基于“3S”技术的攀西地区铜镍铂族元素矿床找矿靶区筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于扬子地台西南缘的攀枝花—西昌地区,历经多期次构造-岩浆活动和变质作用,形成了铜、铜镍铂族、铁钛钒等复杂多样的成矿系统,矿产资源丰富多彩。近年来,随着该区矿业的迅猛发展和矿产资源的不断开发殆尽,新的成矿与找矿理论和找矿方法已成为该区找矿突破的关键。本文采用基于3S技术以矿床地球化学为主要手段的找矿方法,通过多个有关项目的科技攻关,取得以下创新成果与认识:
     1.首次建立了1:200000统一规范的攀枝花—西昌地区地质、矿产、地球化学、遥感、重力、航磁等数据库。
     2.通过攀西地区10个含PGE岩体的综合研究,在吸收国外最新的理论和实验资料的基础上,从铂族元素分配系数对岩浆过程的制约关系入手,对Cu-Ni-PGE成矿物质的迁移和聚集过程进行了系统分析,对岩体中铂族元素的富集层位及地球化学指标进行了总结。首次提出在攀西地区存在六种铜镍铂族矿化类型、两种重要的铂族元素富集机制和三条寻找铜镍铂族矿床的重要找矿标志。
     3.通过对攀西地区6个20万图幅的Cu、Ni、Pt、Pd、Cr、Co、Fe、Ti和V等元素的区域化探原始资料的研究,发现Pt、Pd、Cu、Fe、Ti和V在水系沉积物中的高含量基本上与峨眉山玄武岩的分布区吻合,Cr、Ni和Co的高含量主要受到峨眉山玄武岩的西岩区(盐源岩区)和中岩区(攀西岩区)的控制,这一新认识为区域地球化学背景与异常的划分提供了新的思路。
     4.基于研究区地球化学背景面为不完全连续曲面的事实,通过将化探衬值技术、EDA技术、数据滤波技术、GIS技术和数据插值技术的系统集成,创造性地研制开发了“子区异常下限衬值滤波法”。该方法有效克服了峨眉山玄武岩地区PGE、Cu、Ni等元素背景特高而前寒武系地层的背景偏低而造成矿化异常难以识别等问题,在攀西地区筛选出一批可供进一步勘查评价的Cu、Ni和PGE地球化学异常。
     5.基于相似类比原则,提取了与矿化有关的遥感信息和地球物理信息。
     6.在MAPGIS软件的支持下,采用统计证据加权法并结合专家证据加权法,对研究区内铜矿以及铜镍铂族矿床的找矿远景区进行了预测,筛选出篾丝箩等多处重要找矿靶区。
PanZhihua-Xichang area, located in the southwest margin of the Yangtze platform, experienced several stages tectonic-magmatic activities and metamorphism, generating Cu, Ni-Cu-PGE and Fe-V-Ti complex metallogenic system and rich in minerals. Recently, with the rapid development of the mining industry and the consumption of the mineral resources, new metallogennic-prospecting theory and methods used in exploration are the key factors for finding out deposits in this area. Based on the "3S" technique, with the main lithogeochemical indicators, through the several relating research programes, we gain the innovation achievements and judgements:
     1. We firstly constructe 1: 200000 unified, standard database, including geology, mineral resources, geochemical exploration, remote sensing, gravity force and aeromagnetic data in PanZhihua-Xichang area.
     2. According to the comprephensive study of the 10 PGE-bearing intrusions in PanZhihua-Xichang area, absorbing the the foreign up-to-date theories and experimental information, the beginning of the restricted relation from partition coeficients for magma of PGE, the systematic analysing the Cu-Ni-PGE metallogenic material's transportation and concentration process, generalize the position of PGE reefs and lithogeochemical indicators in intrusions. We put forward to the conclution that there are six forms Cu-Ni-PGE mineralization, two important routes for PGE concentration(sulfide saturation) and three important indicator in looking for Ni-Cu-PGE sulfide deposits.
     Through the research of the six map sheets' regional original geochemistry data, involving Cu, Ni, Pt, Pd, Cr, Co, Fe, Ti and V elements, we discover that the high content of the Pt, Pd, Cu, Fe, Ni and V in stream sediments agrees with the distribution of the Emeishan basalts. And the high content of the Cr, Co and Ni are mainly controlled by the Emeishan basalts' west basalt district(Yanyuan basalt district) and the central basalt district(PanZhihua-Xichang basalt district). This new judgement provides us new awareness.
     4. Based on the fact that the geochemistry background is the discontinuous curved face in researching region, according to the systematic integration of the contrast technique in geochemical exploration, EDA(Exploratory Data Analysis) technique, data filtering technique, GIS and data interpolation technique, we creatively develop a method "subregion contrast filtered through outliers". The method effectively overcome the problems of the super-high background of the PGE, Cu, Ni in the Emeishan basalts area, and the lower background in the Precambrian system stratum. And we screened a series Cu, Ni, PGE's geochemical anomalies which can be further explored and appraised.
