基于复杂网络理论的复杂系统同步控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂网络的理论研究经过近十年的发展,已经取得了令人瞩目的一些成果。复杂网络的复杂结构和动力学行为的多样性使得复杂系统的研究更具意义,也更具挑战性,复杂网络的研究也被认为是21世纪科学技术前沿战略性研究课题之一。其中,关于复杂网络系统动力学行为中同步的研究也已成为控制工程界的重要研究课题。本文在阅读现有的复杂网络有关文献的基础上,对这一研究课题进行了全面的综述,并从复杂网络理论的角度对复杂系统的同步控制问题进行了较为深入的研究。论文的主要研究内容及创新点包括如下七个方面:
     1.从复杂网络理论这一新的角度对大规模工程系统进行讨论,并分别构建了几类常见的大规模工程系统的复杂网络模型。随后,利用复杂网络理论分析了工程系统的网络拓扑特性,并在此基础上,将复杂网络系统同步方面的研究与大型工程系统的应用相结合,根据复杂网络同步理论对工程系统的动态性能进行探讨,从而为此类问题的解决提供了新的思路。
     2.针对星形耦合网络系统同步问题进行了研究。首先讨论了此类系统同步问题,发现系统达到同步与网络的耦合强度无关。本章提出了复杂网络系统可反馈同步化的概念,并研究了星形耦合网络系统的可反馈同步化问题,得到了此类系统可反馈同步化的判据。其次,讨论了采用牵制控制策略实现低阶星形网络系统的同步问题,并以充分利用网络的结构信息为基础,分别给出局部控制律和全局控制律的设计方法。最后,将之推广到高阶系统,研究了高阶非线性星形网络系统的牵制控制问题,得到了比较具体的结论,具有实际应用价值。
     3.针对最近邻耦合网络系统的同步控制进行了讨论。首先研究了此类系统达到同步的条件,发现只要节点本身的动力学行为稳定,则此类系统能够达到同步。根据第三章提出的可反馈同步化的概念,研究了最近邻耦合网络系统可反馈同步化的问题,并得到相应的判据。其次,本文利用控制作用衰减率概念,研究了最近邻耦合网络系统的牵制控制能力,并对此类网络分析了不同的牵制控制策略的有效性。随后,在此基础上,采用牵制控制策略实现此类系统的同步,并分别给出了系统局部控制律和全局控制律的设计方法。此方法充分利用了网络结构信息,从而减少了控制律设计的保守性。
     4.讨论了一类广义时滞复杂动态网络系统的同步稳定性和牵制控制问题。针对此类系统,本文首先分别给出了保守性小的连续时间时滞复杂动态网络系统和离散时间时滞复杂动态网络系统的同步稳定性条件。其次,通过对部分节点施加牵制控制作用的方法,设计分散反馈控制器,分别使得连续时间时滞复杂动态网络系统和离散时间时滞复杂动态网络系统达到同步,从而保证了整个系统的同步稳定性。随后,在此基础上,将控制器的设计问题转化为求解线性矩阵不等式(LMI)组合的凸优化问题。该问题便于利用现有的优化软件求解,也大大降低了问题求解的复杂性。
     5.针对由动力学行为不同的节点构成的异质复杂网络系统进行研究。大规模复杂系统往往根据工艺、空间或时间的不同划分为不同的子系统。根据各子系统的特点,可分别采用最适合的方式来建立模型,并据此形成由不同类型的子系统模型构成的关联系统。本文以复杂网络理论为基础,通过构建此类关联系统的网络模型,研究了使此类新颖的异质复杂动态网络系统稳定的牵制控制问题。该类复杂网络系统分别由不同模型描述的节点相互关联而成,利用牵制控制使得该类系统达到稳定。根据Lyapunov稳定性定理,分别独立地求解了对应于各节点及其关联拓扑的线性矩阵不等式(LMI),从而判断出异质复杂网络系统牵制控制的稳定性。上述方法将原问题转化为多个低维线性矩阵不等式的并行求解,大大减少计算的复杂性。
     6.利用网络结构优化的方法,研究了如何改善复杂网络系统的同步性和一致性的问题。本文首先给出了加权网络熵的定义,将之用来测量加权网络的均匀性。其次,分析了网络均匀性、一致性和同步性三者之间的关系。随后,基于此加权网络熵指标和网络的统计特性,提出了一种改善复杂网络系统一致性和同步性的结构优化方法,即通过尽可能少地增加连线来最大程度地增大复杂网络系统的一致性和同步性。该方法也为此类问题的解决提供了一个新的途径。
     7.基于复杂动态网络系统同步控制理论,研究了分布式多移动机器人的队形保持和跟踪控制问题。首先,为了估算外部向量场变化情况下的所有移动机器人的测量的平均值,每个移动机器人需测量自身运动轨迹的向量场局部值,并将之与其他邻近机器人共享。根据共享的信息,移动机器人以同步协商的合作方式控制自身运动轨迹,同时维持一定的队形。其次,研究了跟随领航者的队形控制方法。针对多机器人之间形成的两种队形(最近邻耦合网络和星形网络)进行分析,并提出了具体的移动机器人动态控制律的设计方法,可较方便地对系统的极点进行配置。最后,探讨了复杂系统同步理论在多移动机器人中的应用。
The recent decade has witnessed the great development of researches on the study on complex networks. Diversity of the structure and the dynamical behaviors of complex networks make the research of them more meaningful and more challenging. The research on the synchronization has been an important object in control engineering field. Based on the former research, the thesis gives a survey of complex networks systems on the basis of related references and deals with some issues of synchronization control of complex networks systems on a theoretical and practical background. The main contents contain the following seven parts:
     1. From the new view of complex networks large-scale engineering systems are discussed. And the models of complex networks are built for these engineering systems. Then, the properties of the networks topology of the systems are analyzed based on complex networks theory. Combining the research of the synchronization of complex networks with large-scale engineering systems, we discuss the dynamical properties of the systems. So a novel way for solving this kind of problems for dealing with large-scale systems is presented.
