南黄海辐射沙脊群沉积物输运与地貌演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南黄海辐射沙脊群以其形态特殊、地形复杂、沙脊规模巨大而著称,因其地貌演变迅速,水动力条件复杂,且位于陆、海和人类活动相互作用最强烈的海岸带,辐射沙脊群一直是海洋学家重点关注的研究对象。本文基于Delft3D模型,采用三种空间尺度的网格,建立了辐射沙脊群海域的水动力数值模型,并利用40个测站数据进行验证,进而分析了研究区的潮汐、潮流特征。在此基础上,建立了沉积物输运和长周期地貌演化模型,模拟辐射沙脊群海域冲淤变化;设计了两个理想实验,试图探讨辐射沙脊的演变过程及其影响因素。这些研究成果对该地区的自然资源开发利用有指导意义和参考价值。
     研究表明,包括南黄海、局部东海海域的大区域模型的计算结果与2005-2011年实测水位、流速结果吻合良好。少数测站的流向与模拟结果有一定误差,可能与模型使用的地形数据(地形数据的获取时间为1979年,相对偏旧)有关。模拟结果显示,在涨潮和落潮时刻,辐射沙脊群海域流场分别呈辐聚和辐散状;南黄海、东海北部主要受半日分潮M2、S2分潮控制,这两个分潮的最大振幅分别可达2.50m和0.95m,振幅高值主要分布在杭州湾、弶港和海州湾,其次为全日分潮K1、01。东海前进潮波和南黄海旋转潮波共同作用,在弶港汇合,造成弶港海域潮差大、潮流强的特征。M2、S2分潮在废黄河口外海出现无潮点,无潮点位置与前人的研究结果基本一致。在江苏岸外110-185km处、辐射沙脊群东部外缘,出现一股大小为0.18-0.4m/s(东南向)的拉格朗日余流。欧拉余流场的空间分布趋势及数值大小与拉格朗日余流场基本一致。斯托克斯效应在近岸海域较为显著,除海州湾区域小于0.02m/s外,其他近岸海域平均为0.05m/s,杭州湾和长江口海域斯托克斯漂流方向均向陆,数值一般大于0.50rn/s。
     以大区域模型的结果为边界条件,使用高空间分辨率网格的小尺度模型模拟了辐射沙脊群海域的悬沙分布、悬沙输运及地形演化过程。其中,悬沙浓度模拟结果与实测数据大致吻合;辐射沙脊群海域悬沙浓度数值大小与潮差成正比,大潮期间垂线平均悬沙浓度高值(垂线平均>1kg/m3)分布范围远大于小潮期间的高值分布范围。整个辐射沙脊群海域以弶港为分界线,南、北两侧悬沙浓度分布格局差异显著。北部海域,尤其是西洋、条子泥和东沙东部海域,垂线平均悬沙浓度可达1.5kg/m3以上;南部海域,悬沙浓度整体较低,一般在0.8kg/m3以下。
     模拟结果表明,辐射沙脊群北部海域悬沙向东南方向输运,单宽净输运率约为0.4kg/(m·s),至辐射沙脊群北部边缘处转为东南方向。悬沙输运率高值区分布在西洋、陈家坞槽、草米树洋、黄沙洋、冷家沙外围等五个海域,其中以西洋最为显著,悬沙净输运率高达2kg/(m·s)。陈家坞槽和西洋水道内的悬沙均向海输运,黄沙洋水道则向陆输运,草米树洋水道北侧向岸、南侧向海。对比大、中、小潮辐射沙脊群海域的悬沙输运格局,发现研究区地形演变主要受控于大潮期间的悬沙输运格局,大潮期间的悬沙净输运率数值是中潮期间的2倍以上,小潮的四倍以上。大中小潮的悬沙输运格局有显著差异,以西洋水道为例:西洋水道大潮期间悬沙向海输运,净输运率平均可达2kg/(m·s),小潮期间,悬沙向陆输运,净输运率一般小于0.5kg/(m·s),中潮期间北部向海,南部向陆,净输运率平均为1.0kg/(m·s)。
     基于1979年海底地形下的数值模拟结果显示,辐射沙脊群海域主要水道以侵蚀过程为主,其中以西洋和陈家坞槽最为显著,黄沙洋、烂沙洋等南部海域的水道相对稳定。条子泥周围水道不断被加深,沙脊不断淤高。东沙东部受陈家坞槽扩张影响向西后退,整体仍处于淤长状态。毛竹沙与竹根沙的连接处因为陈家坞槽的延伸而逐渐被切断,毛竹沙、外毛竹沙与竹根沙有分离的趋势。南部海域相对较稳定,在弶港——吕泗岸段的潮滩出现规模较小的水道,并逐渐扩张加深。
     假定海底地形由陆向海均匀变化,建立了一个长周期地貌演化模型。模拟结果表明,江苏近岸海域以弶港为顶点的辐射状潮流场不依赖于原始海底地形。潮流脊首先在弶港海域发育,弶港以北发育正北、北偏东方向的潮流脊,南部发育正东、东偏南方向的潮流脊,整体呈辐射状。但潮流脊向海延伸不超过90km,其演化基本局限于原20m等深线以浅海域。假定海底海底地形为均匀斜坡、并在弶港东部海域由陆向海有一较大沙脊存在,建立了另外一个长周期地貌演化模型。结果表明,水动力对20m以深海域海底地形的影响依然十分微弱,中央沙脊20m以下的砂体基本维持原状。上述两个理想实验的结果都显示,江苏近岸辐射状沙脊的形成与海底原始地形无关,潮流在研究区辐聚、辐散的空间分布格局是辐射状沙脊群形成的最主要的动力因素。辐射状沙脊体系从无到有,并维持稳定状态,大约需要200年时间。此外,理想实验还证实了,原始海底有、无沙脊,对辐射状沙脊形成的时间尺度和分布格局有显著影响。例如,均匀斜坡地形、海底无沙脊的条件下,辐射状的潮流场也无法塑造出目前的沙脊分布形态,尤其是无法形成现今离岸约90km以外沙脊的分布形态。
The large radial sand ridges (RSR) in the southern Yellow Sea are famous for their unique subaqueous landscape with huge scale and complex topography. The RSR is the remarkable research area for a long time due to the complicated hydrodynamics, strong human activities here. This thesis sets up a hydrodynamic model using Delft3D with3kinds of grids to simulate the water level and current field. Data collected from40mooring stations in RSR is used for the model validation, and then the characteristics of tide and tide current are analyzed. Another model with high space resolution concentrated on the sediment transport and seabed topography changes. Finally, two ideal models are designed in order to reproduce the RSR evolution and revealthe factors on the formation of RSR. This research is of great significance for the exploitation of local resources.
