埋地管线的地震响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命线工程是维系现代城市与区域经济、社会功能的基础性工程设施与系统,其典型对象包括区域电力与交通系统、城市供排水、供气系统、通讯系统等。随着城市现代化程度的快速提高、规模的不断扩大,城市对生命线工程系统的依赖就越来越强。近年来,随着地下管道数量的增多和震害的频繁出现,人们开始认识到地下管线抗震研究的必要性和迫切性;同时,地下管线与地上结构在地震作用下的震动特性有很大的不同,因而地下管线的抗震又有其独有的特点。
     在本文中,首先分析了埋地管线的震害特征。根据震害资料,归纳总结了埋地管线的各种破坏模式和影响破坏的主要因素。
     利用大型通用有限元分析软件ANSYS建立了埋地管线的有限元模型,首先进行了管线在土压力、水压力等永久荷载作用下的静力分析,得出了管线的位移和应力值特点,其次简单比较了不同级别的车辆荷载对管道结构内力的影响;接下来进行了管线的模态分析,得出了结构的自振频率和周期,总结了管道的振型特点;并进一步地对单向地震波激励下管线的响应进行了计算和分析,本文针对三类场地三种地震烈度,共输入了15条地震波进行计算,通过大量数据的比较,从中得出了不同烈度不同场地的响应规律性:
     1.随着地震烈度的增大,管线的地震响应加剧,并且地震烈度对管线的影响是显著的。
     2.场地条件不同,管线的响应是不相同的,场地条件对管线的影响有时候甚至会超过地震烈度对管线的影响。
     3.本文对普通钢筋混凝土管道在地震作用下的抗震性能研究结果表明,Ⅰ类场地9度下就会发生拉裂破坏,应引起高度重视。
     本文计算得出的数据和结论,为埋地管线的抗震设计提供了一定的依据。
Lifeline engineering is the basic facilities and system which is dispensable to human daily life and cities' economy functions. The lifeline engineering including region electric power and communication systems, water and gas transmission networks, news report system and so on. And these are essential for sustaining the life of community after a catastrophic event such as a destructive earthquake. With the increasing of underground pipelines and frequent earthquake damage, the importance and necessity of the seismic analyze for underground pipeline has been recognized in recent years. Furthermore, the vibration characteristics of underground pipelines are different from those of overground structures, so that the seismic analyze for underground pipelines has particular characteristics.
     The paper first analyzes the earthquake disasters of underground pipelines. According to earthquake information, the paper generalized the damage characteristic and effect factors of the underground pipeline.
     Then, finite element model of the underground pipeline is built by ANSYS finite element analysis program, firstly, the paper obtains the displacement and stress value of the structure by the static analysis, the static load include soil pressure, water pressure and etc.. Secondly, the paper compares the effect of different vehicular load on internal force of the pipeline structure. Next, by the modal analysis of the pipeline, the paper gets the natural frequency and cycle, calculates and analyzes the response of pipelines on the one-way seismic wave excitation.
     The paper studies the impacts of three types sites and seismic intensity, 15 earthquake wave are inputed totally, summarizes the response pattern of the different sites and intensity by comparing the calculation results:
     1. With the increasing of the earthquake intensity, the seismic response of the pipeline is intensified, and the intensity of earthquakes on the pipeline is significant.
     2. Under different site conditions, response of the pipeline is different, and sometimes the site conditions have more impact on the pipeline than seismic intensity.
     3. The seismic performance of common reinforced concrete pipeline in the essay under the seismic loading is not very good. When the structure located in I site condition 9 seismic intensity, it will be tension cracked,so the seismic capacity of the pipeline should be improved.
     The calculated data and conclusions in this paper can provide some references for the seismic design of the buried pipeline.
引文
[1]李杰著.生命线工程抗震.第一版.北京.科学出版社.2005年.
    [2]Hisashi,Sumitomo etc.System analysis of earthquake damage on water supply networks in Kobe City,Proceedings of the 4~(th)In ternational Symposium on Water Pipe Systems,1997,137-145.
    [3]孙绍平.阪神地区中给水管道震害及其分析.特种结构,1997,14(2):51-55.
    [4]Ariman,T.,and Muleski,GE.,A review of the response of buried pipelines under seismic excitations,Int.J.of Earthquake Engineering Structural Dynamics.,Vol.9,1981.133-151.
    [5]L.R.L.Wang,Yaw-Huei Yeh,Damage behavior statistics of Lifeline systems around the world during earthquakes,April,1983.
    [6]城市公用设施抗震设计规范编制组,辽宁海城、营口地震城市公用设施震害调查报告,1975年。
    [7]Northridge Earthquake,January 17,1994 Preliminary Reconnaissance Report,EERL 1994,94-01
    [8]孙绍平.国外生命线地震工程的研究概况.地震工程动态.1984年1期,6-11.
    [9]M.Shinozuka,Recent advances in earthquake engineering,Seismic Ground Montion,Response,repair,and instrumentation of Pipes and bridges,ASME,1992.PVP-Vol.22 7,7-12.
    [10]张索灵,李亦纲,曲国胜,王春华.生命线地震工程的发展与前瞻,世界地震工程,2001,17(2):79-85.
    [11]久保庆二郎,生命线地震工程的发展,世界地震工程,1987,(1).
    [12]栗林荣一.岩崎敏男.川岛一彦.富田忠明.地下管道应变与抗力关系研究.日本土木研究所资料第126号.1977年7月.
