-defined film (FILM) were presented in the dissertation. The solution precision could be enhanced the embedded subroutines, and the most important part is the analysis of user-defined parameters.
     The effects of the hot rolling parameters adjustment on the microstructure were analyzed by the temperature-displacement-microstructure analysis. So the hot rolling schedule optimization could be implemented for improving the quality by the view of microsturuture.
引文
[1]谢震清,丁维.莱钢H型钢钢结构节能住宅建筑体系的开发和实践[J].建筑钢结构进展,2003,5(4):68-74.
    [2]陈企奋.大跨度H型钢截面钢屋架设计实例[J].建筑钢结构进展,2003,5(3):23-31.
    [3]钱健清.对H型钢特点的进一步分析[J].钢结构,2001,16(1):16-18.
    [4]赵霄,雷宏钢.我国多层钢结构发展的动态[J].山西建筑,2004,30(6):11-12.
    [5]刘永昕.钢结构在新型高效选煤厂主厂房中的应用[J].煤质技术,2004,16(1):38-39.
    [6]钱健清.热轧H型钢的轧制及其工程应用[J].建筑钢结构进展,2002,4(1):33-40.
    [7]曲成平.多层H型钢钢结构住宅的性能分析[J].建筑技术,2005,36(7):546-547.
    [8]董志洪.世界H型钢与钢轨生产技术[M].北京:冶金工业出版社,2003.
    [9]余庆中.中国国内H型钢市场分析[J].钢结构,2006,21(1):94-95.
    [10]刘英瑞.工艺及装备先进的H型钢生产线[J],钢铁,2001,36(1):29-32.
    [11]高海建,林镇钟.H型钢生产的技术进步及其在马钢的应用[J]I钢铁,1999,34(.增刊):946-951.
    [12]王延溥,齐克敏.金属塑性加工学[M].北京:冶金工业出版社,2001.
    [13]GB/T11263-2005.热轧H型钢和剖分T型钢[S].2005.
    [14]肖景容,李尚健.塑性成形模拟理论[M].武汉:华中理工大学出版社,1994.
    [15]刘相华,白光润.H形轧件边部外侧前滑的研究[J],钢铁,1985,20(8):44-47.
    [16]周光理,陶凌彦.热轧H型钢腹板波浪质量攻关[J],轧钢,2003,20(1):69-70.
    [17]沙孝春,兰勇军,李殿中,等.热轧钢力学性能预测模型及其应用[J].轧钢,2003,20(3):23-26.
    [18]薛志明.钢材轧制过程中组织性能预报系统综述[J].山西冶金,2006,29(1):13-14.
    [19]Crowther D.N.,Li Y,Baker T.N.,et al.The Development of Vanadium Containing High Strength Steels for Thin Slab Casting[A].Conference of Thermomechanical Processing of Steels[C].The Steel Division Technical Committee of the Institute of Materials and IOM Communication Ltd.,London,U K:2000:527-536.
    [20]Militzer M.,Hawbolt E.B.,Meadowcroft T.R.Microstructural model for hot strip rolling of high-strength-low-alloy steels[J].Metallurgical and Materials Transactions A,2000,31A(4):1247-1259.
    [21]余万华,韩静涛.用HSMM软件预报钒微合金钢的组织性能[J].轧钢,2005,22(6):39-40.
    [22]朱丽娟,吕义.宝钢2050热轧钢组织性能预测[J].热加工工艺,2006,35(1):1-3,转46.
    [23]孙蓟泉,陈娟.轧后冷却工艺对热轧窄钢组织性能的影响[J].上海金属,2006,28(3):36-39,转43.
    [24]王丹民,李华德,周建龙,等.热轧钢力学性能预测模型及其应用[J].北京科技大学学报,2006,28(7):687-690.
    [25]余驰斌,张志红.铌钛微合金热连轧钢冷却过程中组织演变及模型的研究,上海金属,2005,27(1):21-25.
    [26]Myllykoski Pirkka.A study on the cause of deviation in mechanical properties of thin steel sheets[J].Journal of Material Processing Technology,1998,79:9-13.
    [27]Sun W.P,Mikitzer M.Analysis and modeling of austenite grain refinement and growth during hot rolling[J].Iron Steel maker,1998,25(5):85-90.
    [28]Manohar P.A.Continuous cooling transformation behaviors of high strength microlloyed steels for line pipe applications[J].ISIJ International,1998,38(7):766-774.