     The result of model with a large domain, which includes the southern Yellow Sea and the north part of East China Sea, is almost in accordance with all the field observation data on velocity and water level. Difference between model result and field observation in couple of stations may caused by the utility of relative old data of topography, which was mainly collected in1979. The result of model shows a divergent and convergent flow field during the ebb and flood in RSR, respectively. The southern Yellow Sea and northern East China Sea are dominated by semidiurnal tides, i.e. the tidal constituent M2and S2, which, respectively, has maximum amplitude of2.5m and0.95m. High tidal amplitudes of M2and S2distribute in Hangzhou Bay, Jianggang and Haizhou Bay. The second dominating constituents are K1and O1. The progressive East Sea tidal wave and the rotating southern Yellow Sea tidal wave converge around the Jianggangsea, resulting in a large tide range and strong current along the Jianggang coast. Amphidromic points of M2and S2are found at the offshore area of the abandoned Yellow River mouth, which is same as the previous study. In the northern waters outside the coast of Jiangsu with a distance110-185km, there are east-southward Lagrangian residual currents, with magnitude of0.18-0.4m/s. The Eulerian residual currents are almost the same pattern with the Lagrangian residual currents in both direction and magnitude. The Stokes residual currents are distinctive in the shallow waters near the coast. The Stokes residual currents are about0.05m/s in the waters near shore, expect waters in Haizhou Bay, where the residual current is smaller than0.02m/s. Especially, the Stokes residual currents are landward, with magnitude bigger than0.05m/s, in Hangzhou Bay and Changjiang Estuary.
     Extracting the open boundary conditions from the big domain model, another high resolution model is established to simulate the suspended sediment transport and RSR evolution. The model result on the suspended sediment concentration (SSC) dovetails well with the field observation. Magnitude of SSC in RSR is in positive correlation with tide range. The area with high SSC (depth-average value>1.0kg/m3) in spring tides is much bigger than that in neap tides. There is distinct difference between the distribution of SSC in the northern and southern area. In the northern waters, especially Xiyang, Tiaozini and East Dongsha, the depth-averaged SSC can reach more than1.5kg/m3; while in the southern waters, SSC is always lower than0.8kg/m3.
