近地轨道航天器编队飞行控制与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器编队飞行是一种新的航天器空间运行模式,凭借其巨大的技术优势、广阔的应用前景,从诞生之初就倍受青睐,被称为代表未来航天发展趋势的技术。同时,航天器编队飞行技术本身面临着巨大的技术挑战,在动力学、控制与应用方面有很多问题等待研究。
     基于近地轨道(LEO)的优良特性和广泛应用,本文以近地轨道航天器编队飞行为研究背景,对航天器编队动力学问题、编队捕获与机动问题、构形保持与重构问题以及航天器编队飞行应用于InSAR测量的优化设计与协同控制问题进行了较为系统和深入的研究,并对航天器编队飞行应用于局域轨道封锁的方式与能力进行了探讨。主要研究内容与结论有:
     1.在航天器编队动力学分析中,推导出了引力摄动作用下稳定构形存在的约束条件,提出J_2摄动稳定构形设计方法——基于三轴振动同步的构形设计;根据航天器轨道摄动理论推导出描述J_2摄动影响下编队构形长期运动的解析表达式,其可信性得到仿真验证。
     2.研究了基于冲量作用的编队捕获控制策略。提出两次径向控制冲量与一次轨道面法向控制冲量组合以及三次沿迹向控制冲量与一次轨道面法向控制冲量组合实现编队构形捕获的两种控制策略,并由仿真实例表明该方法简便且有效。
     3.构建了编队构形保持控制的一般性框架结构,对使用不同发动机推力模型的构形控制效果进行分析。理论推导得出了一阶意义下脉冲推力、连续变推力和继电型推力三种推力模型在构形控制中作用等效的结论,给出了推力模型转换方法。
     4.研究基于微推力和简单四冲量控制的编队构形重构技术。提出一种新的基于微推力控制作用的航天器编队构形重构方案,给出构形重构的两种底层控制实现方法,推导出所需速度冲量上限的估算表达式,把简单构形重构问题归结为代数方程的求解问题,把复杂构形重构问题表达成一般分配问题,并应用蚁群算法进行求解:提出基于简单四冲量(三次沿迹冲量与一次轨道面法向冲量)的构形重构底层控制方法,给出已知始末构形参数求解控制冲量大小与施加时机的数学表达式,把总燃料消耗表达成构形参数形式,并将其应用于求解复杂编队的构形重构问题。仿真表明这些方法有效且各有优点。
     5.首次把基于主矢量理论的多冲量最优控制方法应用于航天器编队的轨道机动控制,为降低单次冲量值而应用小推力发动机,提出了多冲量轨道机动路径规划方法。
     6.以面向全球DEMs测量的主SAR卫星带伴随航天器编队的InSAR系统为研究背景,提出全球一重瞬时寻访有效覆盖的总要求,给出航天器编队轨道与构形需满足的覆盖约束条件和两种覆盖方式,研究了渐近式构形调整的优化问题,构建了满足InSAR编队系统构形与轨道优化设计的数学模型和逻辑结构图,给出模型的简化和求解方法。
     7.研究主SAR卫星带伴随航天器编队的InSAR系统中编队构形与姿态的协同控制问题。给出协同控制的框架结构图,设置了轨道协同规划器与姿态协同规划器,明确了解决思路,从构形规划、姿态规划、构形与姿态协同控制三方面具体地阐述了协同控制方法并进行仿真计算。
     8.探讨利用航天器编队实现局域轨道封锁的具体方式,提出“摧毁型”航天器编队和“干扰型”航天器编队的概念;分别研究基于冲量控制和微推力控制方式的航天器编队局域轨道封锁能力,仿真表明携带总质量20%燃料的航天器编队至少可以实现周围200km以上距离的局域轨道封锁。
     总之,本文以理论分析与仿真计算相结合的方式,对近地轨道航天器编队飞行的动力学、控制与应用进行了有益的研究和探讨,提出了若干解决编队控制与应用问题的方法,对于其它轨道上的航天器编队飞行的相关研究也具有借鉴意义,将为我国分布式航天器技术的理论研究和实际应用提供技术参考。
For its advantages in technology and its vast field of application, Spacecraft formation flying(SFF), a new mode of spacecrafts motion., has been a hot point since it appeared and is called as a kind of technology that representing the developing trend of space technology. At the same time, there are a lot of challenges in dynamics, control and application.
     Based on the excellent feature and the wide application of low earth orbit (LEO), the Problems about SFF in LEO, including formation design and dynamics analysis with perturbations, formation establishing, formation maintenance and reconfiguration problem, whole formation orbit maneuvers, design and optimization and coordinated control of SFF system for InSAR measurement, are systematically studied in the dissertation. What's more, there is a discussion on the method and the ability of local space control with SFF. The main contents are as follows:
     1. In the analysis of formation dynamics, the orbital constraints of stable formation are provided considering the gravitational perturbations. A method based on three orthogonal directions synchronized to design formation is presented. Based on spacecraft orbit theory, expressions to describe formation secular movement considering the J_2 perturbation are educed. It is proved to be in a high precision with numerical simulations.