     5. Based on the principle of the similar analogy, we extract remote sensing information and geophysical information relating to mineralization.
     6. Supported by the MAPGIS, using Weights of Evidence Method and Expert Weight of Evidence, we predicte the targets of exploration programs of the copper deposit and Ni-Cu-PGE sulfide ores. And we screen Miesiluo etc several important prospecting target areas.
引文
[1] Chusi Li,Edward M.Ripley.等,西伯利亚诺里尔斯克和塔尔纳赫岩体的橄榄石和硫同位素成分变化特征:动态岩浆通道成矿作用的意义[C]。四川地质学报,地质矿产译文选集,2005.22-36.
    [2] Donggao Zhao,Mei-Fu Zhou et al.中国西南部峨眉山大型火成岩省基性-超基性岩体形成的温压研究[C].四川地质学报,铂族元素矿床研究新进展译文集,2005,53-55.
    [3] Hong Zhong,Stephen A.Prevec et al.中国西南部新街PGE层状岩体微量元素和Sr-Nd同位素地球化学研究[C].四川地质学报,铂族元素矿床研究新进展译文集.2005,p41.
    [4] HongZhong等,中国西南部红格层状岩体的地质时代和地球化学特征及其与峨眉山玄武岩的成因联系[C].四川地质学报,铂族元素矿床研究新进展译文集.2005.p46.
    [5] J.Gregory Shellnutt,Yuxiao Ma等,中国西南部四川省米易含矿和无矿辉长岩的地球化学判别:晚二叠世峨眉山大型火成岩省两类岩浆的发现[C].四川地质学报,铂族元素矿床研究新进展译文集.2005,47-49.
    [6] Kwan-Nang Pang,Dongao Zhao et al,中国西南部二叠纪攀枝花辉长岩体Fe-Ti氧化物的岩石成因意义[C].四川地质学报,铂族元素矿床研究新进展译文集.2005.42-45.
    [7] Mei-Fu Zhou et al.中国岩浆型Ni-Cu-(PGE)硫化物矿床的构造背景[C],四川地质学报,铂族元素矿床研究新进展泽文集.2005,10-11
    [8] Mei-Fu Zhou。中国西南部二叠纪峨眉山玄武岩大型火成岩省多类型火成岩组合的地球化学研究[C],四川地质学报,铂族元素矿床研究新进展译文集.2005,p13.
    [9] Yong Yao,Gordon chunnett.中国西南部四川省攀西裂谷超基性岩—基性岩体的PGE矿床勘查[C].四川省地质学报,2005.铂族元素研究新进展译文集:38-40.
    [10] 曹瑜,胡光道.圈定“5P”找矿地段的GIS成矿预测空间模型及其应用[J].地球科学,1999,24(4):409-412.
    [11] 陈建国,王仁铎,陈永清,等.利用分形统计学提取化探数据中的隐蔽信息并圈定地球化学异常[J].中国地质大学学报,1998,23(2):175-178.
    [12] 陈明,李金春.化探背景与异常识别的问题与对策[J].地质与勘探,1999,35(2):25-29.
    [13] 陈明.筛选法——一种矿产预测新方案的概念和原理[J].地球科学,1999,,24(1):79-82.
    [14] 陈毓川.当代矿产资源勘察评价的理论与方法[M].北京:地震出版社,1998.
    [15] 陈智梁,陈世瑜.扬子地台西缘地质构造演化[M].重庆:重庆出版社,1987.
    [16] 成杭新,赵传冬,庄广民,等.香炉山地区水系沉积物铂钯地球化学异常特征[J].岩石学报,2003,27(6):445-448.
    [17] 成杭新,刘占元,赵传冬,初论盘江流域地球化学巨省[J].长春科技大学学报.2000,30(3):226-229.
    [18] 成杭新,赵传冬,庄广民,陈金法,冯济舟,张勤,余劲松.贵州两部龙场地区水系沉积物Pt、Pd异常源地球化学示踪的初步研究[J].地球化学.2003,32(2):193-200.
    [19] 成杭新,赵传冬,庄广民,姚文生.铂族元素矿床地球化学勘查的战略和战术[J].地 球学报,2002.23(6):495-500.
    [20] 池顺都.GIS,经验找矿与求异找矿结合的工具——化探异常找矿效果经验分析[J].地质与勘探,2000,36(1):71-74.
    [21] 从柏林.攀西古裂谷的形成和演化[M].北京:科学出版社,1988.
    [22] 戴昌达,胡德永.TM数据的信息特征[J].遥感信息,1987,(2):25-30.
    [23] 戴昌达,雷莉萍.TM图像的光谱信息量特征与最佳波段组合[J].环境遥感,1989,4(4):282-292.
    [24] 丁清峰,孙丰月.专家证据权重法及其在东昆仑地区的应用[J].地质与勘探,2005,41(4):88-94.
    [25] 杜佩轩.E G M A系统及其应用效果——找矿靶区的定位预测[J].物探与化探,1998,22(5):371-378.