     The result of model shows that, suspended sediment transport is east-southward in the northern tidal channels of RSR, with a net transport rate of0.4kg/(m·s). High SSC mainly occurs in5tidal channels:Xiyang, Chenjiawucao, Micaoshuyang, Huanghayang, nearest waters of Lengjiasha, among which Xiyang has a highest transport rate of2kg/(m·s). Net sediment transportation in Xiyang and ChenjiaWucao is seaward, while Huangshayang landward, MicaoshuYang landward at north side and seaward at south side. By comparing the sediment transportation among spring, middle and neap tides in the research waters, it is easy to find that the change of topography is dominated by in RSR is dominated by the transportation during spring tides, as net transportation rate of sediment during the spring tides is more than twice the net rate during middle tides, and4times the net rate during neap tides. Sediment transportation in spring, middle and neap tides are significantly different from each other. Take Xiyang for example, sediment transportation is seaward with magnitude of2kg/(m·s) in spring tides, landward with magnitude of0.5kg/(m-s) in neap tides, landward in the southern waters and sea-forward in the northern waters with magnitude of1.0kg/(m-s) in middles tides.
     Result of model based on the1979topography shows that the main tide channels are in erosion, among which Xiyang and Chenjiawucao are in most serious condition but Huangshayang and Lanshayang are relatively stable. Deep channels surround Tiaozini are also in erosion, being deeper and deeper. Dongsha, on the whole, is prograding, though the east part of Dongsha retreats westward due to the expansion of Chenjiawucao. As the result of extension of Chenjiawucao, the junction between Maozhusha and Waimaozhusha is being cut off. The southern channels are relative stable, except that some small channels developed on the tide flat between Jianggang and Lvsi.
     A model is designed to simulate the long-term evolution of the topography, assuming that the topography in RSR is in uniform slope. Its result shows that the radial currents in RSR do not depend on the radial topography. Sand ridges along the Jianggang coast, and then the northward sand ridges grow in the northern waters, eastward sand ridges grow in the southern waters. However, the farthest distance sand ridges can reach is smaller than90km from the coast and the topography change little in waters with depth bigger than20m in initial topography. Another ideal model is designed, assuming that there exists a huge sand ridge at the Jianggang offshore sea. Its result also shows that topography with depth deeper than20m in initial topography is still in little change. These two numerical experiments show that the radial currents in Jiangsu coastal zone exist independently and the radial currents are of great significance in the formation of RSR. These two experiments also show that the formation of RSR from null to stable condition needs about200years and that the existence of initial sand ridges will affect the formation time and distribution of sand ridges. For instance, assuming in an initial topography with uniform change but without sand ridges, the radical currents cannot mod out sand ridges in similar distribution of modern RSR. Especially, it is hard to change the offshore sand ridges90km away from the land
引文
Abbot t M B.,1997. Range of tidal f low modeling [J]. Journal of Hydraulic Engineering.123(4):255-277.
    Bagnold R.A.,1966. An approach to the sediment transportation problem from general physics. U.S. Geol. Sur. Prof. Paper 422-1
    Baumert Helmut, Chapalain Georges, Smaoui Hassan, et al.,2000. Mdodelling and numerical simulation of turbulence, waves and suspended sediments for preoperational use in coastal seas. Coastal Eng.,41:63-93
    Blumberg A F, Mellor G. L. A description of a three-dimensional coastal ocean circulation model. In:Heaps N.,ed. Three-Dimensional Coastal Ocean Models. Coastal and Estuarine Sciences American Geophysics Union,1987,4:1-16
    Casulli V. Cheng, R. T.,1992. Semi-implicit finite difference methods for three-dimensional shallow water flow. International Journal of Numerical Methods in Fluids, (15):629-648
    Casulli V., Cattani E.,1994. Stability, accuracy and efficiency of a semi-implicit method for three dimensional shallow water flow. Computers and Mathematics with Application,27(4):99-112
    Ccalmr, ELCIRC. WWW Page hhttp:www.ccalmr.ogi.edu/CORIE/modeling/ercirc, Center for Coastal and Land-Margin Research (CCALMR), Oregon Health & Science University, OR. USA.