     2. The method to establish formation with impulses is studied. Two approaches to establishing SFF are provided: one is to utilize the impulses in radial direction and in cross-track direction, the other is to utilize the impulses in along-track direction and in cross-track direction. The methods are proved simple and practical with simulations.
     3. The basic frame of formation maintenance is structured and the formation control effect with different thrust models is analyzed. It is theoretically proved that three models of thrust—impulse thrust, continuous thrust and Bang-Bang thrust are equivalent in formation control. The method of transformation among the thrust models is also presented.
     4. Reconfiguration of SFF with micro-thruster and simple four-impulses is discussed respectively. A novel idea and two corresponding low level control methods with continuous micro-thrust to reconfigure are raised, and two low level control methods are provided, and the expressions estimating fuel consumed (ΔV budged) are educed. Then, the reconfiguration problem of simple SFF comes down to solving algebra equations, while the reconfiguration problem of complex SFF are expressed to general assignment problem (GAP), and the best solution can be obtained with ant system (AS) algorithms. At last, a low level control method with simple four-impulses is presented, and the magnitude and the time of control impulses are expressed as formation parameters. All the upper methods are applied to the reconfiguration example of SFF with 10 spacecrafts. Simulation results demonstrate the efficacy of the proposed approachs.
     5. The multi-impulse method of orbit maneuvers based on the primer vector theory is applied to maneuvering problem of SFF for the first time. To avoid impulses' being too large, the idea of path-planning for multi-impulse orbit maneuvers of satellite formation is presented, and numerical simulations show that the method provided here is simple and practical.
     6. Considering spaceborne Interferometric Synthetic Aperture Radar (InSAR) systems as the application of SFF for achieving highly accurate digital elevation models (DEMs) on a global scale, the requirement of Global Single Instantaneous Access Effective Coverage (GSIAEC) and some restrictions on orbit are put forward. Thus two ideas about coverage are provided. Based on a new technique of adjusting and controlling formation, the whole model of design and optimization of formation and orbit of SFF is summed up. A logic structure discovers the essence, and simulation results show that the method can solve the problem and be of general meaning.
     7. The coordination control of formation and attitude of concomitant satellite formation in spaceborne InSAR system is studied. The coordination architecture with an orbit coordinator and an attitude coordinator is presented, which illustrates the approach to the coordination problem. Then, formation planning methods, attitude planning methods and laws of coordination control are respectively studied. At last, numerical simulations indicate the architecture of coordination control is feasible.
     8. The methods to control local space with SFF are discussed. Two kind of application concept of SFF in space orbit blocking, which are destroying SFF and disturbing SFF. The abilities to control local space with SFF based on impulse control and micro-thruster control are explored respectively. Results show that SFF with 20% mass of fuel can control space in a range of 200km at least.
     In conclusion, by analyzing and simulating, it mainly studies the problems in dynamics, control and application of SFF in the dissertation and proposes some methods on the control and the application of SFF, which can provide ideas for the study of SFF in other orbits, and be of some help to the development of distributed spacecraft system (DSS) of china.
引文
[1]闻新,马文弟,周露.小卫星编队飞行的应用模式分析及展望.中国航天:2005,0.
    [2]http://www.aiaa.org/tc/sos/ws2001/docs/Distributed_Spacecraft_Systems_(Jesse_Leitner).pdf
    [3]Beichman C.A.,Wooif N.J.,and Lindensmith C.A.The terrestrial planet finder:A NASA origins program to search for habitable planets.JPL Publication 99-3,May 1999.
    [4]美国航天司令部长期规划--2020年设想.国家高技术航天领域专家委员会.
    [5]贾俊明.太空作战研究.国防大学博士论文2000
    [6]http://www.vs.afrl.af.mil/VSD/TechSat21/
    [7]Kim Luu,et al..University Nanosatellite Distributed Satellite Capabilities to Support TechSat 21.AIAA/USU Small Satellite Conference,Logan UT,23-26 Aug 99
    [8]Maurice Martin,Howard Schlossberg,Joe Mitola,Dave Weidow,Andrew Peffer,Richard Blomquist,Mark Campbell,Christopher Hall,Elaine Hansen,Stephen Horan,Chris Kitts,Frank Redd,Helen Reed,Harlan Spence,Bob Twiggs.University Nanosatellite Program.IAF SYMPOSIUM,REDONDO BEACH,CA,APRIL 19-21,1999
    [9]http://cloudsat.atmos.eolostate.edu/
    [10]M.Martín-Neira,C.Mavrocordatos,E.Colzi,Study of a Constellation of Bistatic Radar Altimeters for Mesoscale Ocean Applications.IEEE Trans.on Geosc.and R.S.,36,1898-1904,1998.