    [29]Park J.J.Prediction of the flow stress and grain size of steel during thick-plate rolling[J].Journal of Materials Processing Technology,2001,113(1-3):581-586.
    [30]W.P.Sun,Hawbolt E.B.Comparison between static and metadynamic recrystallization-an application to the hot rolling of steels[J].ISIJ International,1997,37(10):1000-1009.
    [31]Hong C.P.,Park J.J.Design of pass schedule for austenite grain refinement in plate rolling of plain carbon steel[J].Journal of Materials Processing Technology,2003,(143-144):758-763.
    [32]Knapinski M.The numerical analysis of roll deflection during plate rolling[J].Journal of Materials Processing Technology,2006,175(1-3):257-265.
    [33]Trull M.,McDonald D.,Advanced finite element modeling of plate rolling operations[J].Journal of Materials Processing Technology,2006,177(1-3):513-516.
    [34]Farhat-Nia F.,Salimi M.,Movahhedy M.R.Elasto-plastic finite element simulation of asymmetrical plate rolling using an ALE approach[J].Journal of Materials Processing Technology,2006,177(1-3):525-529.
    [35]Andorfer J.,Auzinger D.,Hirsch M.,et al.VAIQ-Strip,un nouveau systeme de controle de qualite pour les bandes laminees a chaud(VAIQ-Strip:A new integrated quality control system for hot rolled strip),1998,95(7-8):883-892.
    [36]Andorfer J.,Auzinger D.使用VAI-Q Strip系统首次实现热轧钢力学性能的全面控制[J].钢铁,2001,36(1):42-46.
    [37]Wung Yong Choo,Chang Sun Lee,Se Don Choo.Development of Quality Prediction and Monitoring System for Plate Production[A].European Rolling Conference[C],Vasteras,Sweden:2000:24-26.
    [38]Trowsdale A.J.,Randerson K.,Morris P.F.,et al.MetModel:Microstructural evolution model for hot rolling and prediction of final product properties[J].Iron making and Steel making,2001,28(2):170-174.
    [39]Trowsdale A.J.,Tunstall J.P.,Randerson K.,et al.BritishSteel plc[A].Modeling of metal rolling processes[C].Church House Conference Centre,London,U K:1999:12-21.
    [40]Leffler H.U.,Dell R.Commercial application of microstructure modelling in hot strip mills[A].Eds.Gottstein G,Molodov D A.Recrystallization and Grain Growth Proceedings of the First Joint International Conference[C].Springer Verlag:2001.
    [41]Donnay B.,Lotter U.Microstructure evolution of C-Mn steel in the hot deformation process:the STRIPCAM Model,ECSC Final Report Contract No.7210-EC/205-304-106(92-D3.02a-b-c).
    [42]王利明.热轧过程钢组织演变模拟与性能预测:[硕士论文].北京:中国科学院研究生院,2002.
    [43]王利明,沙孝春,李殿中,等.Rollan钢热轧过程组织演变与性能预测软件的开发[A].新一代钢铁材料国际会议[C].北京,中国:2001.
    [44]沈俊昶.热连轧钢组织性能计算机预报系统:[硕士论文].北京:北京钢铁研究总院,2000.
    [45]刘振宇.C-Mn钢热轧板组织-性能预测模型的开发及在生产中的应用:[博士论文].沈阳:东北大学,1995.
    [46]曲锦波.HSLA钢板热轧组织性能控制及预测模型:[博士论文].沈阳:东北大学,1998
    [47]崔振山,刘才.H型钢热轧过程微观组织的数值预报[J].燕山大学学报,2000,24(2):123-126.
    [48]Lambert D.,Jepson P.R.,Yang J.Process simulation for industrial rolling applications[A].Materials Science and Technology,AIST/TMS Proceedings[C].New Orleans,Louisiana,USA:2004,2:385-396.
    [49]Park H.J.,Lee Yong-Shin.Prediction of the shape changes and microstructure evolution in an Eulerian analysis of steady state forming process[A].Proceedings of the TMS Fall Extraction and Processing Conference,Extraction and Processing Division Congress[C].Charlotte,North Carolina,USA:2004:295-304.
    [50]Wang S.R.,Tseng A.A.Macro-and micro-modeling of hot rolling of steel coupled by a micro-constitutive relationship[J].Materials and Design,1995,16(6):315-336.