    [26] 高怀雄,董王仓,侯满堂,等.陕西南部地区固体矿产大型、超大型矿床综合信息预测[J].陕西地质,2005,23(1):11-22.
    [27] 葛茂先.米易大槽铜镍铂矿地质特征及找矿前景[J].四川地质学报.2001,21(4):223-225.
    [28] 弓小平,王世称,杨兴科,等.地质矿产预测信息化相关问题的探讨[J].地质找矿论丛,2005,20(1):66-70.
    [29] 何起良,褚晓吉.对化探异常评价的思考[J].吉林地质,1998,17(2):9-19.
    [30] 何政伟,孙传敏,朱章森,等.搜索法——一种无模型矿产预测的方法[J].矿物岩石,2000,20(3):81-84.
    [31] 后立胜.区域化探数据处理的衬值变差值异常图方法初探[J].江西地质,2000,14(1):66-69.
    [32] 胡瑞忠,陶琰,钟宏,黄智龙,张正伟.地幔柱成矿系统:以峨眉山地幔柱为例[J].地学前缘.2005,12(1):42-54.
    [33] 胡素芳,钟宏,刘秉光,周新华.2001.攀西地区红格层状岩体的地球化学特征[J].地球化学.30(2):131-139.
    [34] 胡晓强,李云泉,帅德权.四川丹巴地区Cu-Ni-Pt族元素矿床的矿石矿物特征[J].矿物岩石.200l,21(1):14一18.
    [35] 黄瑞,李佑国.分形技术在攀两地区铂族元素异常查证中的应用[J].矿物岩石地球化学通报,2005,25(3):264-267.
    [36] 黄瑞.化探数据处理方法研究——以攀西地区铂族元素为例:[D].成都:成都理工大学,2005.
    [37] 黄旭钊,徐昆,梁月明,等.利用MapInfo综合分析多源地学信息进行矿产预测[J].中国地质大学学,2001,26(2):189-191.
    [38] 纪宏金,林瑞庆,周永旭,等.关于若干化探数据处理方法的讨论[J].地质与勘探,2001,37(4):56-59.
    [39] 贾永红,李德仁,孙家柄,等.多源遥感影像数据融合[J].遥感技术与应用,2001,15(1):41-44.
    [40] 来雅文,王林根,肖国拾,甘树才,段国正.黔西玄武岩铂族元素赋存状态及地质意义[J].吉林大学学报(地球科学版),2005.35(5):607-610.
    [41] 李德熊.TM合成图像波段组合的选择[J].遥感信息,1989,(4):68-70.
    [42] 李晓林,柴之芳,毛雪瑛,等.铂族元素地球化学示踪研究[J].地球物理学报,1998,41(增刊):162-168.
    [43] 李晓敏,郝立波,甘树才,等.峨眉山玄武岩分布区内铂族元素异常分析及其找矿远景预测[J].矿物岩石,2003,23(3):21-25.
    [44] 李晓敏,郝立波,甘树才,来雅文.黔西地区峨眉山玄武岩(东岩区)铂族元素地球化学特征[J].地质地球化学.2003.31(4):29-34.
    [45] 李佑国,侯增谦.中国四川呷村VHMS矿床:从矿石化学分析到地球化学模型[J].矿床地质,2001,20(2):119-128.
    [46] 李佑国,杨武年,骆耀南,等.攀西地区水系沉积物铂钯地球化学异常特征及找矿远景预测[J].矿物岩石,2006,26(4):35-40.
    [47] 梁有彬,李艺.中国铂族元素矿床类型和地质特征[J].矿产与地质,1997,3:1-6.
    [48] 梁有彬,刘同有,宋国仁,等.中国铂族元素矿床[M].北京:冶金工业出版社,1998.
    [49] 廖崇高,杨武年,刘登忠,等.基于GIS空间分析进行多源信息成矿预测[J].物化探计算技术,2002,24(2):146-150.
    [50] 凌超发,李佑国,黄瑞,等.基于GIS的攀西地区铂族元素成矿地质条件初步分析[J].矿物岩石地球化学通报,2004,23(3):225-229.
    [51] 凌超发.GIS支持下的攀西地区铂族元素(PGE)成矿地质条件分析与成矿预测:[D].成都:成都理工大学,2003.
    [52] 刘朝基,曾绪伟.康滇地区基性超基性岩[M].重庆:重庆出版社:1988.
    [53] 刘凤山.中国铂族金属矿床找矿方向初探[J].中国区域地质,2000,4:434-439.
    [54] 刘汉湖,杨武年,李佑国,等.GIS技术在扬子地台西南缘金矿预测中的应用[J].新疆地质,2005,23(3):292-29.
    [55] 刘汉湖.“3S”技术在冕宁—盐源矿带金矿床预测中的应用研究:[D].成都:成都理工大学,2004.
    [56] 刘家铎,张成江,李佑国,等.攀西地区金属成矿系统[M].北京:地质出版社,2007.
    [57] 刘家铎,张成江,刘显凡,李佑国,等.扬子地台西南缘成矿规律及找矿方向[M].北京:地质出版社,2004.