    [11]http://www.mdacorporation.com/news/pr/pr2002021401.html
    [12]http://www.weblab.dlr.de/rbrt/GpsNav/Prisma/Prisma.html
    [13]http://www.space.com/missionlaunches/missions/eol_sat_001114.htm
    [14]R.Sedwick,D.Miller,and E.Kong.Mitigation of Differential Perturbations in Synthetic Apertures Comprised of Formation Flying Satellites.Advances in Astronautical Sciences:Space FiightMechanics 1999,Vol.102,Pt.1,Univelt,San Diego,CA,1999,pp.323-342.
    [15]S.Schweighart.Developement and Analysis of a High Fidelity Linearized J_2 Model for Satellite Formation Flying,Master's Thesis,Department of Aeronautics and Astronautics,Massachusetts Institute of Technology,June 2001.
    [16]Gokhan Inalhan,and Jonathan P.How.Relative Dynamics and Control Of Spacecraft Formations In Eccentric Orbits.Journal of Guidance,Control,and Dynamics.Vol.25,No.1,January-February 2002
    [17]张玉锟,戴金海.编队卫星群的运动分析与轨道设计.微小卫星编队飞行及其应用论文集.北京,2000.
    [18]H.Schaub,and K.Alfriend,J_2 Invariant Relative Orbits for Spacecraft Formations.Flight Mechanics Symposium,Paperl 1,NASA Goddard Space Flight Center,Greenbelt,MD,May 1999.
    [19]张玉锟.卫星编队飞行的动力学与控制技术研究[工学博士论文].国防科技大学研究生院,2002.
    [20]曾国强.编队飞行航天器协同控制理论与方法研究[博士后出站报告].国防科技大学航大材料与工程学院,2002.
    [21]H.Schaub.Spacecraft Relative Orbit Description Through Orbit Element Differences.14th U.S.National Congress of Theoretical and Applied Mechanics,Blacksburg,Virginia,June 23-28,2002.
    [22]H.Schaub.lncorporating Secular Drifts into the Orbit Element Difference Description of Relative Orbits in Proceedings of AAS/AIAA Space Flight Mechanics Meeting,Ponce,Puerto Rico,Feb.9-13,2003,pp.239-258.
    [23]S.R.Vadali,and S.Vaddi.Orbit Establishment For Formation Flying of Satellites.Advances in the Astronautical Sciences,Vol.105,Part 1,2000,pp.181-194,AAS 00-111.
    [24]S.R.Vadali,H.Schaub,and K.T.Alfiend,.,Initial Conditions and Fuel-Optimal Control for Formation Flying of Satellites,Proceedings of the AIAA GN&C Conference,Aug.9-12 1999.Paper No.A IAA 99-4265.
    [25]H.Schaub,K.T.Alfriend,Impulsive Spacecraft Formation Flying Control to Establish Specific Mean Orbit Elements.In AAS Space Mechanics Specialist Meeting,Clearwater,Florida,Jan 23-26,2000,Paper No.AAS-00-113.
    [26]Mailhe,L.Schiff,C.Hughes,S.Formation Flying In Highly Elliptical Orbits Initializing the Formation.Proceedings of the International Symposium on Space.Dynamics,Biarritz,France,CNES,June 26-30 2000.
    [27]G.Der.An Elegant State Transition Matrix.The Journal of the Astronautical Sciences,Vol.45,No.4,October-December 1997,pp.371-390
    [28]Mailhe,L.Schiff,C.Hughes.Initialization of Formation Flying Using Primer Vector Theory,in Int.Symp.Formation Flying missions.& Tech.,Toulouse,France,2002.
    [29]Ulybyshev,Y.Long-Term Formation Keeping of Satellite Constellation Using Linear Quadratic Controller.Journal of Guidance,Control,and Dynamics,Vol.21,No.1,1998,pp.109-115.
    [30]Kapila,V.,Sparks,A.G.,Buffington,J.M.,and Yan,Q.,Spacecraft Formation Flying:Dynamics and Control.Proceedings of the American Control Conference,San Diego,California,June 1999,pp.4137-4141.
    [31]H.Schaub,S.R.Vadali,J.L.Junkins and K.T.Alfriend.Spacecraft Formation Flying Control Using Mean Orbit Elements.ln AAS Astrodynamics Specialist Conference,Greenwood,Alaska,Aug.16-18,1999,Paper No.AAS 99-310.
