混凝土重力坝动力系统的可靠性方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足巨大的能源需求,一批混凝土重力坝项目将要在我国多震的西南地区建设开工。这些工程库容达数十亿到数百亿立方米,并且大部分处于强烈地震活动区,若发生破坏将带来严重的后果。强震对混凝土重力坝的设计提出了更高的要求。因此,有必要对混凝土重力坝的动力可靠性进行系统性的分析。本文以此为目的,从合成人工地震波等荷载和设置人工边界条件入手,结合数值计算,对混凝土重力坝的弹塑性损伤过程进行了动力分析,探讨了混凝土重力坝的破坏模式及其可靠度的计算方法,并深入的研究了混凝土重力坝溃坝的风险评价方法。为工程设计人员有针对性地采取工程措施进行重力坝抗震设计提供参考。主要研究内容如下:
     (1)基于遗传算法和小波理论分别改进了单点人工地震波和空间相关人工地震波的合成方法。采用小波函数优化了初始的人工地震波,并采用遗传算法分别对单点人工地震波和空间相关人工地震波合成的迭代过程进行了优化,使优化后生成的人工地震波的计算反应谱与目标反应谱的误差更小
     (2)结合透射边界和黏弹性人工边界理论提出了一种改进的黏弹边界,从而考虑了结构—地基交界面侧向位移对于结构的影响;基于阻尼溶剂抽取法理论又提出了另一种改进的人工边界,使阻尼溶剂抽取法易于运用在有限元数值计算中。
     (3)采用无限单元模拟了无限地基对混凝土重力坝的影响,在此基础上采用弹塑性损伤模型模拟了混凝土重力坝的损伤破坏过程。并对混凝土重力坝的损伤分布和动力响应进行了分析比较。利用能够反映混凝土拉压方向不同强度特性的Hsieh-Ting-Chen四参数屈服函数,基于热力学耗散原理提出了一种混凝土损伤本构模型,其拉、压损伤演化定律采用相同的计算公式,能够较好的反映混凝土在复杂应力状态下的拉压不同的损伤特性及应力应变本构关系。
     (4)基于摄动理论和虚拟激励法建立了对混凝土重力坝损伤分布的概率分析模型。通过计算得到了混凝土重力坝损伤因子期望值和方差的分布云图,并得到了其损伤概率的分布云图,同时检验本模型的收敛性。
     (5)基于虚拟激励法,计算了失效路径上的单元的应力的概率特征。运用虚拟变量法,计算了单元的条件失效概率。引入了马尔科夫过程的相关理论计算了失效路径的失效概率。采用串联模型可靠度计算方法对坝体的体系可靠度进行了计算。
     (6)基于奇异值分解及加权回归方法对响应面法进行了改进,并建立了新的模型用来求解验算点。通过以上方法使其抽样点的个数与迭代的次数都明显降低,从而,将其可以应用在坝体等大型结构的可靠度的分析中。
     (7)针对岩基深层滑动面的随机性和模糊性的特点,运用概率推理理论对岩基深层抗滑稳定的模糊可靠度进行了分析。
     (8)通过坝头,上游折坡面,建基面三处的抗滑失效概率推导出了溃口的宽度,在此基础上计算出溃口洪水流量随时间的变化规律,从而计算得出了溃坝后的生命以及财产损失。并基于系统动力学,建立了灰色系统动力学评价方法用于评估溃坝后的损失。又利用矩阵特征值分解理论和模糊理论建立了对溃坝后损失的评价方法。并对毕节地区运用本模型进行了数值模拟,检验了本模型的准确性。
To meet the enormous energy demands, several concrete gravity dams are being constructed in earthquake regions of Southwestern China. The reservoir capacities of these projects reach several billion cubic meters, and most of these projects build in strong earthquake regions. Once the dams are failure, it will bring very serious results. A strong earthquake is therefore a great challenge to dynamic reliability design for concrete gravity dams. Therefore it is necessary to systematic analyze dynamic reliability for concrete gravity dams. For this purpose, by means of synthesizing artificial seismic wave and other loads and setting for artificial boundary condition, finite element method(FEM) based numerical calculations were adopted to make dynamic analysis for the elastic-plastic damage process, failure mode and dynamic reliability of conerete gravity dam. Moreover, it made deeply study on evaluation methods for dam-break risk. The results offer important reference to engineering designers and.anti-seismic design. The major contributions are summarized as follow:
     (1) Single-point and spatial correlation artificial seismic wave synthesis methods were improved based on genetic algorithm and wavelet theory respectively. Initial single-point artificial seismic wave synthesis was optimized by wavelet theory. The iteration processes were optimized by genetic algorithm for single-point and spatial correlation artificial seismic wave synthesis. The result showed that the deviation between calculational and objective response spectrum was smaller by this paper's method than conventional method.