    Chen C.S., Liu H.D., Robert C.,2003. An unstructured Grid, Finite-Volume, Three Dimensional, Primitive Equation Ocean Model:Application to Coastal Ocean and Estuaries,20:159-186
    Cheng Liu,Yun He,et al.2002. Numerical study on environmental impacts of the third shanghai sewerage project. International Journal of Sediment Research, Vol.17,No.2,:165-173
    Defant A.,1919. Unstersuchungn uber die Gezeiteuercheiungcn in mittel-und Randmeeren, Denkschrift Wiener Akodemie der Wissenschaften.
    Delft Hydraulics,1999. Delft 3D Users'Manual. The Nether-lands:Delft Hydraulics E.P.L. Elias, D.J.R. Waslstra, J.A. Roelvink, et al.2000. Hydrodynamic validation of Delft3D with field measurements at Egmond. Cosatal Engineering:2714-2727
    Eynde V.D.D.,1998. Modelling of the sediment transport at the Belgian coast. International Conference on Environtmental Problems in Coastal Regions. Wessex Institute of Technology Computation Mechanics Inc,:427-436
    Fang Guohong,1984. Tide and tidal current charts for the marginal seas adjacent to China. C.J. of Oceanology and Limology,1986,4(1):1-16
    Fei Xing, Yaping Wang, Harry V. Wang,2012. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Marine Geology,291-294:192-210
    Grace S.F.,1932. Principlal diurnal constituent of tidal motion in the Gulf of Mexico. Monthly Notices of the Royal Astronnomical Society, Geoghysical Suspplement, 3:70:83
    Hamrick J H.,1992. A three-dimensional environmental dynamics computer code: Theoretical and computational aspects. Special Rep. No.317, Applied Marine Science and Ocean Engineering, Virginia Institute of Marine Science, Gloucester Point, Va
    Heaps, N.S.,1972. On the numerical solution of the three dimensional hydrodynamic 3equations for tides and strom surges, Men. Soc. R. Sci. Liege.2:143-180
    JacOBSen F, Rasmussen E B. MIKE 3 MT:A3-dimensional mud transport model. Technical Rep DG-12 to the Commission of the European Communities,1997
    Jeffrey H. List, Daniel M. Hanes, Peter Ruggiero,2006. Predicting longshore gradients in longshore transport:comparing the CERC formula to Delft3d. Coastal Engineering 2006 Proceedings of the 30th International Conference:PP 3370-3380
    Kalkanis g.,1964. Transportation of bed material due to wave action. U.S. Army Corps of Engineers, CERC. Tech. Memo:2-38
    Larm K.A., Edge B.L., et al.,1998. Sediment resuspension in hurricane conditions. International Conference on Environmental Problems in Coastal Regeions.:417-426
    Lesser, G.R., Roelvink, J.A., van Kester, J.A.T.M., Stelling, G.S.,2004. Development and validation of a three-dimensional morphological model. Coast. Eng.51, 883-915.
    Li Jia, Yao Yanming, et al.2008. Numerical analysis on water exchange and its response to the coastal engineering in the Yueqing Bay in China. Acta Oceanological Sinica, Vol 27:63-73
    Praagman N.,1982. A comparison of discretization methods for the shallow water equation. Int. J. Nam Methods Eng.,18:981-995
    Proudman, Doodson,1924. The principal constituent of the tides in the North Sea. Philosophical Transactions of the Royal Society, ASCE:834-843
    Quack M C.,1983. Sediment t ransport by w aves and current [J]. Civ. Eng..10: 1-11.
    Roelvink, J.A. and Van Banning, G.K.F.M.1994. Design and development of Delft3D and application to coastal morphodynamics. Proceedings o f Hydroinforrnatics '94 conference, Delft.1:451-456
    Richardson, J. F., Zaki, W.N.,1954. Sedimentation and fluidization:Part 1. Trans. Instn Chem. Engrs 32:35-53
    Song Y T, Haidvogel D.,1994. A semi-implicit primitive equation ocean circulation model using a generalized topography following coordinate system. J Comput Phys,115:228-244
    Spasojevic M, Holly F M. Three-dimensional numerical imulation of mobile-bed hydrodynamics. Contract Rep
    HL-94-2, US Army Engineer Waterways Experiment Station, Vicksburg, Miss,1994
    Theodore. Off,1963. Rhythmic linear sand bodies caused by tidal currents. Petroleum Geologists Bull,47:
    Trisula,1993. A program for the computation of non-steady flow and transport phenomena on curvilinear coordinates in 2 or 3 dimensions. Delft Hydraulics, Delft.