    [32]H.Schaub,and K.T.Alfriend.Hybrid Cartesian and Orbit Element Feedback Law for Formation Flying Spacecraft.AIAA Guidance,Navigation and Control Conference,Denver,CO,Aug.2000,Paper No.2000-4131.
    [33]de Queiroz,M.S.,Kapila,V.,and Yan,Q.Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying.Journal of Guidance,Control,and Dynamics,Vol.23,No.3,2000,pp.385-390.
    [34] Tan, Z., Bainum, P. M., and Strong, A.The Implementation of Maintaining Constant Distance Between Satellites in Elliptic Orbits.AAS Spaceflight Mechanics Meeting, Clearwater, Florida, Jan. 2000,Paper No. 00-141.
    [35] Naasz, B. J.Classical Element Feedback Control for Spacecraft Orbital Maneuvers, Master's thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA,May 2002.
    [36] Bo J. Naasz, Christopher D. Karlgaardy, Christopher D. Hall. Application of Several Control Techniques for the Ionospheric Observation Satellite Formation. AAS 02-188
    [37] S. Vadali, S. Vaddi, K. Naik, K. Alfriend.Control of Satellite Formation.AIAA GN&C Conference, Aug 2001.
    [38] S.R.Vadali,S.S.Vaddi,K.T.Alfriend.An Intelligent Control Concept for Formation Flying satellites.Int.J.Robust Nonlinear Control 2002;12:97-115.
    
    [39] Wie, B.Space Vehicle Dynamics and Control.Published by AIAA, 1998, pp. 286-302.
    [40] M. Tillerson, G. Inalhan, J. How, Coordination and Control of Distributed Spacecraft Systems Using Convex Optimization Techniques, Master's Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology 2002.
    [41] M. Tillerson, J. How.Advance Guidance Algorithms for Spacecraft Formation Flying.2002 American Control Conference, Anchorage, AK, May8-10, 2002, Piscataway, NJ, Institute of Electrical and Electronics Engineers,2002.
    [42] R. W. Beard, T. W. McLain, and F. Y. Hadaegh. Fuel equalized retargeting for separated spacecraft interferometry. Proceedings of 1998 American Control Conference, Philadelphia, PA, June 1998
    [43] R. W. Beard and Fred Y. Hadaegh. Fuel Optimization for Unconstrainted Rotation of Spacecraft Formations. American Control Conference, 1999.2975-2979.
    [44] R. W. Beard, T. W. McLain, and F. Y. Hadaegh. Fuel optimization for constrained rotation of spacecraft formations. Journal of Guidance, Control and Dynamics, 2000, 23(1): 1-8.
    [45] R.W. Beard, Jonathan Lawton, Fred Y. Hadaegh, A Coordination Architecture for Spacecraft Formation Control. IEEE Transactions on Control Systems Technology,VOL. 9, NO. 6, November 2001
    [46] P. K. C. Wang and F. Y. Hadaegh.Minimum-fuel formation reconfiguration of multiple free-flying spacecraft,Univ. California, Los Angeles, ENG 97-187, Dec. 1997.
    [47] Wang, P. K. C, and Hadaegh, F.Y.Optimal Formation Reconfiguration for Multiple Spacecraft.Proceeding of the AIAA Guidance, Navigation, and Control Conference, AIAA, Reston, VA, 1998, pp. 686-696.
    [48] Irvin,D.J.Study of Linear vs. Nonlinear Control Techniques for the Reconfiguration of Satellite formations. Master's thesis Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering 2001
    [49] T. A. Lovell; S. G. Tragesser. Analysis of the Reconfiguration and Maintenance of Close Spacecraft Formations. AAS/AIAA Space Flight Mechanics Meeting Feb 9-13,2003 Ponce, Puerto Rico
    [50] Junge, O.Optimal Reconfiguration of Formation Flying Satellites. Accepted for IEEE Conference on Decision and Control and European Control Conference ECC 2005, Seville, Spain.
    [51] Guibout, V. M., and Scheeres, D. J. Formation Flight with Generating Functions: Solving the Relative Boundary Value Problem.AIAA Paper 2002-4639, Aug. 2002.
    [52] Guibout V. M., Scheeres D. J.. Solving Relative Two-Point Boundary Value Problems: Spacecraft Formation Flight Transfers Application. Journal of Guidance, Control, and Dynamics. Vol. 27, No. 4, July-August 2004
    [53] Massari M., Armellin R. and Ercoli-Finzi A..Optimal Trajectory Generation and Control for Reconfiguration Maneuvers of Formation Flying using Low-thrust Propulsion. 14~(th) AAS/AIAA Space Flight Mechanics Meeting, 8-12 February 2004, Maui, Haw
    [54] Armellin R.Massari M., Ercoli-Finzi A., Optimal Formation Flying Reconfiguration and Station Keeping Maneuvers using Low-thrust Propulsion. 18th International Symposium on Space Flight Dynamics, 11-15 October 2004, Munich, Germany
    [55] Kong, E. M. C, and Miller, D. W., Optimal Spacecraft Re-Orientation for Earth Orbiting Clusters: Applications to TechSat 21, 51st International Astronautical Congress, IAF Paper No. IAF-00-A.4.06, 2-6 October 2000.