     (2)An improved viscous-spring artificial boundary condition was proposed based on conventional transmitting and viscous-spring artificial boundary condition in order to eliminate influence of the lateral displacement on structure-foundation interface. Another artificial boundary condition was proposed based on damping-solvent extraction method in order to make damping-solvent extraction method easily used in finite element method(FEM) based numerical calculations.
     (3) Infinite element method (IEM) was adopted to simulate the influence of infinite foundation to concrete gravity dam, and then elasto-plastic damage constitutive relations model was adopted to simulate the damage process of dam. Moreover, damage distribution and dynamic response of concrete gravity dam were analyzed. By using Hsieh-Ting-Chen four-parameter yield function that could reflect the different strength characteristics of concrete in tension and compression, a damage constitutive model for concrete was proposed based on the energy dissipation principle. It had the same damage evolution law under tension and compression load and it was good for determining stress-strain constitutive and damage characteristic in complex stress state.
     (4) A new method was proposed based on perturbation theory and pseudo excitation method in order to make the probability analysis for the damage distribution of concrete gravity dam. The expected value, variance and probability of damage of concrete gravity dam were obtained by numerical calculation, and then astringency of this modal was examined.
     (5)Based on pseudo-excitation method, the probability characteristics of element stress in failure path were calculated. The conditional failure probability of elements in failure path was obtained by method of dummy variable. Through leading into markoff process theory, failure probability of failure path was obtained. And then calculation method for reliability of series model was adopted to calculate systematic reliability of concrete gravity dam.
     (6) Singular value decomposition(SVD) and weighted regression methods were adopted to improve response surface method. And a new modal was established to calculate checking point. The number of sample points and iteration times was decreased significantly by using the method above, so this method could be applied to analyze the reliability of large structures such as concrete gravity dam and so on.
     (7) Aiming at random and fuzzy characteristic of deep sliding surface, probability reasoning theory was adopted to analyze the fuzzy reliability for deep sliding stability of dam foundation.
     (8) The width of breach was deduced through the anti-slide failure probability of dam head, upstream broken-line sloping surface and foundation surface, and then relationship between volume of dam-break floods and time was calculated. Moreover, the losses of lives and property were obtained. A risk evaluation model was established based on system dynamics and grey theory to evaluate the dam-break losses. By decomposing the related indexes and confirming membership degree with the optimized method, another risk evaluation model was proposed based on fuzzy theory. And then this modal was applied to bijie region to to examine the correctness.
引文
[1]HOUSNER G W. Characteristics of strong-motion earthquakes[J].Bulletin of Seismological Society of America,1947,37(1):19-31.
    [2]GOODMAN L E, ROSENBLUETH E, NEWMARK N M. A seismic sign of firmly founded elastic structures[J].Transaction,ASCE,1955,120(1):782-802.
    [3]KANAI K. Semi-empirical formula for the seismic characteristic of ground[R]东京:东京大学地震研究所汇报,1957.
    [4]张菊辉.有关Kanai-Tajimi模型的统计特征分析.世界地震工程[J].2007,23(3):56-60.
    [5]欧进萍,刘会议.基于随机地震动模型的结构随机地震反应谱及其应用[J].地震工程与工程振动,1994,14(1):14-23.
    [6]HUDSON D E. Some problems in the application of spectrum techniques to strong motion earthquake analysis [J].Bulle-tin of Seismological Society of America,1963,53(2):8-20.
    [7]NIGAM NC. Phase properties of a class of random proeess[J].Earthquake Engineering and Structural Dynajnies,1982,10(2):711-717.
    [8]胡幸贤,何训.考虑相位谱的人造地震动反应谱拟合[J].地震工程与工程振动,1986,6(2):37-50.
    [9]金星,廖振鹏.地震动强度包线函数与相位差谱频数分布函数的关系[J].地震工程与工程振动,1990,10(4):20-25.