    [58] 刘治国,池顺都,周顺平,等.成矿预测中应用GIS的主要步骤[J].地质找矿论丛,2002,17(2):140-144.
    [59] 卢作祥,范永香,刘辅臣,等.成矿规律和成矿预测学[M].北京:中国地质大学出版社,1988.
    [60] 马治汉.区域地球物理地球化学资料综合解译方法技术研究:[D].北京:中国地质大学,2002.
    [61] 任天祥,伍宗华,汪明启,等.近十年化探新方法新技术研究进展[J].物探与化探,1997,21(6):411-417.
    [62] 施俊法,向运川,王春宁,等.区域地球化学异常空间分形结构及其意义——以浙江省诸暨地区区域地球化学数据为例[J].矿物学报,2000,20(3):68-72.
    [63] 史长义,张金华,黄笑梅,等.子区中位数衬值滤波法及弱小异常识别[J].物探与化探,1999,23(4):250-257.
    [64] 史长义.化探数据解释推断的新方法——E D A技术[J].国外地质勘探技术,1991,(1):38-41.
    [65] 史长义.勘查数据分析(EDA)技术的应用[J].地质与勘探,1993,(11):52-58.
    [66] 史长义.异常下限与异常识别之现状[J].国外地质勘探技术,1995,(3):19-25.
    [67] 宋谢炎,侯增谦,汪云亮,等.峨眉大火成岩省的岩石地球化学特征及时限[J].地质学报,2001,75(4):498-506.
    [68] 宋谢炎,王玉兰,曹志敏,等.峨眉山玄武岩、峨眉地裂运动与幔热柱[J].地质地球化学,1998.1:47-52.
    [69] 宋谢炎,侯增谦,汪云亮,张成江,曹志敏,李佑国.峨眉山玄武岩的地幔热柱成因[J],矿物岩石,2002,22(4):27-32.
    [70] 宋谢炎,张成江,胡瑞忠,钟宏,周美夫,马润则,李佑国.峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系[J],矿物岩石,2005,25(4):35-44.
    [71] 宋谢炎,曹志敏,罗辅勋,朱廷国,李佑国,陈加忠.四川丹巴杨柳坪铜镍铂族元素硫化物矿床成因初探[J].成都理工大学学报(自然科学版),2004.31(3):256-266.
    [72] 孙辉,汪治国.区域化探异常快速检查评价工作若干问题浅析[J].地质与勘探,1997,33(4):41-45.
    [73] 汤中立,钱壮志,姜常义,等.中国镍铜铂岩浆硫化物矿床与成矿预测[M].北京:地质出版社.2006.
    [74] 汤中立,闫海卿,焦建刚,李小虎.中国岩浆硫化物矿床新分类与小岩体成矿作用[J].,矿床地质.2006.25(1):1-9.
    [75] 唐宾.GIS支持下的金属矿产成矿预测简介广西地质[J].2000,13(1):69-71.
    [76] 唐永成,何义权,王永敏,等.GIS应用于安徽东部地区金矿资源评价研究[M].北京:地质出版社,2000.
    [77] 陶琰,罗泰义,高振敏,朱丹.西南暗色岩铜镍硫化物矿化岩体与峨眉山玄武岩的关系——以云南金宝山岩体为例[J].地质论评.2004.52(1):9-15.
    [78] 涂光炽.初议铂族元素成矿与找矿问题[J].有色金属矿产与勘查,2000,9(2):1-2.
    [79] 王登红,楚萤石,罗辅勋,等.四川杨柳坪Cu-Ni-PGE富矿体的成因及意义[J].地球学报,2000,21(3):260-265.
    [80] 王登红,屈文俊,李纯杰,等.四川会理大岩子铀钯矿的地质地球化学特征及找矿前景浅析[J].地质论评,2006,52(2):219-223.
    [81] 王登红,应汉龙,骆耀南,等.论与布什同尔德杂岩体有关的铀族元素-铬铁矿矿床成矿系列及其对中国西南部的意义[J].地质与资源,2002,11(4):244-249.
    [82] 王登红,骆耀南,付德明等.四川杨柳坪Cu-Ni-PGE矿区基性超基性岩的地球化学特征及其含矿性[J].地球学报.2001,22(2):135-140.
    [83] 王和胜.化探异常筛选及查证工作方法[J].物探与化探,1998,4:277-284.
    [84] 王振荣.四川攀西拼贴构造[J].成都理工学院学报.1996,23(1):78-84.
    [85] 吴景勤.GPS发展近况与趋势[J].冶金地质动态,1997,(2):17-18.
    [86] 吴锡生,纪宏金,陈明,等.化探数据处理的发展,现状与趋势[J].物探化探计算技术,1994,16(1):87-92.
    [87] 吴香尧,骆耀南.四川石棉田湾磨西剪切带的变形特征及其运动学分祈[J].成都理工学 院学报,1998,25(4):511-517.
    [88] 肖克炎,张晓华.成矿预测中证据权重法与信息量法及其比较[J].物探化探计算技术,1999,21(3):223-225.