    [56] Nadler M.R. Virtual-Formation Control Lams for Maintenance and Reconfiguration of Satellite Formation. M.S.Thesis, Faculty of Aerospace Engineering Technion-ΠT,Haifa,Israel Nov.2002
    [57] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile autonomous vehicles. AIAA J. on Guidance, Control an Dynamics, 25(1):116-129, 2002.
    [58] E. Frazzoli, M.A. Dahleh, E. Feron, and R.P. Kornfeld. A randomized attitude slew planning algorithm for autonomous spacecraft. In AIAA Conf. on Guidance, Navigation and Control,2001.
    [59] Emilio Frazzoli.Quasi-Random Algorithms for Real-Time Spacecraft Motion Planning and Coordination 53rd International Astronautical Congress The World Space Congress - 2002 10-19 Oct 2002/Houston, Texas IAC-02-A.1.01
    [60] Michael Tillerson, Louis Breger, and Jonathan P. How Distributed Coordination and Control of Formation Flying Spacecraft. International Journal of Robust and Nonlinear Control, vol 12, Issue 2-3, Feb.-Mar. 2002, p.207-242.
    [61] Michael James Tillerson Coordination and Control of Multiple Spacecraft using Convex Optimization Techniques Master of Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2002.
    [62] Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, AIAA, Reston, VA, 1999.
    [63] Haijun Shen, Panagiotis Tsiotras.Optimal Two-Impulse Rendezvous Between Two Circular Orbits Using Multiple-Revolution Lambert's Solutions.AAS/AIAA Astrodynamics Specialist Conference August 16-18,1999.
    [64]Lion,P.M.and Handelsman,M.Primer Vector on Fixed-Timelmpulsive Trajectories.AIAA Journal,Vol.6,No.l,1968,pp.127-132.
    [65]Jezewski,D.J.and Rozendaal,H.L.An Efficient Method for Calculating Optimal Free-Space N-Impulse Trajectories.AIAA Journal,Vol.6,No.11,1968,pp.2160-2165.
    [66]Gross,L.R.and Prussing,J.E.Optimal Multiple-Impulse Direct Ascent Fixed-Time Rendezvous.AIAA Journal,Voi.12,No.7,1974,pp.885-889.
    [67]白鹤峰.卫星星座的设计与控制方法研究[工学博士学位论文].国防科技大学研究生院,1999.
    [68]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.14-15.
    [69]Kong,E.M.,and Miller,D.W.Optimization of Separated Spacecraft Interferometer Trajectories in the Absence of A Gravity-WelI.SPIE's International Symposium on Astronomical Telescopes and Instrumentations,Paper no.3350-13,March 1998.
    [70]Sedwick,R.J.,Kong,E.M.C.,Miller,D.W.Exploiting Orbital Dynamics and Micropropulsion for Aperture Synthesis Using Distributed Satellite Systems:Applications to Techsat21,AIAA Defense & Civil Space Programs Conference,A1AA-98-5289,October 1998.
    [71]Kong,E.M.Optimal Trajectories and Orbit Design for Separated Spacecraft Interferometry.Master's thesis of Science at the Massachusetts Institute of Technology.November 05,1998.
    [72]Massonnet,D.,French Patent n°236910DI7306RS "Roue interférométdque",30 april 1998
    [73]Massonnet,D.,Thouvenot,E.,Ramongassie,S.,Phalippou,L.,2000.A Wheel of Passive Radar Microsats for Upgrading Existing SAR Projects.In:Proceedings of IGARSS 2000,Honolulu,Hawaii,USA.
    [74]S.Ramongassie,L.Phalippou,E.Thouvenot,D.Massonnet.Preliminary Design of the Payload for the Interferometric CartWheel,IGARSS 2000
    [75]D.Massonet.Capabilities and Limitations of the lnterferometric Cartwheel.IEEE Trans.Geosci.Remote Sensing,vol.39,no.3,2001
    [76]Fiedler H,.Krieger G,Mittermayer J.Comparison of Several Bostatic SAR Configuration for Spaceborne SAR lnterferometry,IGARSS01,2001.
    [77]Fiedler H,.Krieger G.,Mittermayer.F.Jochim,M.,Krieger,Moreira.A.Analysis of Bistatic Configurations for Spaceborne SAR interferometry,EUSAR,2002
    [78]Krieger G.,Fiedler H.,Mittermayer J.,Papathanassiou K.,and Moreira A.Analysis of Multistatic Configurations for Spaceborne SAR lnterferometry.IEE Proceedings - Radar,Sonar,Navigation,Vol.150,No.3,pp.87-96,2003.
