双电机混合动力客车换档无动力中断的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车驱动电机因其良好的输出特性可以不需要变速器直接驱动汽车,因此可利用这一特性实现混合动力汽车的换档无动力中断,提高整车动力性与平顺性。本文正是以吉林省省长基金“双电机混合动力客车项目”为依托,基于双电机双轴并联结构深入研究了换档无动力中断问题,进行了以下工作:
     第一,明确了无动力中断换档的含义,提出了以双电机结构来实现混合动力客车的换档无动力中断功能。
     第二,具体提出了双电机双轴并联结构方案,并对多种双电机结构方案进行论证。
     第三,提出了换档无动力中断的评价指标和双电机结构无动力中断换档过程,并对此过程进行了动力学分析,从而确定实现此过程的两个关键问题,主电机驱动转矩的大小和模式切换的动态协调,并给出解决方法。
     第四,建立基于MATLAB/SIMULINK/STATEFLOW平台的无动力中断换档过程的动态模型和整车原地起步全负荷连续换档加速模型,通过对比仿真分析,验证双电机结构实现换档无动力中断功能的可行性,并建立基于AVL Cruise与MATLAB/SIMULINK的整车模型,通过对比仿真,定性地分析出双电机结构可以从换档过程与回收制动能量两个方面提高整车经济性,并对提高幅度进行简要计算。
HEV has limited competition in private family car market because of its high cost.So urban bus becomes the breakthrough point for developing HEV technology because of the financial support from government.In his context,Jilin university HEV studying team cooperating with FAW has developed single-motor double shafts parallel hybrid urban bus,which could achieve the expected performance target.But as traditional vehicle using transmission with class driving force will be interrupted while shifting,which could affect vehicle performance,especially dynamic and smoothness.So the issue of shifting without driving force interrupt (SWDFI) should be solved for automobile in future developing process.With the development of transmission,DCT and CVT were invented to solve the issue of SWDFI for traditional vehicle.While traction motor for HEV could drive automobile without transmission.Using this characteristic of traction motor could achieve SWDFI for HEV.
     SWDFI is investigated,while working on the Jilin Province governor fund for the project of Double-Motor Hybrid Electric Bus.The scheme of double-motor double shafts parallel structure that designed in a particular integrated powertrain structure provides the necessary condition to deal with SWDFI.
     Firstly,this paper presents the scheme of double-motor double shafts parallel structure.It has three power sources,one engine and two motors.Main motor is attached to output shaft of transmission through torque coupling,while assisted motor is attached to input shaft of transmission through torque coupling too,which integrated into transmission becomes a new style driving system.The theory of SWDFI:Engine load is reduced while shitfing,and main motor boosts simultaneously.After shifting is finished,engine load is restored,and main motor load is reduced simultaneously.In the process of shifting main motor could compensate the engine power interrupted with limited torque fluctuation.
     Secondly,this paper presents evaluating indicators of SWDFI.And the process of SWDFI for double-motor structure is set,which could be divided into 7 phases:1)Run before shifting;2)Reduce engine load to zero,simultaneously start motor to boost;3)Separate clutch,select Neutral and new gear;4)Sync and engage new gear;5)Engage clutch;6)Restore engine load ,simultaneously reduce motor load;7)Run in new gear.There are two key problems:how much torque did motor supply and coordinate control of mode-switch,which are got through dynamics analysis to the process of SWDFI.The control algorithm is presented to solve these two key problems after the deep study to them.
     Lastly,the dynamic model of SWDFI and the vehicle in-situ starting in full load acceleration model are built by MATLAB/SIMULINK/STATEFLOW.The result of contrast simulation between buses with and without SWDFI shows that SWDFI of double-motor structure could improve vehicle dynamic and smoothness through evaluating indicators(alteration of velocity while shifting,accelerating time from zero to a certain velocity and jerk).And then co-simulation model is built(the vehicle model is built by AVL Cruise and control strategy model is built by MATLAB/SIMULINK) to analyze the effect of SWDFI to fuel economy.Conclusion could be got qualitatively through the result of contrast simulation between buses with one motor and two:Double-motor bus could improve fuel economy from two ways,shifting process and recuperation (electric braking),but the effect is limited.