    [89] 肖克炎,朱裕生,张晓华,等.矿产资源评价中的成矿信息提取与综合技术[J].矿床地质,2000,18(4):379-384.
    [90] 谢荣举,何继善,彭省临,等.地理信息系统在找矿预测中的应用[J].湖南地质,2000,19(1):58-62.
    [91] 谢学锦.勘查地球化学:发展史·现状·展望[J].地质与勘探,2002,38(6):1-9.
    [92] 谢学锦.中国化探走向,2000年[J].物探与化探,1992,16(2):81-85.
    [93] 熊光楚.矿产预测与预测标志的选择[J].有色金属矿产与勘查,1996,5(1):42-47
    [94] 徐兴旺,蔡新平.隐伏矿床预测理论与方法的研究进展[J].地球科学进展,2000,15(1):76-83.
    [95] 薛顺荣,胡光道,丁俊,等.成矿预测研究现状及发展趋势[J].云南地质,2001,20(4):411-416.
    [96] 严冰,阳正熙,王小春,等.证据权法在四川宁南地区铅锌成矿预测中的应用[J].世界地质,2005,24(3):253-258.
    [97] 杨大宏,刘俊思,曾祥贵,等.四川会理大岩子铂矿成矿地质特征及找矿标志[J].四川省地质学报,2005,25(4):208-214.
    [98] 杨武年,乐光禹.恢复区域构造应力场的新方法[J].科学通报,1991,36(12):931-934.
    [99] 杨武年,乐光禹.金佛山菱形构造格局区域变形场和应力场遥感图像解析[J].成都理工学院学报,1994,21(1):99-106.
    [100] 杨武年,李永颐,易显志,等.遥感信息量化处理在西昌地区构造解析及油气远景预测中的应用[J].国土资源遥感,1994,21(3):63-70.
    [101] 杨武年,廖崇高,濮国梁,等.数字区调新技术新方法—遥感图像地质解译三维可视化及影像动态分析[J].地质通报,2003,(1):60-64.
    [102] 杨武年,濮国梁,郑平元,等.长江三峡库区SPOT、ERS-SAR、RADARSAT和LANDSAT TM多时相遥感图像数字处理和地质灾害信息提取[A].《第三届海峡两岸山地灾害与环境保护研讨会》大会报告[C].台湾大学,2001.
    [103] 杨武年,朱章森.成矿环境遥感信息场分层解析与无模型法及其意义[J].理工科技新进展.成都:四川科学技术出版社.1996,252-255.
    [104] 杨武年,朱章森.遥感构造信息场“分层”解析与无模型矿产预测的理论、方法及其意义[M].中国数学地质(6).北京:地质出版社,1995.
    [105] 杨武年,朱章森.遥感信息场分层解析与构造应力场定量研究,地质学报,1997,71(1):87—96.
    [106] 杨武年,朱章森.遥感信息场分层解析与构造应力场定量研究[J].地质学报,1997,71(1):86-96.
    [107] 杨武年,,丁纯勤,王大可,等.TM正射遥感影像地图在四川南江地区区调研究及成矿预测中的应用[J].地球科学-中国地质大学学报,1998,23(2):188-192.
    [108] 杨武年.川南区域构造变形及应力场遥感图像定量解析[J].遥感学报,2001,5(1):62-68.
    [109] 杨武年.黔西六枝一朗岱地区构造格局及其应力场遥感图像解析[J].国土资源遥感,1996,28(2):21-28.
    [110] 杨中保.基于GIS的矿床空间定位预测研究:[D].中南大学,2004.
    [111] 杨自安.西部高寒山区遥感与化探信息综合找矿定位预测研究:[D].北京:中国地质大学(北京),2005.
    [112] 姚家栋.西昌地区硫化物铜(铂)镍矿床成因[M].重庆:重庆出版社,1988.
    [113] 於祟文.地球化学系统复杂性的探索[J].地球科学,1994,19(3):283-286.
    [114] 喻安光,郭建强.扬子地台西缘韧性剪切带对金矿的控制特征[J].四川地质学报,1997,17(4):262-268.
    [115] 张成江,李晓林.峨眉山玄武岩铀族元素地球化学特征[J].矿物岩石,1998,14(3):299-304.
    [116] 张成江,刘家铎,刘显凡,等.峨眉火成岩省成矿效应初探[J].矿物岩石,2004,24(1):5-9.
    [117] 张成江,汪云亮,李晓林,等.新街镁铁-超镁铁侵入体的铂族元素地球化学特征[J].1998,27(5):458-466.
    [118] 张宏伟,杨武年.多源信息综合分析在新疆伊吾地区成矿预测中的应用[J].物化探计算技术,2000,22(4):340-345.
    [119] 张洪,刘宏云,陈方伦,等.铂—钯区域地球化学勘查[J].地球化学,2002,31(1):55-65.
    [120] 张鸿翔,徐志方,马英军,刘丛强.大陆溢流玄武岩的地球化学特征及起源[J].地球科学.2001,26(3):261-268.