    [79]Fiedler,H.,Krieger,G.Formation Flying Concepts.Intermediate Presentation to ESA TS-SWESA-SY-0002,Toulouse,June 2003.
    [80]Zink,M.,Krieger,G.,Amiot,T.Interferometric Performance of a Cartwheel Constellation for TerraSAR-L.Fringe Workshop,Frascati,Italy,2003.
    [81]Fiedler,H.,Krieger,G.,Jochim,F.Analysis of TerraSAR-L Cartwheel constellations - Amendment.Technical Note,DLR,Oberpfaffenhofen,November 2003.
    [82]V.Sokol.RADARSAT 2/3 Orbit Report.MacDonald Dettwiler & Associates,January 2002.
    [83]L.Brulé,H.Baeggli.RADARSAT-2 PROGRAM UPDATE.http://www.ieeexplore.ieee.org/ielS/10226/32595/01526090.pdf http://www.radarsat2.info/sartrek/issl0_03/r2 rsi iqc_article.pdf
    [84]A.Moreira et al.TanDEM-X:A TerraSAR-X Add-on Satellite for Single-Pass SAR Interferometry.1GARSS,Achorage,USA,2004.
    [85]O.Montenbruck,S.D'Amico.Space Segment Requirements for TanDEM-XFormation FIying.DLR-GSOC,TN 04-09,2004.
    [86]Simone D'Amico,Oliver Montenbruck,Christian Arbinger,Hauke Fiedler.Formation Flying Concept for Close Remote Sensing Satellites.15th AAS/AIAA Space Flight Mechanics Conference Copper Mountain,Colorado January 23-27,2005.
    [87]陈杰,周荫清,李春升.分布式SAR小卫星编队轨道设计方法研究.中国科学E辑:技术科学.2004Vol.34,No.6,pp.654-662.
    [88]刘建平,黄海风,粱甸农.主星带辅星干涉SAR编队设计约束分析.分布式航天器新概念及其应用技术研讨会论文集.北京:2004.
    [89]刘建平,梁甸农,微小卫星编队系统的干涉SAR空间基线稳定性分析.系统工程与电子技术.2005Vol.27 No.2 P.218-220.
    [90]何峰,粱甸农,董臻.主星带伴随小卫星编队SAR系统干涉测高精度与编队构形设计[J].宇航学报,2005,26(4):455-460.
    [91]黄海风,刘建平,粱甸农.主星带伴随分布式小卫星雷达系统的波束同步分析.分布式航天器新概念及其应用技术研讨会论文集.北京:2004.
    [92]黄海风,邓泳,梁甸农基于测高精度最优值的星载分布式InSAR编队构形设计方法.国防科技大学学报.2005 Vol.27 No.4 P.85-90.
    [93]黄海风,梁甸农,何峰主星带辅星编队单基线InSAR定位、测高两种方法 电子学报2005 Vol.33 No.6 P.1084-1087.
    [94]陈琪锋.飞行器分布式协同进化多学科优化设计方法研究[工学博士论文].长沙:国防科技大学研究生院,2003.
    [95]贺勇军.面向效能优化的复杂多卫星系统综合建模与仿真方法研究[工学博士论文].长沙:国防科技大学研究生院,2004.10.
    [96]P.K.C.Wang,F.Y.Hadaegh,K.Lau.Synchronized Formation Rotation and Attitude Control of Multiple Free-Flying Spacecraft.Journal of Guidance,Control,and Dynamics.Vol.22,No.1, January-February 1999.
    [97]Guang Q.Xing,Shabbir A.Parvez,David Folta.Design and Implementation of Synchronous Autonomous Orbit and Attitude Control for Multiple Spacecraft Formation using GPS Measurement Feedback.AAS/AIAAS SpaceFlight Mechanics Meeting.Clearwater,Florida,23-26 January,2000.AAS00-107.
    [98]刘林.航天器轨道理论.北京:国防工业出版社,2000
    [99]任萱.人在地球卫星轨道力学.长沙:国防科学技术大学出版社,1989.
    [100]泰晋.美军首次演练太空战.环球军事,2001,3.
    [101]袁俊.美军太空战略与太空战演习.中国航天,2001,7.
    [102]潘友木.未来十种全新作战火预测(九)--太空战.国防,2001,8.
    [103]太空战:挑战、重点与对策--本刊召集解放军专家研讨太空战趋势与对策.国际展望,2001,9.
    [104]太空战的主要兵器.了望,2001,10.
    [105]朱毅麟.美国加紧打造天基激光武器[J].国际太空,2001,10.