    Weare T.J.,1976. Finite element or finite difference methods for the two dimensional shallow water equations? Comp. Meth. in. App. Mech. And Eng.,7:351-357
    Vanonif V. A.,1981.泥沙工程[M].北京:水利出版社
    Van Rijn L.C.,1987. Mathematical modeling of morphological processes in the case of suspended sediment transport. Delft Hydraulics Communication. PP382
    Van Rijn L.C.,1990. Field verification of 2-D and 3-D suspended sediment models.J. Hydr. Eng., ASCE,116:10
    Ying Wang, Yongzhan Zhang, Xinqing Zou, Dakui Zhu, David Piper,2012. The sand ridge field of the South Yellow Sea:Origin by river-sea interaction. Marine Geology,291-294:132-146
    Z.B. Wang, M.L. Tse, S.C. Lau 2011. A study on sedimentation of tidal rivers and channels flowing into deep bay with a delft3d model. Proceeding of the Sixth Internatiional Conference on Asian and Pacific Coastals:1444:1451
    Zhang Jingxin, Liu Hua, He Yousheng,2003. Numerical simulation of bed topography changes induced by deep water navigation channel project in the Yangtze estuary. Journal of Hydrodynamics, (4):46-53
    陈君,张忍顺,2003.江苏岸外条子泥二分水滩脊的沉积特征.海洋通报,22(3):23-30
    陈君,冯卫兵,张忍顺,2004a.苏北岸外条子泥沙脊潮沟系统的稳定性研究.地理科学,24(1):94-100
    陈君,张忍顺,2004b.江苏岸外辐射沙脊区域动态变化的遥感研究进展.海洋科学,28(2):77-80
    陈君,王义刚,张忍顺,2006.江苏岸外东沙沙脊群的沉积特征.海洋通报,25(6):37-46
    陈君,王义刚,张忍顺,林祥,2007.江苏岸外辐射沙脊群东沙稳定性研究.海洋工程,25(1):105-113
    陈实则,1979.黄海海流状况.海洋研究,3(增刊):1-42
    陈耀登,高玉芳,2007.海洋数值模拟中的伴随数据同化方法.河海大学学报,35(5):509-603
    储鏖,2004.Delft3D在天文潮与风暴潮耦合数值模拟中的应用.海洋预报,21(3):30-37
    丁贤荣,康彦彦,葛小平等,2011.辐射沙脊群条子泥动力地貌演变遥感分析.河海大学学报,39(2):231-236
    窦国仁,董凤舞.潮流和波浪的挟沙能力[J].科学通报,1995,40(5):443-446.
    窦振兴,罗远诠,黄克辛等,1981.渤海潮流脊潮余流的数值计算.海洋学报,3(3):354-368
    窦振兴,杨连武,Oz erj,1993.渤海湾三维潮流数值模拟[J].海洋学报,15(5)1-15.