    [121] 赵传冬.贵州西部铂、钯背景值及对找寻铂、钯矿的启示[J].贵金属地质.2000,9(4):220-222.
    [122] 赵鹏大,陈永清,刘吉平,等.地质异常成矿预测理论与实践[M].北京:中国地质大学出版社,1999.
    [123] 赵鹏大,池顺都.查明地质异常:成矿预测的基础[J].高校地质学报,1996,12(4):361-373.
    [124] 赵鹏大,池顺都.当今矿产勘探问题的思考[J].地球科学,1998,23(1):70-74.
    [125] 赵文武,东野光亮,张银辉,等.3S技术集成及其应用研究进展[J].山东农业大学学报:自然科学版,2001,32(2):S234-238.
    [126] 赵震宇,王世称,需令顺,等.陕南地区金矿床综合信息预测[J].吉林大学学报:地球科学版,2004,34(2):287-291.
    [127] 赵支刚,刘俊思,杨大宏,何端臣,杨铸生,葛茂先.四川攀西地区铂族金属矿床成矿地质条件及找矿前景[J].四川地质学报.2005.25(3):141-146.
    [128] 郑建斌.峨眉山玄武岩PGE富集机理——兼论陆海玄武岩PGE成矿作用差异[D].青岛:中国海洋大学,2004.
    [129] 郑玉清,王建琼.滇东地区铂钯无模型定量成矿预测与评价[J].地质与勘探,2004,40(3):20-25.
    [130] 钟宏,朱维光,漆亮,周美夫,宋谢炎,张贻.2006.攀西地区峨眉山玄武岩的铂族元素地球化学特征[J].科学通报.51(1):1297-1304.
    [131] 周永峰.物化探异常的优选[J].广西地质,1999,12(3):37-42.
    [132] 朱华平,张德全.区域化探异常的地球化学勘查评价方法技术进展综述[J].地质与勘探,2003,39(2):25-38.
    [133] 朱有光,李泽九,胡以铿,等.区域地球化学异常系统评价的思路与方法[J].地质科技情报,1997,16(2):97-103.
    [134] 朱裕生,肖克炎.成矿预测方法[M].北京:地质出版社,1997.
    [135] 朱章森,杨武年.遥感信息场“分层”解析与无模型预测法[J].物化探计算机技术,1994,16(4):328-337.
    [136] 朱章森,朱垒.矿床定量预测理论与方法体系[J].成都理工学院学报:数学地质专刊,1998,25:1-7.
    [137] Agar. R. A, Coughlin. Gold and base metal exploration project generation using Landsat TM data and spectral angle mapping for specific alteration styles in the Peruvian Andes[J]. International Geoscience and Remote Sensing Symposium (IGARSS), 2001(6): 2498-2500.
    [138] Allegre C J, Lewin E. Scaling laws and geochemical distribution[J]. Earth and Planetary Science Letter, 1995, 132: 1-13.
    [139] Astaras, T. Present state of the remote sensing applications to geological sciences in Greece. (Univ of Thessaloniki) Source[J]. International Journal of Remote Sensing, 1994 (15): 1251-1258.
    [140] Barnes, S. J. and Maier W. D. The fractionation of Ni, Cu and the noble metals in silicate and sulfide liquids, Dynamic Processes in Magmatic Ore Deposits and Their Application to Mineral Exploation [M]. Edited by R. R. Keays, Lesher C.M., Lightfoot P. C., and Farrow C. E. G., Geological Association of Canada, Canada, 1999, 69-106.
    [141] Brugmann, G. E., Naldrett, A. J. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril'sk region, Russia[J]. Geochimica Cosmochimica Acta, 1993, 57: 2001-2018.
    [142] Chavez P S, Berlia G L, Sasers L B, et al. Statistical Method for Selecting Landsat MSS Ratios[J]. Joural of Applied Photographic Engineering. 1982, (8): 23-30.
    [143] Chavez P S, Guptill S C, Bawell J A. Image processing Techniques for Thematics Mapper Data[C]. Technical Papers. 50th Annual meeting of the American Society of Photogrammetry. 1984, (2): 728-742.
    [144] Cheng Hengxin, XieXuejing, YanGuangsheng, et al. Platinum and Palladium Abundances in Floodplain Sediments and Their Geochemical Provinces[J]. Chinese Journal of Geochemistry, 1999, 18(1): 18-24.
    [145] Cheng Q M, Agterberg E P, Ballantyne S B, et al. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51: 109-130.
    [146] Cheng Q. Interpolation by means of multifractal, kriging and moving average techniques [A]. In: Proceedings of GAC/MAC meeting GeoCanada2000 [C]. Canada: Geological Association of Canada, 2000. [5]. Multifractality and spatial statistics.
    [147] Cheng Q. Multifractal interpolation [A]. In: Lippard S J, Naess A, Sinding2Larsen R, eds. Proceedings of the Fifth Annual Conference of the International Association for Mathematical Geology [C]. Yrondheim, Norway: [s.n.], 1999, 245-250.