    [106]唐正茂.太空战也是一把双刃剑.环球军事,2002,6.
    [107]温羡峤,李英,刘海军.国外反卫星武器发展述评[J].现代防御技术,2003,3.
    [108]温羡峤,李英,刘海军.太空战及其对未来作战的影响.现代防御技术,2003,6.
    [109]黄志澄.关于太空战的认识与思考[J].国际太空,2003,6.
    [110]赵秀兰,刘汉宗.美、俄的太空战准备[J].现代防御技术,2004,1.
    [111]黄铁钢,周新初,陈军,刘亚敬.未来第四战场--太空[J].现代防御技术,2004,1
    [112]李大光 太空战.北京:军事科学出版社,2001.1
    [113]邹振宁,周芸.太空战管窥.国际太空,2004,5
    [114]洪兵.逐鹿太空:星球大战成为现实?前沿科技 http://www.scitech.people.com.cn/GB/25892/3611638.html
    [115]Nico Sneeuw,Hanspeter Schaub.Satellite clusters for future gravity field missions IAG International Symposium Gravity,Geoid and Space Missions Porto,Portugal Aug.30 - Sept.3,2004.
    [116]Dorigo,M..Parallel Ant System:An experimental study.Unpublished manuscript.1993.
    [117]M.Dorigo,& F.Glover(Eds.),New ideas in optimization.Maidenhead,UK:McGraw-Hill.
    [118]Dorigo,M.,& Gambardella,L.M..A study of some properties of Ant-Q.In H.-M.Voight,W.Ebeling,I.Rechenberg,& H.-P.Schwefel(Eds.),Proceedings of PPSN-Ⅳ,1996.
    [119]Dorigo,M.,& Gambardella,L.M.Ant colonies for the traveling salesman problem.BioSystems,43,73-81.1997.
    [120]Dorigo,M.,& Gambardella,L.M.Ant Colony System:A cooperative learning approach to the traveling salesman problem.IEEE Transactions on Evolutionary Computation,1(1),53-66.1997.
    [121]M.Dorigo,G.Di Caro,and L.M.Gambardella.Ant Algorithms for Discrete Optimization.1999 Massachusetts Institute of Technology Arti.cial Life 5:137-172 1999.
    [122]Marco Dorigo,Thomas Stutzle.The Ant Colony Optimization Metaheuristic:Algorithms,Applications,and Advances.Metaheuristics Handbook,F.Glover and G.Kochenberger(Eds.),International Series in Operations Research and Management Science,Kluwer,2001.
    [123]李士勇.蚁群算法及其应用.哈尔滨:哈尔滨工业大学出版社,2004.
    [124]刘士新,宋健海,唐加福.蚁群最优化--模型、算法及应用综述.系统工程学报,2004,5.
    [125]Taillard D.FANT:Fast ant system.Technical report IDSIA-46-98,IDSIA,Lugano,1998.
    [126]http://www.eivd.ch/ina/collaborateurs/etd
    [127]孟云鹤,尹秋岩,戴金海.SAR卫星多普勒频移偏航导引补偿效果分析[J].中国空间科学技术,2004,24(1):45-48.
    [128]任萱.现代国防高科技知识丛书--军事航天技术.北京:国防工业出版社,1999.8
    [129]杨嘉墀.航天器轨道动力学与控制.北京:宇航出版社,2002,6.
    [130]DongoWoo Gim,Kyle T.Alfriend.The State Transition Matrix of Relative Motion For The Perturbed Non-Circular Reference Orbit.AAS/AIAA Space Flight Mechanics Meeting Santa Barbara,California 11-15 February 2001.Paper AAS 01-222.
    [131]N.Philip and M.Ananthasayanam.Relative Position and Attitude Estimation and Control Schemes for the Final Phase of an Autonomous Docking Mission of Spacecrafi.Acta Astronautica,vol.52,pp.511-522,2003.
    [132]H.Pan and V.Kapila.Adaptive Nonlinear Control for Spacecraft Formation Flying with Coupled Translational and Attitude Dynamics.40th IEEE Conference on Decision and Control,Orlando,Florida,December,2001.IEEE-0-7803-7061-9/01.
    [133]K.Yamanaka.Simultaneous Translation and Rotation Control Law for Formation Flying Satellites.AIAA Guidance,Navigation and Control Conference and Exhibit,Denver,Colorado,August 14-17,2000.AIAA-2000-4440.
    [134]B.J.Naasz,M.M.Berry,H.Y.Kim,and C.D.Hall.Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints.AAS/AIAA Space Flight Mechanics Conference,Ponce,Puerto Rico,February 9-12,2003.AAS 03-100.
    [135]K.L.Makovec.A Nonlinear Magnetic Controller for Nanosatellite Applications.Master's thesis,Virginia Polytechnic Institute and State University,Blacksburg,Virginia,May 2001.