    董壮,2002..三维水流数值模拟研究进展.水利水运工程学报,(3):66-73
    方国洪,王仁树,1966.海湾的潮汐与潮流.海洋与湖沼,8(1):60-77
    方国洪,1979.黄海潮能的消耗.海洋与湖沼,10(3):200-213
    方国洪,曹德明,黄企洲,1994.南海潮汐潮流的数值模拟.海洋学报,16(4):1-12
    高敏钦,徐亮,黎刚,2009.基于DEM的南黄海辐射沙脊群冲淤演变初步研究.海洋通报,28(4):168-176
    高抒,1989.废黄河口海岸侵蚀与对策.海岸工程,8(1):37-42
    高抒,1997.海洋沉积物动力学研究与应用前景展望.世界科技研究与发展,19(3):62-66
    郭蓄民等,1979.长江河口地区全新世新统的分层与分区.同济大学学报,(2):
    何华春,邹欣庆,李海宇,2005.江苏岸外辐射沙脊群烂沙洋潮流通道稳定性研究.海洋科学,29(1):12-16
    何小燕,胡挺,汪亚平等,2010.江苏近岸海域水文气象要素的时空分布特征.海洋科学,(9):44-54。
    黄海军,李成治,1998.南黄海海底辐射沙脊的现代变迁研究.海洋与湖沼,29(6):640-645
    黄海军,王珍岩,张忍顺,2002.航测、卫星遥感和GIS研究海岸动态变化的误差分析.海洋科学,26(3):8-10
    黄易畅,王文清,1987.江苏沿岸辐射状沙脊群的动力机制探讨.海洋学报,9(2):209-215
    黄易畅,汤毓祥,1988.江苏沿岸的潮汐运动Ⅰ潮汐运动的特征.黄渤海海洋,6(2):6-11
    贾建军,闾国年,宋志尧等,2000.中国东部边缘海潮波系统形成机制的模拟研究.海洋与湖沼,31(2):159-167
    钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    匡翠萍,高健博,刘曙光,张宇,2010.贝加尔湖典型风况下三维流场数值模拟.人民长江,41(3):99-101
    李成治,李本川,1981.苏北沿海暗沙成因的研究.海洋与湖沼,12(4):321-331
    李从先,国蓄民,许世远等,1979.全新世长江三角洲地区砂体的特征和分布.海洋学报,1(2):252-268
    李从先,赵娟,1995.苏北弶港辐射沙脊研究的进展与争论.海洋科学,(4):57-60
    李海宇,王颖,2002.GIS与遥感支持下的南黄海辐射沙脊群现代演变趋势分析.海洋科学,26(9):61-65
    李孟国,2006.海岸河口泥沙数学模型研究进展.海洋工程,24(1):139-155
    练继建,赵子丹,1994.波流作用下底泥的相应.水动力学研究与进展,9(4):460:468
    练继建,赵子丹,张庆河,1999.波流作用下底泥输移的非线性弹性体模型.科学通报,44(4):445-448
    林秉南,赵雪华,等,1980.河口建坝对毗邻海湾潮波影响的计算[J].水利学报,(2):16-26.
    刘永学,张忍顺,李满春,2004.应用卫星影像系列海图叠合法分析沙脊动态变化.地理科学,24(2):199-204
    刘振夏,夏东兴,1983.潮流脊的初步研究.海洋与湖沼,,1(3):286-296
    刘振夏,夏东兴,1995.潮流沙脊的水力学问题探讨.黄渤海海洋,13(4):23-29
    钱宁,万兆惠,1983.泥沙运动力学[M].北京:科学出版社.
    任美锷,张忍顺,杨巨海等,1983.风暴潮对淤泥质海岸的影响——以江苏省淤泥质海岸为例.海洋地质与第四纪地质,3(4):1-24
    任美锷主编,1986.江苏海岸带及海涂资源综合调查.北京:海洋出版社.PP1-200
    沈育疆,1980.东中国海潮汐数值计算.山东海洋学院学报,10(3):26-35
    沈育疆,黄岱岩,钱成春,1993.试释黄海半日潮波系统形成机制.海洋学报,15(6):16-24
    宋志尧,严以新,薛鸿超等,1998.南黄海辐射沙脊形成发育水动力机制研究Ⅱ潮流运动立面特征.中国科学(D辑),28(5):411-417
    孙家淞,周长振,1984.南黄海全新世旧黄河水下三角洲的初步研究.海洋地质与第四纪地址,4(3):
    汤毓祥,姚兰芳,1989.南黄海潮流和潮余流的数值计算.海洋湖沼通报,(2):1:7
    陶建峰,张长宽,2005.南黄海辐射沙脊群海域水环境数值模拟研究.河海大学学报,33(4):472-475
    田庆久,王晶晶,杜心栋,2007.江苏近海岸水深遥感研究.遥感学报,11(3):373-379
    万延森,张耆年,1985.江苏近海辐射状沙脊群的泥沙运动与来源.海洋与湖沼,16(5):392-399
    万延森,1988.江苏近海辐射状沙脊地貌的发育.地理研究,7(2):41-49
    万振文,乔方利,袁业立,1998.渤、黄、东海三维潮波运动数值模拟.海洋与湖沼,29(6):611-616
    王辉,刘桂梅,万莉颖,2007.数据同化在海洋生态模型中的应用和研究进展.地球科学进展,22(10):989-996