    [51]Hodgson P.D.Microstructure modeling for property prediction and control[J].Journal of Materials Processing Technology,1996,(60):27-33.
    [52]Lin J.,Liu Y.A set of unified constitutive equations for modeling microstructure evolution in hot deformation[J].Journal of Materials Processing Technology,2003,(143-144):281-285.
    [53]Siamak Serajzadeh.A mathematical model for evolution of flow stress during hot deformation[J].Materials Letters,2005,(59):3319-3324.
    [54]Kwon Ohjoon.A technology changes and for the prediction and mechanical properties in control of micro-structural steel[J].ISIJ International,1992,32(3):350-358.
    [55]Du Lin-xiu,Zhang Zhong-ping,She Guang-fu,et al.Austenite recrystallization and controlled rolling of low carbon steels[J].Journal of Iron and Steel Research,International.2006,13(3):31-35+50.
    [56]Reed R.C.,T.Akbay,Z.Shen,et al.Determination of reaustenitisation kinetics in Fe-0.4C steel using dilatometry and neutron diffraction[J].Materials Science and Engineering,1998,(A256):152-165.
    [57]Ahmed H.,Wells M.A.,Maijer D.M.,et al.Modeling of microstructure evolution during hot rolling of AA5083 using an internal state variable approach integrated into an FE model[J].Materials Science and Engineering,2005,(A390):278-290.
    [58]Liu Y.,Lin J.Modeling of micro-structural evolution in multi-pass hot rolling,Journal of Materials Processing Technology[J].2003,(143-144):723-728.
    [59]Hodgson P.D.,Gibbs R.K.A mathematical model to predict the mechanical properties of hot rolled C-Mn and micro-alloyed steels[J].ISIJ International,1992,32(12):1329-1335.
    [60]Ettore Anell.Application of mathematical modeling to hot rolling and controlled cooling of wire rods and bars[J].ISIJ International,1992,32(3):440-449.
    [61]Siciliano F.,Minami K..Maccagno T.M.,et al.Mathematical modeling of the mean flow stress,fractional softening and grain size during the hot strip rolling of C-Mn steels[J].ISIJ International,1996,36(12):1500-1506.
    [62]Wang F.,Zhu Q.,Lin J.,et al.Prediction of micro-structural evolution in hot rolling[J].Journal of Materials Processing Technology,2006,(177):530-533.
    [63]田景,杨王玥,孙祖庆.工艺参数对低碳钢形变强化相变的影响[J].材料热处理学报,2005,26(5):62-67.
    [64]田景,王国柱,杨王玥,等.变形温度对形变强化相变完成时临界应变量的影响[J].塑性工程学报,2006,13(2):80-84.
    [65]沈丙振,方能炜,沉厚发,等.低碳钢奥氏体再结晶模型的建立[J].材料科学与工艺,2005,13(5):516-520.
    [66]王瑞珍,杨忠民,赵燕,等.普通低碳钢奥氏体晶粒细化及其对变形强化相变铁素体晶粒尺寸的影响[J].钢铁研究,2001,4(121):21-24.
    [67]杨王玥,胡安民,齐俊杰,等.低碳钢多道次变形中的应变强化相变与铁素体动态再结晶[J].金属学报,2000,36(11):1192-1196.
    [68]杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒尺寸的控制[J].金属学报,2000,36(10):1050-1054.
    [69]傅云义,杨平,杨王玥,等.粗大奥氏体晶粒中应变诱导铁素体形成特点[J].北京科技大学学报,2000,22(2):170-173.
    [70]黄原定,杨王玥,孙祖庆.Q235钢的铁素体组织细化及其与力学性能关系[J].金属热处理,2000,(9):1-3.
    [71]窦晓峰,鹿守理,赵辉.Q235钢动态再结晶模型的建立[J].北京科技大学学报,1998,20(5):465-470.
    [72]杨平,崔凤娥,傅云义,等.Q235碳素钢应变诱导相变中的应力—应变曲线分析[J].金属学报,2001,37(6):609-616.
    [73]赵磊,郑为为,杨王玥,等.Q235碳素钢多道次热变形中的组织演变及性能[J].北 京科技大学学报,2004,26(5):507-511.
    [74]王瑞珍,杨忠民,车彦民.低碳钢Q235形变奥氏体的静态再结晶[J].钢铁研究学报,2006,18(3):33-37.