    [136]K.L.Makovec,A.J.Turner,and C.D.Hail.Design and Implementation of a Nanosatellite Attitude Determination and Control System.in Proceedings of the 2001 AAS/AIAA Astrodynamics Specialists Conference,Quebec City,Quebec,2001.
    [137]P.Tsiotras.New Control Laws for the Attitude Stabilization of Rigid Bodies.pp.316-321,13th IFAC Symposium on Automatic Control in Aerospace,Palo Alto,California,September 12-16,1994.
    [138]C.D.Hall,P.Tsiotras,and H.Shen.Tracking Rigid Body Motion Using Thrusters and Momentum Wheels.The Journal of the Astronautical Sciences,vol.50,no.3,pp.311-323,2002.
    [139] 《数学手册》编写组. 数学手册. 北京:高等教育出版社,1979
    [140] 云庆夏.进货策略.北京:冶金工业出版社. 2000,5.P148-162.
    [141] Wilson, J.M.Control of a Tethered Artificial Gravity Spacecraft. Ph.D. thesis, Stanford University, 1990
    [142] Chung, S.-J., Kong, E. M, andMiller D. W.Dynamics and Control of Tethered Formation Flight Spacecraft Using the SPHERES Testbed.2005 A1AA Guidance, Navigation and Control Conference, San Francisco, August 2005.
    [143] D.W. Miller, R.J. Sedwick, E.M. Kong, and S. Schweighart.Electromagnetic Formation Flight for Sparse Aperture Telescopes.Proceedings of the 2002 IEEE Aerospace Conference, Big Sky, MT, March 9-16,2002, IEEEAC Paper418.
    [144] E.M.C. Kong.Spacecraft Formation Flight Exploiting Potential Fields, Ph.D. thesis, Massachusetts Institute of Technology,February 2002.
    [145] H. Schaub, G. G. Parker and L. B. King.Challenges and Prospects of Coulomb Spacecraft Formations.AAS John L. Junkins Astrodynamics Symposium, College Station, TX, May 23-24, 2003, Paper No. AAS-03-278.
    [146] J. Berryman and H. Schaub.Analytical Charge Analysis for 2-Craft and 3-Craft Coulomb Formations. A AS/AIA A Astrodynamics Specialist Conference, Lake Tahoe, Aug. 7-11, 2005. Paper No. 05-278.
    [147] D.FOLTA,R.CARPENTER,C. WAGNER. Formation flying with decentralizedcontrol in libration point orbits. International Space Symposium, Biarritz, France, June. 20. 2000.
    [148] HAMILTON, N., D. FOLTA,R. CARPENTER. Formation flying satellite control around the L2 Sun-Earth libration point. AIAA/ AAS Astrodynamics Specialist Conference, Monterey, CA, August. 2002.
    [149] D. Folta and A. Hawkings. Results of NASA's first autonomous formation flying experiment: Earth-Observing-1 (EO-1). AIAA Guid., Nav., &Contr. Conf.,2002.
    [150] M. Kirschner, O. Montenbruck, and S. Bettadpur. Flight Dynamics Aspects of the GRACE Formation Flying. Interntl. Symp. On Space Flight Dynam., 2001.
    [151] Scharf, Daniel P.Hadaegh, Fred Y.PIoen, Scott R. A survey of spacecraft formation flying guidance and control (Part II): control. American Control Conference, Boston, MA, June 1,2004.
    [152] John W Dunning, et al. An overview of electric propulsion at NASA [R]. AIAA 2004-3328.
    [153] S O Tverdokhlebov, A V Semenkin, G A Popov, et al.Overview of electric propulsion activity in Russian [R].AIAA 2004-4330.
    
    [154] G Saccoccia. Electric propulsion in ESA [R]. AIAA2004-3329.
    
    [155] Roger M Myers. Overview of major US industrial electric propulsion program [R]. AIAA 2004-3331.
    [156] David T Jacobson, David H Manzella. NASA's hall thruster program [R]. AIAA 2004-3600.
    [157]尤政,张高飞.基于MEMS的微推进系统的研究现状与展望.微细加工技技术.1003.8213(2004)01-0001-08
    [158]李连军,孟云鹤,赵健康,戴金海.合成孔径雷达卫星姿态控制系统偏航导引研究[技术报告].国防科技大学航天与材料工程学院.2003.2.
    [159]K.T.Alfriend,H.Schaub and D.Gim.Gravitational Perturbations,Nonlinearity and Circular orbit Assumption Effects on Formation Flying Control Strategies.Proceedings of the Annual AAS Rocky Mountain Conference,Breckenridge,CO,Feb.2-6,2000,pp.139-158.BibTeX.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700