    [10]刘鹏程,林皋,金春山.考虑地震环境的人造地震动合成方法[J].地震工程与工程振动,1992,13(1):58-64.
    [11]杨庆山,姜海鹏.基于相位差谱的时—频非平稳人造地震动的反应谱拟合[J].地震工程与工程动,2002,22(1):32-38.
    [12]樊剑,刘铁,魏俊杰.基于小波包变换的人工地震波合成[J].华中科技大学学报(自然科学版),2008,36(3):42-45.
    [13]樊剑,吕超,张辉.基于离散谐小波变换的地震波时变谱估计及非平稳地震波人工合成[J].地震学报,2009,31(3):333-340.
    [14]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [15]OHASKI Y. On the significance of phase content in earthquake ground motions[J].Earthquake Engineering and Structural Dynamics,1979,17(5):427-439.
    [16]KAUL M K. Stochastic characterization of earthquakes through their response spectrum[J]. Earthquake Engineeringand Structural Dynamics,1978,6(5):16-28.
    [17]谷音,刘晶波,杜义欣.三维一致粘弹性人工边界及等效粘弹性边界单元[J].工程力学,2007,24(12):31-38.
    [18]LYSMER J, KUHLEMEYER RL. Finite dynamic model for infinite media[J].Engng Mech Div ASCE,1969,95(3):759-877.
    [19]JIAO Y Y,ZHANG X L, ZHAO J, LIU Q S. Viscous boundary of DDA for modeling stress wave propagation in jointed rock[J].International Journal of Rock Mechanics & Mining Sciences, 2007,44(7):1070-1076.
    [20]刘晶波,王振宇,杜修力,杜义欣.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
    [21]DEEKS A J, RANDOLPH M F. Axisymmetric time-domain transmitting boundaries [J].Journal of Engineering Mechanics,ASCE,1994,120(1):25-42.
    [22]王振宇.大型结构-地基系统动力反应计算理论及其应用研究[D].北京:清华大学,2002.
    [23]ZHANG CHUHAN, PAN JIANWEN, WANG JINTING Influence of seismic input mechanisms and radiation damping on arch dam response[J].Soil Dynamics and Earthquake Engineering 2009,29(9): 1282-1293.
    [24]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报,2006,28(9):1070-1075.
    [25]CLAYTON R, ENGQUIST B. Absorbing boundary condition for wave-equation migration[J]. Geophysics,1980,45(2):895-904.
    [26]CLAYTON R, ENGQUIST B. Absorbing boundary condition for acoustic and elastic wave equations[J].Bull.Seism.Soc.Am,1977,67(6):1529-1540.
    [27]HIGDON R L. Absorbing boundary condition for acoustic and elastic waves in stratified media[J]. Comp.Phys,1992,101(2):386-418.
    [28]TSYNKOV S.V. Artificial boundary conditions for the numerical simulation of unsteady acoustic waves[J].Journal of Computational Physics,2003,189(2):626-650.
    [29]ZHAO CHONGBIN, LIU TIANYUN. Non-reflecting artificial boundaries for modeling scalar wave propagation problems in two-dimensional half space[J].Comput. Methods Appl. Mech.Engrg.2002, 191(2):4569-4585
    [30]SMITH W.A. Non-reflecting plane boundary for wave propagation problems[J].Comp Phys,1973, 15(6):492-503.
    [31]GADIFIBICH, SEMYON TSYNKOV. High-order two-way artificial boundary conditions for nonlinear wave propagation with backscattering[J] Journal of Computational Physics,2001,171(2): 632-677.
    [32]LIAO Z.P., WONG H.L., YANG B., YUAN Y. A transmitting boundary for transient wave analysis[J]. Sci. Sinica,1984,27(3):1063-1073.
    [33]LIAO Z P, LIU J B. Numerical instabilities of a local transmitting boundary[J].Earthq Eng Struct Dyn,1992,21(1):65-77.
    [34]SONG C,WOLF JP. The scaled boundary finite element method alias consistent infinitesimal finite element cell method for elasto-dynamics[J].Computer methods in applied mechanics and engineering, 1997,147(3-4):329-355.
    [35]马秀平.动力相互作用的阻尼溶剂抽取算法研究[D].大连理工大学,2006:14-29.