    王开发等,1984.长江三角洲第四纪孢粉组合及其地层古地理意义.海洋学报,6(4):
    王颖,朱大奎,周旅复等,1998.南黄海辐射沙脊群沉积特点及其演变.中国科学(D辑),28(5):385-393
    王颖,2002.黄海陆架辐射沙脊群.北京:中国环境科学出版社.PP433
    汪亚平,张忍顺,1998.江苏岸外沙脊群的地貌形态及动力格局.海洋科学,(3):43-47
    温洪涌,2008.海岸泥沙输移的数值模拟及其应用.大连理工大学(硕士论文)
    吴德安,张忍顺,2005.西洋东大港水道流速垂线分布研究.海洋工程,23(1):88-93
    吴德安,张忍顺,严以新等,2006.辐射沙脊东大港潮流水道悬沙输移机制分析.河海大学学报,34(2):216-222
    吴德安,张忍顺,李瑞杰,2007.辐射沙脊潮流水道悬沙动力关系BP神经网络模拟研究.水运工程,(3):18-22
    吴曙亮,蔡则健,2002.江苏省沿海沙脊及潮汐水道演变遥感分析.国土资源遥感,(3):29-34
    吴永森,李日辉,吴隆业等,2006.苏北近岸水域“五条沙”侵蚀发育的卫星监测.海洋科学进展,24(2):188-194
    夏东兴,刘振夏,1984.潮流脊的形成机制和发育条件.海洋学报,6(3):361-367
    夏综万,王锺桾,1984.黄海M2分潮的数值模拟.黄渤海海洋,2(1):1-7
    夏综万,王锺桾,1985.黄海日潮的数值模拟.黄渤海海洋,3(3):1-4
    谢伟军,张东,张鹰,余宁,顾云娟,2009.南黄海辐射沙脊群水下地形遥感反演及三维可视化.海洋通报,28(4):164-167
    邢飞,2010a.南黄海辐射沙脊群海域水动力与悬沙输运过程.南京大学(硕士毕业论文)
    邢飞,汪亚平,高建华等,2010b.江苏近岸海域悬沙浓度的时空分布特征.海洋与湖沼,41(3):1-10
    许卫忆,苏纪兰,1986.杭州湾二维潮波计算及底质分布的动力成因.海洋与湖沼,(6):493-523
    杨长恕,1985.弶港辐射沙脊成因探讨.海洋地质与第四纪地质,5(3):35-44
    杨耀中,冯卫兵,2010.南黄海辐射沙脊群悬沙特征研究.水道港口,31(3):157-163
    杨治家,李本川,1985江苏沿海辐射状沙脊群的动态变化.海洋科学,(4):63-67
    叶安乐,梅丽明,1995.渤黄东海潮波数值模拟.海洋与湖沼,26(1):63-70
    尤坤元,朱大奎,王雪瑜等,1998.苏北岸外辐射沙脊王港西洋潮流通道稳定性研究. 地理研究,17(2):10-16
    远航,于定勇,2004.潮流与泥沙数值模拟回顾及进展.海洋科学进展,22(1):97-106
    曾庆存,1992.大气、海洋、地学研究中数值模拟的进展.大自然探索,11(41):9-10
    张涤明,汤奔阳,1987.风暴草边界拟合坐标差分法计算.第1届全国水动力学学术会议论文集;力学学报,19:
    张涤明,陈良圭,乔林,1988.近海水域海洋流体动力学方程的数值模拟.力学进展,18(3):322-331
    张东生,张君伦,1996.黄海海底辐射沙脊区的M2潮波.河海大学学报,24(5):35-40
    张东生,张君伦,张长宽,王震,1998.潮流塑造——风暴破坏——潮流恢复——试释南黄海海底辐射沙脊群形成演变的动力机制.中国科学(D辑),28(5):394-402
    张光威,1991.南黄海陆架沙脊的形成于演变.海洋地质与第四纪,11(2):24-34
    张继民,张新周,汤红亮,曾广恩,2009.Delft3D在海湾电厂排水数值模拟中的应用.人民长江,40(1):59-62
    张忍顺,1984a.苏北黄河三角洲及滨海平原的成陆过程.地理学报,39(2):173—184
    张忍顺,1984b.辐射沙脊与弶港海岸发育的关系.南京大学学报,(2):368-379
    张忍顺,王雪瑜,1986.东台县死生港的岸滩冲刷问题.海洋工程,4(4):
    张忍顺,1988.弶港辐射沙脊内缘区海岸发育及近期演变.海洋通报,7(1):42-48
    张忍顺,陈才俊,1992.江苏岸外沙脊演变与条子泥并陆前景研究.海洋出版社:1-100
    张忍顺,王艳红,吴德安等,2003.江苏岸外辐射沙脊区沙岛形成过程的初步研究.海洋通报,22(4):41-47
    张鹰,1998.水深遥感方法研究.河海大学学报,26(6):68-72
    张鹰,张芸,张东等,2009.南黄海辐射沙脊群海域的水深遥感.海洋学报,31(3):39-45
    赵保仁,方国洪,曹德明,1994.渤、黄、东海潮汐潮流的数值模拟.海洋学报,16(5):1-10
    赵保仁,方国洪,曹德明,1995a.渤海、黄海和东海的潮余流特征及其与近岸环流输送的关系.海洋科学集刊,36:1-11
    赵娟,1997.苏北沿海陆上潮成砂体沉积区的发现机器地质意义.同济大学学报,25(1):82-86
    赵士清,张镜潮,1981.连云港潮流的数值模拟.海洋学报,3(3):500-515
    赵士清,1985.长江口三维潮流数值模拟[J].水利水运研究,1:18-20.