    [75]Sellars C.M.Modeling micro-structural development during hot rolling[J].Material Science and Technology,1990,6(11):1072-1081.
    [76]Hodgson P.D.Microstructure modeling for property prediction and control[J].Journal of Materials Processing Technology,1996(60):27-33.
    [77]Kwon Ohjoon.A technology for the prediction and control of microstructural changes and mechanical properties in steel[J].ISIJ International,1992,32(3):350-358.
    [78]Roberts W.,Sandberg A.,Siwecki T.,et al.International Conference on technology and applications of HSLA steels,ASM,Philadelphia:1983:67-75.
    [79]Sellars C.M.,Whiteman J.A.Recrystallization and Grain Growth in Hot Rolling[J].Material Science,1978,13(3-4):187-194.
    [80]Dutta B.,Sellars C.M.Effect of Composition and Process Variables on Nb(C,N)Precipitation in Niobium Microalloyed Austenite[J].Material Science and Technology,1987,3(3):197-206.
    [81]Hodgson P.D.,Gloss R.E.,Dunlop G.L.Microstructure evolution during rod and bar rolling[J].Mechanical Working and Steel Processing Conference Proceedings,1991,28:527-538.
    [82]Choquet A.,LeBonand Perdix C.Proceedings of the 7th International Conference on the Strength of Metals and Alloys[C].Montreal,Canada:1985.2:1205-1210.
    [83]Andorfer J.,Hribernig G.,Luger A.,et al.A significant step forward:the full metallurgical control of the mechanical properties of hot-rolled strip with VAI-Q Strip[C],Paris:2000:1197-1204.
    [84]郭寓岷.低碳钢高温行为的实验研究[J].钢结构,1996,11(2):15-18.
    [85]李树国,刘持平.20钢变形抗力模型的建立及轧制力预报[J].轧钢,2001,18(1):26-27.
    [86]余晓青,邓卫丰.CSP生产普碳钢变形抗力数学模型研究与应用[J].轧钢,2005,22(1):30-31.
    [87]罗守靖,霍文灿,胡连喜.Gleeble-1500动态热-力模拟机进行钢的高温力学性能研究[J].钢铁,1991,26(8):54-57.
    [88]周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社出版,1989.
    [89]Glover G.,Sellars C.M.Metallurgical and Materials Transactions[J].1973,(4):765-775.
    [90]张麦仓,董建新.Q235低碳钢高温变形过程的动态组织演化分析[J].北京科技大学学报,2005,27(2):183-186转196.
    [91]Nanba,Shigenobuet.Prediction of microstructure distribution in the through-thickness direction during and after hot rolling in carbon steels[J].ISIJ International,1992,32(3):377-386.
    [92]Uhm,Sangho,Moon.Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels:Considering the effect of initial grain size on isothermal growth behavior[J].ISIJ International,2004,44(7):1230-1237.
    [93]彭大暑.金属塑性加工原理[M].长沙:中南大学出版社,2004.
    [94]崔振山,刘才.H型钢热轧过程金属流动的数值模拟[J].塑性工程学报,1999,6(3):74-78.
    [95]朱国明,吴迪.H型钢开坯轧制四道次有限元模拟[J].材料与冶金学报,2002,1(3):226-232.
    [96]Milenin A.A.Simulation of metal forming during multi-pass rolling of shape bars[J].Journal of Materials Processing Technology,2004,153-154:108-114.
    [97]Kazutake Komori.Simulation of deformation and temperature in multi-pass three-roll rolling[J].Journal of Materials Processing Technology,1999,92-93:450-457.
    [98]Rudkins N.Mathematical modelling of mill set-up in hot strip rolling of high strength steels[J].Journal of Materials Processing Technology,1998,80-81:320-324.
    [99]Kazutake Komori.Simulation of deformation and temperature in multi-pass H-shape rolling[J].Journal of Materials Processing Technology,2000,105:24-31.
    [100]Park Jong-Jin,Lee Sang-Joo.Design of rolling pass schedules to improve grain-size uniformity in thickness[J].Journal of Materials Processing Technology,2003,140:454-459.
    [101]Wong S.F.,Hodgson P.D.Physical modeling with application to metal working,especially to hot rolling[J].Journal of Materials Processing Technology,1996,62:260-274.