    [36]钟红,林皋,李建波.空间结构-地基动力相互作用数值分析时域算法研究[J].大连理工大学学报,2007,47(1):78-83
    [37]UNGLESS R L. An Infinite Finite Element[M].Vancouver:University of British Columbia,1973.
    [38]BEER G, MEEK J L. Infinite Domain Element[J].International Journal for Numerical Methods in Engineering,1981,10(17):43-52.
    [39]BETTESS P. Infinite Elements[J].International Journal for Numerical Methods in Engineering, 1977,29(11):53-64.
    [40]ZIENKIEWICZ O C, EMSON C, BETTESS P. A Novel Boundary Infinite Element[J].International Journal for Numerical Methods in Engineering,1983(19):393-404.
    [41]葛修润,谷先荣,丰定祥.三维无界元和节理无界元[J].岩土工程学报,1986,8(5):9-20.
    [42]张建辉,邓安福,何水源.三维无限元的映射函数[J].岩石力学与工程学报,2000,19(1):97-100.
    [43]LEMAITREJ A. Continuous damage meehanies model for duetile fracture [J].Journal of Engg. Mater. And Teeh.,1985,61(97):83-89.
    [44]LEMAITRE J., CHABOCHE J. Aspect phenomenological delay rupture pare endommagement[J]. Mech. Appl.,1978,2(3):317-365.
    [45]LEMAITRE J. PLUMTREE J. Application of damage concepts to prediet creep-fatigue failures[J]. Engg. Mater. Trans. ASME.1979,101(3):284-292.
    [46]CHABOCHE J. Continuum damage mechanics:part Ⅰ-general concepts[J]. Journal of Appl. Mech., 1988,55(1):59-64.
    [47]CHABOCHE J. Continuum damage mechanics:part Ⅱ-damage growth,crack initiation and crack growth [J]. Journal of Appl. Mech.,1988,55(2):65-72.
    [48]CHABOCHE J. Anisotropic creep damage in the framework of continuum damage mechanics[J]. Nuclear Engg. Design,1984,61(79):309-319.
    [49]MURAKAMI S. Mechanical modelling of material damage[J]. Journal of Appl Mech.1988,55(1): 280-286.
    [50]MURAKAMI S, SANOMURA Y, SAITOH K. Formulation of cross-hardening in creep and its effect on the creep damage process of copper[J]. Journal of Engg Meter and Tech 1986,108(2):167-173.
    [51]KACHANOV L. M. Time of the rupture process under creep condition[J].TVZ Akad. Nauk. S. S. R. Otd.Tech.Nauk.1958,8(1):101-111.
    [52]LOLAND K E. Continuous damage model for load response estimation of concrete[J].Cement and Concrete Research,1980,10(3):392-492.
    [53]MAZARS J. Continuous damage theory-application to concrete [J].J. Eng. Mech.1980,115(2): 345-365.
    [54]余天庆.混凝土的分段线性损伤模型[J].岩石、混凝土断裂与强度,1985(2):14-16.
    [55]钱济成,周建方.混凝土分段曲线损伤模型及其应用[J].河海大学学报,1989,25(3):40-47.
    [56]于海祥,武建华,李强.混凝土损伤本构模型研究评述[J].重庆建筑大学学报,2007,29(2):68-72.
    [57]于海祥,武建华.基于无损受力状态的混凝土弹塑性损伤本构模型[J].工程力学,2009,26(10):79-85.
    [58]SUPARTONO F, SIDOROFF F. Anisotropic damage modeling for brittle elastic materials[C] Symposium of franc-poland,1984.
    [59]KRAJCINOVIC D. Constitutive equation for damaging platerials [J] Journal of Appl Mech, 1983(50):355-360.
    [60]KRAJCINOVIC D, LEMAITRE J. Continuum damage mechanics theory and applications[M].New York:Springer-Verilag,1987.
    [61]GAO LU-BIN, CHEN QING-GUO. An anisotropic damage constitutive model for concrete and its applications[M].Beijing:Applied Mechanics,International Academic Publisher,1988.
    [62]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [63]彭向和,杨春和,万玲.一种简化的混凝土损伤本构模型及其应用[J].岩石力学与工程学报,2004,23(19):3232-3239.
    [64]TAO X Y, PHILLIPS D V. A simplified isotropic damage model for concrete under bi-axial stress states[J]. Cement and Concrete Composites,2005,27(6):716-726.