    赵一阳,朴龙安,秦蕴珊等,1998.南黄海沉积学研究新进展—中韩和调查.海洋科学,1:34-37
    赵子丹,练继建,1993.论波浪、水流与淤泥质底床的相互作用.海洋通报,12(5):75-83
    中国海湾志编撰委员会,1993.中国海湾志,第四分册.北京:中国水利水电出版社:1-17
    周长振,孙家淞,1981.试论苏北岸外浅滩的成因.海洋地质研究,1(1):83-91
    朱大奎,1984.
    朱大奎,龚文平,1994a.苏北岸外海底沙脊群内大洪水道的稳定性分析.海岸工程,13(4):1-12
    朱大奎,龚文平,1994b.江苏岸外海底沙脊群西洋水道的稳定性分析.海洋通报,13(5):36-43
    朱晓东,任美锷,朱大奎,1999.南黄海辐射沙脊中心沿岸晚更新世以来的沉积环境演变.海洋与湖沼,30(4):427-434
    朱晓华,查勇,2002.江苏淤泥质海岸海岸线分型机理研究.海洋科学,26(9):70-73
    诸裕良,严以新,薛鸿超,1998.黄海辐射沙脊形成发育潮流数学模型.水动力学研究与进展,13(4):473-480
    诸裕良,严以新,薛鸿超,1998.南黄海辐射沙脊形成发育水动力机制研究——Ⅰ.潮流运动平面特征.中国科学(D辑),28(5):403-410
    朱玉荣,1997.南黄海辐射沙脊成因的潮流数值模拟解释.青岛海洋大学学报,17(2):218-224
    朱玉荣,1998a.线状沙脊形成于维持机制的研究.地球科学进展,13(1):22-26
    朱玉荣,1998b.南黄海辐射状沙脊成因研究的新进展.海洋地质与第四纪地址,18(3):
    朱玉荣,1999a.不同泥沙输运公式在以潮流为主的浅海、陆架环境中的实用性探讨.海洋科学,(2):
    朱玉荣,1999b.潮流在长江三角洲形成发育过程中所起作用的探讨.海洋通报,18(2:):1-10
    朱玉荣,2000.苏北中部滨海平原成陆机制研究.海洋科学,34(12):33-37
    朱玉荣,2001a.全新世渤、黄、东海陆架泥沙输运演变过程研究.黄渤海洋,19(2):25-38
    朱玉荣,2001b.近百年来渤、黄、东海陆架冲淤作用强度数值研究.海洋科学,25(6):35-38
    朱玉荣,常瑞芳,2001c.南黄海辐射状沙脊成因的沉积力学研究.海洋科学集刊,(43):38-50
    朱玉荣,2002.末次冰消期以来渤、黄、东海陆架潮汐、潮流演变过程模拟研究.青岛海洋大学学报.32(2):279-286
    邹欣庆,殷勇,马劲松,2006.烂沙洋稳定性研究.第四纪研究,26(3):334-339
    左书华,2007.Delft3D在鳌江口外平阳咀海域流场模拟中的应用.水文,27(6):55-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700