    [102]Sellars C.M.Modeling microstructural development during hot rolling[J].Material Science and Technology, 1990, 6: 1072-1081.
    [103] Beynon J.H., Sellars CM. Modeling microstructure and its effects during multipass hot rolling [J]. ISIJ International, 1992, 32: 359-367.
    [104] Hodgson P.D., A. Brownrigg. The Static Recrystallization of Coarse and Fine Grained C-Mn Steels [A]. Recrystallization'90: The Minerals, Metals and Materials Society[C]. Warren dale PA: 1990:541-546.
    [105] Hodgson P.D., Gibbs R.K. A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels [J].ISIJ International, 1992, (32): 1329-1338.
    [106] Maccagno T.M., Jonas J.J., Hodgson P.D. Spreadsheet modeling of grain size evolution during rod rolling [J]. ISIJ International, 1996, (36):720-728.
    [107] Hodgson P. D. Microstructure modeling for property prediction and control [J]. Journal of Materials Processing Technology, 1996, (60): 27-33.
    [108] Majta J., Kuziak R., Pietrzyk M., et al. Use of the computer simulation to predict mechanical properties of C-Mn steel, after thermomechanical processing [J]. Journal of Materials Processing Technology, 1996, 60:581-588.
    [109] Zahiri Saden H., Davies Chris H.J., Hodgson P.D.A mechanical approach to quantify dynamic recrystallization in polycrystalline metals [J].Scripta Materialia, 2005, 52:299-304.
    [110] Beladi H., Kelly G.L. Effect of thermo mechanical parameters on the critical strainfor ultrafine ferrite formation through hot torsion testing [J]. Materials Science and Engineering A, 2004, 367: 152-161.
    [111] Roucoules C, Pietrzyk M., Hodgson P.D.Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model[J]. Materials Science and Engineering, 2003,339:1-9.
    [112] Pietrzyk M., Lenard J. G.The effect of the temperature rise of the roll on the simulation of the flat rolling process [J], Journal of Materials Processing Technology, 1990, 22(2):177-190.
    [113] Naksoo Kim, Shiro Kobayashi, Taylan Altan.Three-dimensional analysis and computer simulation of shape rolling by the finite and slab element method [J].International Journal of Machine Tools and Manufacture, 1991, 31(4):553-563.
    [114] Ashok Kumar, Samarasekera I. V. Roll-bite deformation during the hot rolling of steel strip[J].Journal of Materials Processing Technology 1992,30(1):91-114.
    [115] Lee S. M., Shin W., Shivpuri R. Investigation of two square-to-round multipass rolling sequences by the slab-finite element method [J].International Journal of Machine Tools and Manufacture, 1992, 32(3):315-327.
    [116] Glowacki M., Kedzierski Z., Kusiak H., et al. Simulation of metal flow, heat transfer and structure evolution during hot rolling in square-oval-square series [J]. Journal of Materials Processing Technology, 1992,34(1-4):509-516.
    [117] Micari F.Three-dimensional coupled thermo-mechanical analysis of hot rolling processes [J].Joumal of Materials Processing Technology, 1992, 34(1-4): 303-310.
    [118] Ryan N. D., McQueen H. J.Hot strength and microstructural evolution of 316 stainless steel during simulated multistage deformation by torsion[J]. Journal of Materials Processing Technology, 1993, 36 (2):103-123.
    [119] Xu S. G., Cao Q. X.Numerical simulation of the microstructure in the ring rolling of hot steel[J].Journal of Materials Processing Technology, 1994,43(2-4):221-235.
    [120] Kawalla R., Lotter U., Pircher H. Twickler. Simulation of material flow and microstructural evolution during the hot rolling of flat products [J]. Journal of Materials Processing Technology, 1994, 45(1-4):477-484.
    [121] Wang S. R., Tseng A. A.Macro- and micro-modelling of hot rolling of steel coupled by a micro-constitutive relationship[J].Materials and Design, 1995,16(6):315-336.
    [122] Zhang X.J., Hodgson P.D., Thomson P. F.The effect of through-thickness strain distribution on the static recrystallization of hot rolled austenitic stainless steel strip[J].Journal of Materials Processing Technology, 1996, 60(1-4):615-619.
    [123] Brand Axel J., Kalz Stefan, Reiner Kopp. Microstructural simulation in hot rolling of aluminium alloys [J].Computational Materials Science, 1996, 7(1-2):242-246.