    [65]KRATZIG W B, POLLING R. An elasto-plastic damage model for reinforced concrete with minimum number of material parameters[J]. Computers and Structures,2004,82(15/16):1201-1215.
    [66]FENG X Q, YU S W. Micromechanical modelling of tensile response of elastic-brittle materials [J].International Journal of Solids and Structures,1995,32(22):3359-3372.
    [67]AIFANTIS EC. Strain gradient interpretation of size effects[J].International Journal of Fracture,1999, 95(1):299-314.
    [68]PEERLINGS R H J,GEERS M G D,BORST R D. A critical comparison of non-local and gradient-enhanced softening continua[J].International Journal and Structures,2001,38(44):7723-7746.
    [69]杨璐,沈新普,孙光.混凝土弹塑性损伤本构理论的研究[J].沈阳工业大学学报,2005,27(3):321-324.
    [70]SHEN X P. Gradient-dependent non-local constitutive formulation for thermo-elastic-plasticity coupled with isotropic damage [J].University of Technology of Troyes,2002,10(8):88-93.
    [71]杨璐,沈新普.基于Coulomb准则的混凝土塑性损伤本构模型及其数值验证[J].岩土力学,2008,29(12):3318-3322.
    [72]丁发兴,余志武.基于损伤泊松比的混凝土多轴强度准则[J].固体力学学报,2007,28(1):13-19.
    [73]王中强,余志武.基于能量损失的混凝土损伤模型[J].建筑材料学报,2004,7(4):365-369.
    [74]李云贵,赵国藩.结构可靠性分析的广义验算点法[J].结构工程学报,1989,31(1):13-17.
    [75]伍朝辉.工程结构可靠度理论分析研究[D].大连:大连理工大学,1997.
    [76]ZHAO GUO-FAN, LI YUN-GUI. Asymptotic analysis methods for structural reliability[J]. China Ocean Eng,1995,9(3):17-18.
    [77].佟晓利,赵国藩.结构可靠性分析的广义验算点法[J].大连理工大学报,1997,3(1):16-321.
    [78]贡金鑫,赵国藩.原始随机空间内的结构可靠度分析[J].水利学报,1995,5(1):30-34.
    [79]佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面法[J].土木工程学报,1997,10(4):51-56.
    [80]郑浩哲.结构可靠度的虚拟变量算法[J].应用力学学报,2000,17(1):110-115.
    [81]刘书田.基于快速傅立叶变换的二阶可靠度分析方法[J].固体力学学报,2001,22(4):387-393.
    [82]张建仁,刘扬.遗传算法和人工神经网络在斜拉桥可靠度分析中的应用[J].土木工程学报,2001,34(1):7-13.
    [83]李向京,胡云昌.基于遗传算法—神经网络混合训练技术的结构近似可靠分析方法[J].土木工程学报,2000,33(5):40-45.
    [84]LIU Y W, MOSES F. A sequential response surface method and its application in the reliability analysis of aircraft structural system[J]. Structural Safety,1994,16(1-2):39-46.
    [85]LINDA.J, MOORE,PING SA. Comparisons with the best in response surface methodology[J]. Statistics & Probability,1999,44(2):189-194.
    [86]ZHENG Y., DAS P.K. Improved response surface method and its application to stiffened plate reliability analysis[J].Engineering Structures,2000,22(5):544-551.
    [87]GUAN X L, MELCHERS R E. Effect of response surface parameter variation on structural reliability estimates[J]. Structural Safety,2001,23(4):429-444.
    [88]GUPTA S., MANOHAR C.S. Improved response surface method for time variant reliability analysis of nonlinear random structures under no stationary excitations [J].Nonlinear Dynamics,2004,36(1): 267-280.
    [89]HERBERT M G, ARMANDO M A. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Structural Safety,2004,26(1):49-67.
    [90]IRFAN K, CHRIS A. MCMAHON. A response surface method based on weighted regression for structural reliability analysis [J].Probabilistic Engineering Mechanics,2005,20(1):11-17.
    [91]WONG S M, HOBBS R.E, ONOF C. An adaptive response surface method for reliability analysis of structures with multiple loading sequences[J].Structural Safety,2005,27(4):287-308.
    [92]JIANG J Q, WU C G, SONG C YL. Adaptive and iterative gene selection based on least squares support vector regression[J] Journal of Information & Computational Science,2006,3(1):443-451.