    [148] Cheng Q. Weights of evidence modeling of flowing wells in the Greater Toronto Area[J]. Canada. Natural Resources Research, 2004, 13(2): 77-86.
    [149]Claude J. Allegre, Eric Lewin, et al. Scaling laws and geochemical distributions[J]. Earth and Planetary Science Letters, 1995, 132: 1-13.
    [150]Czamanske G.K, Zen'ko T.E. Petrography and geochemical characterization of ore-bearing intrusions of the Noril'sk Type, Sibrian: with discussion of their origin[J], Shigen Chishitsu 1995, Special issue 18:1-48.
    [151]E.C Grunsky, B.W. Smeeb. The differentiation of soil types and mineralization from multi-element geochemistry using multivariate methods and digital topography [J]. Journal of Geochemical Exploration, 1999, 67: 287-299.
    [152]Gerd Rantitsch. Geochemical exploration in a mountainous area by statistical modeling of polypopulational data distributions[J] . Journal of Geochemical Exploration 2004, 82: 79-95.
    [153]Hamlyn, P.R., Keays R.R. Sulphur saturation and second-stage melts: application to the Bushveld platinum metal deposits [J]. Econ. Geol, 1986, 81: 1431-1445.
    [154]Hord R.M. Remote Sensing Methods and Application [J]. John Wiley & Sons, 1986: 139-147.
    
    [155]Hornsby.John K, Harris.J.R. Application of remotely sensed data to geologic exploration using image analysis and geographic information systems [J]. ASTM Special Technical Publication, 1992,(1126): 155-171
    [156]Huadong Guo.Remote sensing in China: Techniques and applications [J]. International Geoscience and Remote Sensing Symposium (IGARSS), 1997(4): 1978-1980.
    [157]J.Haslett, G.M.Power. Interactive computer graphics for a more open exploration of stream sediment geochemical data [J]. Computer &Geosciences, 1995, 21(1): 77-87.
    [158]James E.Mungall. Exploration for Platium-Group Element Deposits [M. Mineralogical Association of Canada Short Course 35, Oulu, Finland, 2005.
    [159]JIANG Xiao-yu, GAO Zhu-yun, ZHOU Li-wei, et al. The Application of Wavelet Transform on Merging Multi-spectral Image[J]. Journal of Electronics, 1997, (8): 65-71.
    [160]Keays R.R. The role of Komatiitic and picritic magmatism and S-saturation in the formation of ore deposits [J]. Lithos. 1995, 34: 1-18.
    [161]Keays R.R., Lesher C.M., Lightfoot P.C. et al. Dynamic Processes in Magmatic Ore Deposists and their Application in Mineral Exploration [J]. Geological Association of Canada, 1999, 13:477.
    [162]Kruse, Fred A. Remote sensing and geographic information systems. Geological mapping, mineral exploration, and mining (Christopher A. Legg)[J], Economic Geology and the Bulletin of the Society of Economic Geologists,, 1993( 88): 1289.
    [163]Liang-Ming Liu, Sheng-Lin Peng. Prediction of hidden ore bodies by synthesis of geological, geophysical and geochemical information based on dynamic model in Fenghuangshan ore field, Tongling district[J], China. Journal of Geochemical Exploration. 2003, 81: 81-98.
    [164]Lightfoot, P.C. and Naldrett A.J. Geological and geochemical relationships in the Voisey's Bay intrusion, Nain Plutonic Suite, Labrador, Canada, Dynamic Processes in Magmatic Ore Deposits and Their Application to Mineral Exploation [M]. Edited by Keays R. R., Lesher C.M., Lightfoot P.C, and Farrow C.E.G., Geological Association of Canada, Canada, 1999, 1-30.
    [165]Mandelbrot B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 156: 636-638.
    [166]Maria. Economou-Eliopoulos. Platinum-group element distribution in chromite ores from ophiolite complexes_implications for their exploration.[J]. Ore Geology Review, 1996, 11: 363-381.
    [167]Mario A, Goncalves, Antonio Mateus, et al. Geochemical anomaly separation by multifractal modeling[J]. Journal of Geochemical Exploration, 2001, 72: 91-114.
    [168]McDonough, W.F. Constrains on the composition of the continental mantle [J]. Earth Planet. Sci. Lett., 1990, 101: 1-18.
    [169]Naldrett A.J, Fedorenko V.A., Lightfoot, P.C, et al. Ni-Cu-PGE deposits of the Noril'sk region, Siberia: their formation in conduits for flood basalt volcanism: transaction of the Intrusion of Mining and Metallurgy, Appl[J]. Earth Sci. B, 1995, 104: 18-36.
    [170]Naldrett, A.J. and Lightfoot P.C. Ni-Cu-PGE deposits of the Noril'sk region, Siberian: their formation in conduits for flood basalt volcanism, Dynamic Processes in Magmatic Ore Deposits and Their Application to Mineral Exploation [M]. Edited by R. R. Keays, CM. Lesher, P.C Lightfoot, and C.E.G. Farrow, Geological Association of Canada, Canada, 1999, 195-250.