引文
[1]王军,申金升.国内外混合动力电动汽车开发动态及发展趋势[J].公路交通科技,2000,17(1):11-14.
    [2]胡骅,宋慧.电动汽车[M].北京:人民交通出版社,2003.
    [3]田光宇,彭涛,林成涛,陈全世.混合动力电动汽车关键技术[J].汽车技术,2002,(1):8-11.
    [4]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [5]曾小华.混合动力客车节能机理与参数设计方法研究[D].吉林大学博士学位论文,2006.
    [6]王伟华.并联混合动力汽车的控制[D].吉林大学博士学位论文,2006.
    [7]Okamoto K. Overview of current and future hybrid technology[C]. Proc of the Symposium on Advanced Automotive Power plants and Energy Resources. Beijing: China SAE, 2002. 89-94.
    [8]Santini D J, Vyas A D, Moore J, et al. Comparing cost estimates for US fuel economy improvement by advanced electric drive vehicles[M].Proceedings of the 19th International Electric Vehicle Symposium, Busan, Korea, 2002. 474-493.
    [9]王鹏宇.混合动力汽车复式制动系统的设计与性能方针[D].吉林大学硕士学位论文,2005.
    [10]段幼华.混合动力轿车复式制动系统的研究[D].吉林大学硕士学位论文,2007.
    [11]牛铭奎,高炳钊,葛安林,徐彩琪,何君正,章骏杰.双离合器式自动变速器系统[J].汽车技术,2004,(6):1-3.
    [12]M. Goetz, M. C. Levesley and D. A. Crolla University of Leeds. Integrated Powertrain Control of Gearshifts On Twin Clutch Transmissions[C].SAE TECHNICAL PAPER SERIES 2004-01-1637.
    [13]Bai, RL Moses, T Schanz, MJ Gorman .Development of a New Clutch-to-Clutch Shift Control Technology [C]. SAE 2002-01-1252.
    [14]KENSUKE Osamura,HIROYUKI Itoyama, HIROSHI Iwano.Improvement of drive response by applying an integrated control algorithm for a diesel engine and CVT[C]. SAE Review, 2001,22, 22 :293-298.
    [15]KOICHI NAKAZAWA, HIDEAKI MITSUI. Performance of a CVT Fluid for High Torque Transmitting Belt-CVTs[C].SAE,982675, 982675 :1-5.
    [16]孙冬野,秦大同,杨亚联.金属带式无级变速传动的运动学和动力学分析[J].重庆大学学报(自然科学版).1998,21(04):1-6.
    [17]葛安林.车辆自动变速理论与设计[M].机械工业出版社,1993.
    [18]许清富.丰田汽车公司的混合动力系统[J].世界汽车,1998.
    [19]叶甫,谢利理.一种新型混合动力汽车驱动系统的设计[J].汽车技术,2005,(1):15-18.
    [20]C .C .CHAN .The State of the Art of Electric and Hybrid Vehicles [C].PROCEEDINGS OF THE IEEE, 2002,vol.90,vol.90(no.2):pp.247-275.
    [21]余志生.汽车理论[M].机械工业出版社,2000.
    [22]王伟.并联混合动力汽车驱动电机的调节和匹配[D].吉林大学硕士学位论文,2007.
    [23]E. Hall, M.S.S Ramamaurthy, J. C. Balda,“Optimum Speed Ratio of Induction Motor Drivers for Electric Vehicle Propulsion”[C].Proceedings of the 2001 Applied Power Eletrical conference”,pp.371-377,Anaheim,California,March 2001.
    [24]M. Ehsani, K. M. Rahman, H. A. Toliyat,“Propulsion System Design of Electric and Hybrid Vehicles”[C]. IEEE Transactions on Industrial Electronics, Vol. 44, No. 1, pp. 19-27. February 1997.
    [25]Z. Rahamn, K. Lbulter and M. Ehsani“Effective of Extended-speed, Constant-Power Operation of Electric Drivers on the Design and performance of EV-HEV Propulsion System[C].SAE 2000-01-1557.