    [93]JIN WEILIANG, YUAN XUEXIA. Response surface method based on LS-SVM for structural reliability analysis[J].Journal of Zhejiang University(Engineering Science),2007,41(1):44-47.
    [94]CHENG JIN, LI Q S, XIAO RUCHENG. A new artificial neural network-based response surface method for structural reliability analysis [J]. Probabilistic Engineering Mechanics,2008,23(1):51-63.
    [95]HENRI P. G, SIU C Y. High-order limit state functions in the response surface method for structural reliability analysis [J].Structural Safety,2008,30(1):162-179.
    [96]TONGZOU, ZISSIMOS P, MOURELATOS, ZISSIMOS P, MOURELATOS, JIANTU. An indicator response surface method for simulation-based reliability analysis [J].Journal of Mechanical Design, 2008,130(7):1-11.
    [97]XUAN SON NGUYEN,ALAIN SELLIER, FREDERIC DUPRAT,GERARD PONS. Adaptive response surface method based on a double weighted regression technique [J].Probabilistic Engineering Mechanics,2009,24(2):135-143.
    [98]HONG Y J, XING J, WANG J B. A second-order third-moment method for calculating the reliability of fatigue[J].International Journal of Pressure Vessels and Piping,1999,76(8):567-570.
    [99]ARMEN DER KIUREGHIAN, TALEEN DAKESSIAN. Multiple design points in first and second-order reliability[J]. Structural Safety,1998,20(l):37-49.
    [100]KOYLUOGLU H U, NIELSEN S R K. New approximations for SORM integrals[J]. Structural Safety,1994,13(4):235-246.
    [101]QIU CHENCHEN, MARK E, ORAZEM. A weighted nonlinear regression-based inverse model for interpretation of pipeline survey data[J].Electrochimica Acta,2004,49(22):3965-3975.
    [102]KOSTAS TRIANTAFYLLOPOULOS. Multivariate discount weighted regression and local level models[J].Computational Statistics & Data Analysis,2006,50(12):3702-3720.
    [103]ZHAO JIE, LU ZHENZHOU. Response surface method for reliability analysis of implicit limit state equation based on weighted regression[J].Journal of Mechanical Strength,2006,28(4):512-516.
    [104]武清玺,吴世伟,吕泰仁.基于有限元法的重力坝可靠度分析[J].水利学报,1990,1(1):58-64.
    [105]吴世伟,李同春.重力坝最大可能破坏模式的探讨[J].水利学报,1990,8(8):20-28.
    [106]梁爱虎,陈厚群.地面最大加速度的概型分布参数对重力坝抗震动力可靠度的影响[J].世界地震工程,1994,11(4):10-13.
    [107]李振富,王日宣.重力坝抗震动力可靠度分析[J].天津大学学报,1995,28(5):668-672.
    [108]赵会香,张思俊,赵光键.龙滩水电站碾压混凝土高重力坝可靠度研究[J].水力发电,1999,11(2):13-16.
    [109]武清玺,卓家寿.二次序列响应面法分析重力坝的动力可靠度[J].振动工程学报,2001,14(2):224-227.
    [110]张新培,陈颖.小震作用下抗震结构时程可靠度计算方法[J].工程力学,2003,20(1):153-156.
    [111]封伯昊,张立翔,金峰.大坝可靠度分析[J].工程力学,2005,22(3):46-51.
    [112]熊铁华,常晓林.响应面法在结构体系可靠度分析中的应用[J].工程力学,2006,23(4):58-61.
    [113]贾超,张楚汉等.可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J].工程力学,23(4):12-16.
    [114]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1986,5(1):89-93.
    [115]LIN JIAHAO,ZHANG WENSHOU,LI JIANJUN. Structural responses to arbitrarily coherent stationary random excitations [J].Computers & Structures,1994,50(5):629-633.
    [116]汪梦甫.非比例阻尼线性体系平稳随机地震响应计算的虚拟激励法[J].计算力学学报,2008,25(1):94-99.
    [117]汪梦甫.用虚拟激励法求解非比例阻尼线性体系的非平稳随机地震响应[J].力学季刊,2006,27(4):598-605.
    [118]孙建梅,叶继红,程文瀼.多点输入下大跨空间索结构的虚拟激励法[J].振动与冲击,2005,24(4):107-119.