    
    [171]Naldrett, A.J. Would-class Ni-Cu-PGE deposits: key factors in their genesis[J]. Mineralium Deposita, 1999, 34: 227-240.
    [172]Naldrett, A.J., Fedorenko, V.A., Lightfoot, P.C, Kunilov, V.I., Gorbachev, N.S., Doherty, W., and Johan, Z. Ni-Cu-PGE deposits of the Noril'sk region, Siberia: their formation in conduits for flood basalt volcanism: transaction of the Intrusion of Mining and Metallurgy [J]. Appl. Earth Sci. B, 1995, 104: B18-B36.
    [173]Peter Filzmosera, Robert G. Garrettb, Clemens Reimann,et al. Multivariate outlier detection in exploration geochemistry[J]. Computers & Geosciences, 2005. 31: 579-587.
    [174]Song X Y. Geochemistry of Permian Flood Basalts and Related Ni-Cu-(PGE) sulfide-bearing sills in Yangliuping, Sichuan Province, China[D]. Ph D degree thesis at The University of Hong Kong, 2004.
    
    [175]Turcotte DL. Fractal in geology and geophysics [J]. pure Appl Geophys, 1989, 131: 171-196.
    [176]Wald L, Ranchin T, Mangolini M,et al. Fusion of Satellite Images of Different Spatial Resolutions[J]. Assessing the Quality of Resulting Images. PE&RS. 1997.
    [177]White R.S, McKenzie D. Mantle plumes and flood basalts[J]. Geophys. Res, 1995. 100(17): 543-585
    [178]William F, Cannona, Laurel G,et al. Some statistical relationships between stream sediment and soil geochemistry in northwestern Wisconsin-can stream sediment compositions be used to predict compositions of soils in glaciated terranes ?[J]. Journal of Geochemical Exploration, 2004, 81: 29-46.
    [179]Wunian YANG , Guoliang PU , J. P. PARIS F, et al. Applications of theOrthophotomaps and Fusion of Landsat TM, SPOT and SAR Images in the Studies of the Events to Stop Up WaterBody and Ecological Environment in The Yangtze Three Gorges Project Region (China)[A].. William L. et al., Editors: Proceedings of SPIE' s Second International Asia-Pacific Symposium on RemoteSensing of the Atmosphere, Environment and Space Hyperspectral Remote Sensing of the Land andAtmosphere[C]. 9-12, Oct. 2000, Sendai, Japan, 4151: 189-196, 2001-SPIE.USA.
    
    [180]Wu-Nian YANG, Yu-lan WANG, Zhang-sen Zhu, et al. A New Theory and Method for Non-model Ore-Deposit Prediction: Phase-Separation Analysis of Remote Sensing Information Field of Metallogenetic Environment, Stephen G. Eds.: Proc, of SPIE's Third Inter. Asia-Pacific Sym. on RS of the Atmo[J]. Envi. and Space "Image Processing and Pattern Recognition in Remote Sensing" , 4898: 57-64, 2003-SPIE.USA.
    
    [181]Wunian YANG Zhengquan CUI , F. CAUNEAU,et al. Digitalprocessing and information extraction of the remote sensing images in the Yangtze Three Gorges Project region,China[A]. Towards Digital Earth, Proceedings of the International Symposium on Digital Earth[C]. Beijing, Science Press, 1999:1008 - 1020.
    
    [182]Xie Xuejing, Liu Dawen, Xiang Yunchuan, et al . Geochemical blocks for predicting large ore deposits-concept and methodology[j]. Journal of Geochemical Exploration .2004, 84: 77-91.
    
    [183]Yang Wunian, Cauneau F., Paris J.-P, et al. Fusion of SAR and SPOT images for the detectionof geological features over the Three Gorges Dam site, China[A]. In Proceedings of the third conference Fusion of Earth data: merging point measurements, raster maps and remotely sensed images, Sophia Antipolis[C]. France,January 26-28, 2000, T. Ranchin and L. Wald Editors, published by SEE/URISCA, Nice, France: 137-142.
    
    [184] Yang Wunian, Zhu Zhangsen. The theory and method of Phase-separation analysis of remote sensing information field of metallogenetic environment and nonmodel ore-deposit prediction. Proceedings of the 30th International Geological Congress. VSP[C]. International Science Publishers, The Netherlands. 1997.
    
    [185]Yang Wunian. Phase-separation analysis of remote sensing images, a new method for determining regional tectonic stress fields. Proceedings of the 30th International Geological Congress. VSP, International Science Publishers, The Netherlands. 1997.
    
    [186]Yang Wunian: Separate analysis of remote sensing information of structures of different geological periods and quantitative study of corresponding tectonic stress fields[J]. ACTA GEOLOGICA SINICA, 1997, 71(3). 44-355
    
    [187]Zhao P D, Meng X G. Geological anomalies and mineral prediction progress in geology of china. Beijing[M]. Beijing: Geological Publishing House, 1992.166-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700