    [124] Angelov T., Nedev A. Finite-element analysis of a hot-rolling problem with nonlinear friction [J].Advances in Engineering Software, 1997, 28(9):555-561.
    [125] Rudkins N., P. Evans. Mathematical modeling of mill set-up in hot strip rolling of high strength steels [J].Journal of Materials Processing Technology, 1998, (80-81):320-324.
    [126] Lee D.James.A large-strain elastic-plastic finite element analysis of rolling process [J].Computer Methods in Applied Mechanics and Engineering, 1998, 161(3-4):315-347.
    [127] Galantucci L. M., Tricarico L.Thermo-mechanical simulation of a rolling process with an FEM approach [J].Journal of Materials Processing Technology, 1999, 92-93:494-501.
    [128] Torres Martin, Colas Rafael.A model for heat conduction through the oxide layer of steel during hot rolling [J].Journal of Materials Processing Technology, 2000, 105(3): 258-263.
    [129] Sellars C. M., Zhu Q.Microstructural modelling of aluminium alloys during thermomechanical processing [J]. Materials Science and Engineering A, 2000, 280(1):1-7.
    [130] Kazutake Komori, Katsuhiko Koumura.Simulation of deformation and temperature in multi-pass H-shape rolling [J].Journal of Materials Processing Technology, 2000, 105(1-2):24-31.
    [131] Luce R., Wolske M., Kopp R., et al.Application of a dislocation model for FE-process simulation [J]. Computational Materials Science, 2001, 21, (1):1-8.
    [132] Serajzadeh S., Mirbagheri H., Karimi Taheri A.Modelling the temperature distribution and microstructural changes during hot rod rolling of a low carbon steel[J].Journal of Materials Processing Technology, 2002(125-126):89-96.
    [133] Grass H., Krempaszky C, Reip T.,et al.3-D Simulation of hot forming and microstructure evolution [J].Computational Materials Science, 2003,28(3-4): 469-477.
    [134] Wang Minting, Li Xuetong, Du Fengshan, et al.Hot deformation of austenite and prediction of microstructure evolution of cross-wedge rolling[J].Materials Science and Engineering A, 2004,379(1-2):133-140.
    [135] Ahmed H., Wells M.A., Maijer D.M., et al.Modelling of microstructure evolution during hot rolling of AA5083 using an internal state variable approach integrated into an FE model[J].Materials Science and Engineering A, 2005,390(1-2):278-290.
    [136] Casotto Silvia, Pascon Frederic.Thermo-mechanical-metallurgical model to predict geometrical distortions of rings during cooling phase after ring rolling operations [J]. International Journal of Machine Tools and Manufacture, 2005, 45(6): 657-664.
    [137] Wang F., Zhu Q., Lin J.,et al.Prediction of microstructural evolution in hot rolling[J]. Journal of Materials Processing Technology, 2006,177(1-3):530-533.
    [138] Forouzan S., Akbarzadeh A.Prediction of effect of thermo-mechanical parameters on mechanical properties and anisotropy of aluminum alloy AA3004 using artificial neural network [J].Materials & Design, 2007, 28(5):1678-1684.
    [139] Toloui M., Serajzadeh S.Modelling recrystallization kinetics during hot rolling of AA5083 [J].Journal of Materials Processing Technology, 2007, 184(1-3):345-353.
    [140] Choi Sangwoo, Lee Youngseog, Hodgson P. D., et al.Feasibility study of partial recrystallisation in multi-pass hot deformation process and application to calculation of mean flow stress [J]. Journal of Materials Processing Technology, 2002, 125-126: 63-71.
    [141] Hodgson P.D., Hickson M.R., Gibbs R.K. Ultrafine ferrite in low carbon steel [J]. Scripta Materialia, 1999,40(10): 1179-1184.
    [142] Liu, Jinshan.Three-dimensional numerical analysis of microstructural evolution in and after bar and shape rolling processes [J], ISIJ International, 2002, 42(8):868-875.
    [143] Ikuta, Kazushige, Aoyagi. Calculation method of loads on skew roll mill for web expansion of H-beam [J]. ISIJ International, 1995, 35(9):1089-1093.
    [144] Bhattacharya R., Jha G., Kundu S., et al. Influence of cooling rate on the structure and formation of oxide scale in low carbon steel wire rods during hot rolling[J]. Surface and Coatings Technology, 2006, 201(3-4):526-532.