    [119]白建方,楼梦麟.基于直接模态摄动法的无阻尼线性随机结构的随机振动研究—随机动力反应分析[J].石家庄铁道学院学报(自然科学版),2009,22(1):1-4.
    [120]张义民,王世鹏,刘巧伶,解艳彩.基于最大可能点摄动法的相关系数可靠性灵敏度分析[J].东北大学学报(自然科学版),2008,29(6):874-876.
    [121]QIU Z P,ELISHAKOFF I. Anti-optimization structures with large uncertain but nonrandom parameters via interval analysis[J].Computer Methods in Applied Mechanics and Engineering, 1998,152(3-4):361-372.
    [122]黄耀英,吴中如,苏静波.基于区间参数摄动法的三维弹塑性区间有限元探讨[J].计算力学学报,2008,25(21):6-10.
    [123]王亚军,张我华.岩石边坡模糊随机损伤可靠性研究[J].沈阳建筑大学学报(自然科学版),2009,25(3):421-425.
    [124]王亚军,张我华.龙滩碾压混凝土坝随机损伤力学分析的模糊自适应有限元研究[J].岩石力学与工程学报,2008,27(6):1251-1258.
    [125]封伯昊,张立翔,金峰.基于损伤的混凝土大坝可靠度分析[J].工程力学,2005,22(3):46-51.
    [126]赵杰,邢丽,马海涛,冯炜.基于Z参数和可靠度的蠕变损伤模型[J].大连理工大学学报,2008,48(6):825-828.
    [127]YUAN JIAN,ZHOU YANG,LU XIN. Damage classification by probabilistic neural networks based on latent components for time-varying system[J]. Transactions of Nanjing University of Aeronautics &Astronautics,2009,26(4):259-267.
    [128]王正旭.美国的大坝安全管理[J].水利水电科技进展,2003,23(3):60-64.
    [129]DOUG JOHNSON美国华盛顿州采用以风险为基础的大坝安全分析方法的十年成功经验[J].大坝与安全,2001,1(1):46-51.
    [130]G SALMON把风险评估引入大坝安全实施程序[J].水利水电快报,1996,17(14):1-7.
    [131]匡少涛,李雷.澳大利亚大坝风险评价的法规与实践[J].水利发展研究,2002,2(10):55-58.
    [132]周克发,李雷.我国已溃决大坝调查及其生命损失规律初探[J].大坝与安全,2006,5(1):14-16.
    [133]FREAD, D L. Nws fldwav model:the replacement of dambrk for dam-break flood prediction[C]. Dam Safety'93 Proceedings of the 10th Annual ASDSO Conference,1993,9(1):177-184.
    [134]WANG Y I, YIN J H. Calculation of bearing capacity of a strip footing using an upper bound method [J].International Journal for Numerical and Analytical Methods in Geomechanics,2000,25(8):841-851.
    [135]TAYLOR C N, BRYAN C H, GOODRICH C C. Social assessment:theory process and techniques. [M]. New Zealand:Center for Resource Management. Lincoln University,1990.
    [136]BURDGE R A. Community guide to social impact assessment.[M].Middleton WI:Social Ecology Press,1994.
    [137]HELSLOOT A. Ruitenberg. Citizen response to disaster:a survey of literature and some practical implications[J]. Journal of Contingence and Crisis Management,2004,12(3):98-112.
    [138]JOANNE LINNEMOTH BAYER, REINHARD MECHLER, GEORG PFLUG. Refocusing disaster aid[J].Science,2005,309(8):1044-1046.
    [139]杜德进,张为民,张秀丽,陈昌林.风险评估在丰满水电站大坝的应用研究[J].大坝与安全,2002,10(6):10-14.
    [140]李亮.基于混凝土大坝的泄洪建筑物风险指标体系及泄洪风险研究[D].陕西:西安理工大学,2007.
    [141]梅亚东,谈广鸣.大坝防洪安全评价的风险标准[J].水电能源科学,2002,20(4):9-10.
    [142]姜树海.防洪设计标准和大坝的防洪安全[J].水利学报,1999,30(4):20-25.
    [143]周红.大坝运行风险评价方法研究[D].江苏:河海大学,2004.
    [144]LI JING,CHEN JIANYUN,XU QIANG. The assessment model about the disaster-bearing capacity of city's lifeline after dam-break[C].Mass2009,2009.