    [26]郑定浩,柯赐龙,金加龙,余南强.现代汽车自动变速器的最佳动力换档规律[J].浙江交通技术职业学院学报,2006,1(1):1-3.
    [27]周学建,付主木,张文春,周志立.车辆自动变速器换档规律的研究现状与展望[J].农业机械学报.2003,34(3):141-145.
    [28]刘志茹.混合动力汽车动态过程主动控制研究[D].吉林大学博士学位论文,2006.
    [29]李启迪.ISG轻度混合动力电动汽车控制策略的研究[D].大连理工大学硕士学位论文,2006.
    [30]杨伟斌.ISG型轻度混合动力汽车动力传动系的匹配与仿真研究[D].重庆大学硕士学位论文,2004.
    [31]Koichi F, Akira F, Masaaki S, et al. Development of the ultra-low-fuel-consumption hybrid car-INSIGHT[C].SAE Review, 2001,221, 22(1) :95-103.
    [32]叶先军,赵韩,张炳力,王希珍.BSG混合动力轿车动力系统参数设计及试验研究[J].汽车技术,2008,(6):24-27.
    [33]郭立书,葛安林,张泰,岳英杰.电控机械式自动变速器换档过程控制[J].农业机械学报,2003,34(02):1-4.
    [34]葛安林,沈波.AMT换档品质的研究[J].汽车技术.2003,(2):43~45.
    [35]张勇.电控机械式自动变速器换档品质自适应控制研究[D].吉林工业大学硕士学位论文,1997.
    [36]颜克志.AMT离合器接合规律研究及其稳定性分析[D].西北工业大学硕士学位论文,2007.
    [37]李萍.商用车机械式自动变速系统离合器控制技术研究[D].吉林大学硕士学位论文,2005.
    [38]Mosatoshi Shibuya. Optimum Control Logic for Manual Transmission[C].SAE 850297.
    [39]Lei Yulong, Li Yongjun, Ge Anlin Nu Mingkui (Jilin University of Technology). STARTING PROCESS CONTROL FOR AUTOMATED MECHANICAL TRANSMISSION[J].CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2000, (05) :3.
    [40]李孟海.混合动力车辆驱动转矩的协调控制方法及其硬件在环仿真[D].清华大学硕士学位论文,2006.
    [41]刘志茹,王庆年,王光平.混合动力汽车换档主动控制技术[J].吉林大学学报(工学版),2006,36(02):153-156.
    [42]杜常清,杜传进,严运兵.基于模型的汽油机动态转矩输出性能仿真研究[J].武汉理工大学学报(交通科学与工程版),2008,32(02):229-231.
    [43]胡立群,张光德,严运兵,陈华明.并联混合动力汽车发动机动态控制时的转矩估计[J].汽车科技,2007,(04):11-13.
    [44]严运兵,陈华明,张光德.并联混合动力汽车的发动机转矩估计[J].汽车工程,2008,36(02):117-120.
    [45]杜常清,颜伏伍,杨平龙,杜传进.基于BP神经网络的发动机转矩估计[J].汽车工程,2008,30(07):588-591.
    [46]Schouten N J ,Salman M A ,Kheir N A. Fuzzy logic management for parallel hybrid vehicles[C].IEEE Transactions on Management Systems Technology. 2002,103, 103 :460-468.
    [47]Stephane Ginoux, Jean-Claude Champoussin. Engine Torque Determination by Crankangle Measurements: State of the Art Future Prospects[C].SAE 970532.
    [48]Sobel Jarl R, et al. Instantaneous Crankshaft Torque Measurement in Cars[C].SAE Paper 960040.
    [49]Olin P M, Maloney P J. Barometric Pressure Estimator for Production Engine Control and Diagnostics[C].SAE 1999-01-0206.
    [50]童毅.并联式混合动力系统动态协调控制问题的研究[D].清华大学博士学位论文,2004.
    [51]冀尔聪.并联混合动力汽车模式切换中的协调控制问题研究[D].吉林大学硕士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700