    [145] Madakasira Prabhakar Phaniraj, Binod Bihari Behera. Thermo-mechanical modeling of two phase rolling and microstructure evolution in the hot strip mill: Part-II. Microstructure evolution [J]. Journal of Materials Processing Technology, 2006, 178(1-3): 388-394.
    [146] Chakraborti N., Siva Kumar B., Satish Babu V. Optimizing surface profiles during hot rolling: A genetic algorithms based multi-objective optimization [J]. Computational Materials Science, 2006, 37(1-2): 159-165.
    [147] Farrugia D.C.J.Prediction and avoidance of high temperature damage in long product hot rolling [J].Journal of Materials Processing Technology, 2006, 177, (1-3): 486-492.
    [148] Knapinski M.The numerical analysis of roll deflection during plate rolling [J].Journal of Materials Processing Technology,2006,175(1-3):257-265.
    [149]Banks Kevin,Stumpf Waldo,Alison Tuling.Inconsistent flow stress in low carbon boron steels during finishing[J].Materials Science and Engineering:A,2006,421(1-2):307-316.
    [150]Mohammad A.Younes,M.Shahtout.A parameters design approach to improve product quality and equipment performance in hot rolling[J].Journal of Materials Processing Technology,2006,171(1):83-92.
    [151]Erdem G.,Taptik Y.Effect of hot rolling conditions to produce deep drawing quality steels for continuous annealing process[J].Journal of Materials Processing Technology,2005,170(1-2):17-23.
    [152]Serajzadeh Siamak.A mathematical model for evolution of flow stress during hot deformation[J].Materials Letters,2005,59(26):3319-3324.
    [153]Casotto Silvia,Pascon Frederic.Thermo-mechanical-metallurgical model to predict geometrical distortions of rings during cooling phase after ring rolling operations[J].International Journal of Machine Tools and Manufacture 2005,45(6):657-664.
    [154]Bianchi J.H.,Karjalainen L.P.Modelling of dynamic and metadynamic recrystallisation during bar rolling of a medium carbon spring steel[J].Journal of Materials Processing Technology,2005,160(3):267-277.
    [155]Rocha R.O.,T.M.F.Melo.Microstructural evolution at the initial stages of continuous annealing of cold rolled dual-phase steel[J].Materials Science and Engineering A,2005,391(1-2):296-304.
    [156]Kawalek A.The theoretical and experimental analysis of the effect of asymmetrical rolling on the value of unit pressure[J].Journal of Materials Processing Technology,2004,(157-158):531-535.
    [157]汪家才.金属压力加工的现代力学原理[M].北京:冶金工业出版社,1991.
    [158]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2004.
    [159]VUMAT,ABAQUS Analysis user's Manual,Volume 8,and Version6.5:25.3.4,2004.
    [160]USDFLD,ABAQUS Analysis user's Manual,Volume 8,and Version6.5:25.2.39,2004.
    [161]杨宗毅.实用轧钢技术手册[M],北京:冶金工业出版社,1994.
    [162]VFRIC,ABAQUS Analysis user's Manual,Volume 8,and Version6.5:25.3.2,2004.
    [163]武文斐,郭春牧.轧板热轧过程传热性能的数值模拟[J].包头钢铁学院学报,2002,22(1):21-24.
    [164]Chen W C,Samarasekera I V.Fundamental phenomena governing heat transfer during rolling[J].Metallurgical Transactions A,1993,24A:1307-1320.
    [165]Temperature-dependent Film Condition,ABAQUS Verification Manual,Version6.5:1.3.41,2004.
    [166]FILM,ABAQUS Analysis user's Manual,Volume 8,and Version6.5:25.2.6,2004.
    [167]贺庆强,张勤河,刘克强,等.H型钢开坯过程的热力耦合有限元分析[J].系统仿真学报,2007,19(1):19-20,转55.
    [168]Steady State Detection,ABAQUS Analysis user's Manual,Volume 2,Version6.5:7.18.1,2004.
    [169]Steady State Criteria,ABAQUS Keywords Reference Manual,Volume 1,Version6.5,2004.
    [170]Submodeling,ABAQUS Analysis user's Manual,Volume 2,Version6.5:7.3.1,2004.
    [171]采利柯夫.轧钢机的力参数计算理论[M].北京:中国工业出版社,1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700