    [145]XU QIANG, LI JING,CHEN JIANYUN. The Model about Social Loss Induced by the Increasing Price of Farm Produce after Disaster, [C].Mass2009,2009.
    [146]徐强,陈健云,李静.大坝项目投资风险评价中的新方法[J].统计与决策,2008,10(1):141-142.
    [147]徐强,陈健云,李静.大坝风险的Vague集事故树的评价模型[J].价值工程2008,27(10):3-6.
    [148]李静,徐强,陈健云.溃坝后农产品价格增长对社会损失的影响模型[J].水科学与工程技术2009,1(1):1-4.
    [149]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应:地震工程研究报告集(第一集)[M].北京:科学出版社,1962.
    [150]IYENGAR A. Stationary random process model for earthquake accelerograms[J].BSSA,1969,59(3): 19-30.
    [151]徐强,陈健云,李静.基于小波理论合成人工地震波[J].振动与冲击,2009,28(8):180-183.
    [152]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55-62.
    [153]屈铁军,王前信.空间相关的多点地震动合成(Ⅰ)基本公式[J].地震工程与工程振动,1998,18(1):8-15.
    [154]杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.
    [155]范书立,陈健云,范武强,李静.地震作用下碾压混凝土重力坝的可靠度分析[J].岩石力学与工程学报,2008,10(3):564-571.
    [156]FARAVELLI L. A response-surface approach for reliability analysis [J].Eng. Mech.,ASCE,1989,115 (12):2763-2781.
    [157]BUCHER C G, BOURGUND U. A fast and efficient response surface approach for structural reliability problems [J].Struct. Safety,1990,7(l):57-66.
    [158]佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面方法[J].土木工程学报,1997,30(4):51-57.
    [159]CHEN JIANYUN,XU QIANG,LI JING,FAN SHULI. Improved Response Surface Method for Anti-slide Reliability Analysis of Gravity Dam based on Weighted Regression [J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)2010,11 (6):432-439.
    [160]徐强,陈健云,李静.结构可靠度的拉格朗日乘数法[J].工程力学,2009,26(11):108-113.
    [161]熊文林,李胡生.岩石样本力学参数值的随机一模糊处理方法[J].岩土工程学报,1992,6(1):101- 108.
    [162]李胡生,魏国荣.用随机—模糊线性回归方法确定岩石抗剪参数[J].同济大学学报,1993,3(1):421-429.
    [163]XU QIANG,CHEN JIANYUN,LI JING. Fuzzy reliability analysis of deep sliding plane in rock foundation under dam[C].ICNC'10-FSKD'10,2008.
    [164]钱保国,吴彰敦.坝基深层抗滑稳定可靠度分析蒙脱卡罗方法[J].红水河,2000,19(4):21-24.
    [165]王立辉.溃坝水流数值模拟与溃坝风险分析研究[D].南京水利科学研究院,2006.
    [166]吴中如.中国大坝的安全和管理[J].中国工程科学,2000,2(6):36-39.
    [167]李海波,朱莅.考虑地震动空间非一致性的岩体地下洞室群地震反应分析[J].岩石力学与工程学报,2008,27(9):1757-1766.
    [168]徐强,陈健云,李静.灰色系统动力学的溃坝损失评价模型[J].人民黄河,2009,31(4):24-26.
    [169]郭嗣琮.模糊分析中的结构元方法[J].辽宁工程技术大学学报,2002,21(5):670-673.
    [170]孙才志.自然灾害的模糊识别模型及应用[J].自然灾害学报,2001,4(5):52-56.
    [171]刘加龙.模糊综合评判法在泥石流灾度评价中的应用[J].地质科技情报,2001,20(4):86-88.
    [172]徐海量.洪水灾害等级划分的模糊聚类分析[J].干旱区地利,2000,23(4):350-352.
    [173]杨思全.基于模糊模式识别理论的灾害损失等级划分[J].自然灾害学报,1999,8(2):56-60.
    [174]徐强,陈健云,李静.改进的灾害损失等级模糊划分模型[J].辽宁工程技术大学,2009,28(5):738-741.
    [175]LI JING,XU QIANG,CHEN JIANYUN. The improved Fuzzy Classification Model on Disaster Loss [C].Mass2009,2009.
    [176]袁永博,于雪峰.自然灾害危害度模糊模式识别[J].地震工程与工程振动,2003,23(6):194-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700