    [13]Ryoji Isoyama,Seismic damage estimation procedure for water supply pipelines,12WCEE,2000,1976
    [14]周建.王前信.地下管道随机反应及动力可靠性分析.土木工程学报.1993,26(4):54-60.
    [15]高小旺.王著.李荷.肖伟.供水管线震害预测方法.建筑科学.1998,14(3):13-18.
    [16]沈世杰.地下管线的抗震研究.工程抗震.1986,(2):34-37.
    [17]韩阳.地下供水管网的震害预测一现有预测方法综述.市政工程,1987,(1):27-43
    [18]Shaoping Sun.A review of buried lifeline earthquake in China,Proceedings of second China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering.Xian.1994,17-42
    [19]侯忠良主编.地下管线抗震.学术书刊出版社,1990年3月.
    [20]赵成刚,冯启民等编著.生命线地震工程.地震出版社.1994年,34-49.
    [21]金国梁.生命线工程网络震害预侧方法讨论.工程抗震.1994,12,(4):32-36.
    [22]Gao Li,J.Wang,B.Li and A.Shen.Seismic response of buried pipelines based on stochastic Model of g round motions,Proceedings of Second China-Japan-UST rilateral Symposium on Lifeline Earthquake Engineering.Xian:1994,105-112.
    [23]梁建文.地下管线地震反应和稳定性研究述评.天津大学学报.1996,29(3):427-434.
    [24]Jie Li,Jun He.Seismic Reliability Analysis of Electric Power Network System,Earthquake EngineeringF rontiersin th eN ewM illennium,To kyo:A.A.BalkemaP ublishers,2001.239-241.
    [25]蒋通.柔性接头埋管在地震作用下的内力和变形分析.地震工程与工程振动.1999.19(1):207-212
    [26]Han,Y.,Sun,S.P.,Seismic reliability of lifeline systems,Earthquake Engineering Frontiers in the New Millennium,Tokyo:A.A.Balkema Publishers,2001.209-213
    [27]Parmelee R A,ludtke C A.Seismic soil-structure interaction of buried pipelines(A).Proc of US National Conf Earthq Eng(C)Oakland:EERI 1975:406-415
    [28]Wang L.R.L.Cheng K M.Seismic response behavior of buried pipelines.Pressure Vessel Technology 1979:P21-30
    [29]NelsonI,Weidlinger P.Dynamic Seismic analysis of long segmented lifelined.Pressure Vessel Technology.1979:P 10-20
    [30]Muleski G E.,Ariman,T.A shell model for buried pipes in earthquakes.Soil Dyn Earthq Eng 1985.4(1):P43-51
    [31]Takada S,Tanabe K Three-dimensional seismic response analysis of buried continuous of jointed pipelines.Pressure Vessel Technology,1987:P47-53
    [32]叶耀先,魏琏,陈聘.浅埋地下管线的振动性状[A].地震:[程论文集[C].北京科学出版社1982,12.
    [33]熊占路.用离散模型分析地下管道的地震应力[A].第二届全国地震工程会议论文集[C].北京:中国地震学会,1987.
    [34]王海波,林皋半无限弹性介质中管线地震反应分析[J].土木工程学报,1988,20(3):80-91
    [35]甘文水,侯忠良.地震行波作用下埋设管线的反应计算[J].地震工程与工程振动,1988,8(2):79-86.
    [36]张社荣,陈荣.沟埋式管与土相互作用的动态有限单元法[J].天津大学学报,1995,28(3):369-374.
    [37]张进国,吕英民,崔淑萍地震作用下埋地管道纵向振动加权余量解[J].油气储运.1997,16(12).
    [38]周德培译,地铁抗震设计准则,世界隧道,1995,No.2,36-45
    [39]T.d.O' Rourke,et all,Seismic response of buried pipeline,ASME Special Publication,PVP-A.Decade of Progress,1985
    [40]高渠清,高渠清隧道及地下工程论文集,铁道出版社,1996
    [41]林皋,地下工程抗震分析综述(上),世界地震工程,1990,No.2:1-9.
    [42]林皋,地下工程抗震分析综述(下),世界地震工程,1990,No.3:1-10.
    [43]陆容用译,以反应位移法为基础的盾构隧道地震内力计算法,隧道译丛,1991,No.7:44-51.
    [44]高田至郎,地下生命线的耐震设计,隧道译丛,1991,No.7:44-51.
    [45]Sam S.C.Liao,Seismic Design Issued For Immerserd Tube Tunnels,Preparing for Construction Congress 91,ASCE,New York,NY,USA:584-589
    [46]韩阳.城市地下管网系统的地震可靠性研究[D].大连理工大学.2002,21-25.
    [47]柳春光,林皋,李宏男,周晶等著.生命线地震工程导论.第一版.大连理工大学出版社.2005年.245-247.
    [48]黄强兵.地下管道抗震分析及震害预测研究-以靖咸输油管线耀县至咸阳段为例[D].长安大学.2001,35-41.
    [49]中华人民共和国建设部.GB50332-2002.给水排水工程管道结构设计规范.2002.12-14.
    [50]张波,盛和太著.ANSYS有限元数值分析原理与工程应用.第一版.北京.清华大学出版社.2005
    [51]刘灿生,给水排水工程施工手册,第一版,北京,中国建筑工业出版社,1994,159-161
    [52]刘爱文,基于壳模型的埋地管线抗震分析[D],中国地震局地球物理研究所,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700