     2. Focusing on star-shaped complex networks systems, conditions of achieving synchronization for this kind of systems are firstly discussed in the thesis. And it is found that the conditions are not related with the coupled strength of the networks. Then the concept of capable feedback synchronization (CFS) is presented. The problem of CFS of star-shaped complex networks is investigated and the criterion of CFS is obtained. Secondly, pinning control strategy is designed to make lower-order star-shaped complex networks systems synchronized based on the structural information of the networks. The strategies of global pinning control and local pinning control are presented in this thesis. At the same time, the pinning strategy of high-order star-shaped complex networks systems is also designed. Finally, concrete conclusions are arrived which are more suitable to the application.
     3. For the nearest-neighbor coupled complex networks systems, conditions of achieving synchronization for this kind of systems are firstly discussed in this thesis and it is found the system can achieve synchronization if the dynamics of nodes are stable. Based on the definition of CFS, the problem of CFS for this kind of systems is investigated. Secondly, the concept of attenuation rate of control ability is presented. The capacity of pinning control for the nearest-neighbor coupled complex networks systems is studied. In the following, the validity of different control strategies is compared in the given coupled complex networks. Finally, the strategies of global pinning control and local pinning control are achieved for this type of complex networks systems.
     4. The problems of synchronization and pinning control for general time-delay dynamical systems are investigated. In this thesis less conservative criterions of continuous-time complex dynamical systems with time-delay and discrete-time complex dynamical systems with time-delay are obtained. We apply pinning control strategies to a small fraction of nodes. Then the decentralized feedback controllers are respectively designed to make both continuous-time complex dynamical systems with time-delay and discrete-time complex dynamical systems with time-delay synchronized. At the same time, the stability of synchronization for the two kinds of systems is guaranteed. Moreover, the problems of designing controllers are converted into solving optimal problems of a series of linear matrix inequalities. The solution can be made use of available software, which reduces the complexity.
     5. Heterogeneous complex dynamical networks are investigated, in which the dynamics of nodes are different. Complex large scale systems possess the characteristics of high dimensionality, large number of variables and strong nonlinearity. One of the effective approaches for the complex system modeling is using one hybrid interconnected model to describe the dynamics of each subsystem. This thesis focuses on pinning control of a kind of heterogeneous complex network systems, whose dynamics of nodes described by different models. Through constructing a set of independent lower-dimensional linear matrix inequalities, and solving them in parallel, a novel stability analysis method is proposed. Thus the computational complexity is greatly reduced. Computer simulation is conducted to validate the effectiveness and efficiency of the proposed method.
     6. The problem of improving the consensus and synchronizability for weighted networks of dynamic systems via adding links among them is investigated in this paper. A weighted network entropy is introduced to measure the homogeneity of the weighted networks. The relationship between the homogeneity and the consensus and synchronizability is analyzed. A solution scheme is proposed to improve the consensus and synchronizability of the weighted networks through maximizing their homogeneity via adding as few links as possible. Weighted networks created from the Barrat model are tested by using the proposed scheme, and two commonly used link-adding approaches are selected to compare with this scheme. Computer simulation results show that the proposed link-adding scheme can enhance the consensus and the synchronizability of the weighted networks effectively and efficiently.
     7. Based on the theory of synchronization in complex networks, formation and tracking control of distributed multi mobile-robots are investigated under a changing external vector field. Each mobile robot measures the local value of the field along its trajectory and occasionally shares relevant information with other agents, in order to estimate the spatial average obtained from measurements across all mobile robots. Using shared information, mobile robots control their trajectories in a cooperative manner, with the goals of maintaining a desired formation about the average. Then two kind of communication networks including star-shaped networks and the nearest-neighbor networks formed between mobile robots is studied, based on which control strategies are given for mobile robots. Finally, applications of synchronization to mobile robots are further analyzed.
引文
[1]Watts D J,Strogatz S H.Collective dynamics of"small-world" networks.Nature,1998,393(6684):440-442.
    [2]Barabasi A L,Albert R.Emergence of scaling in random networks.Science,1999,286(5439):509-512.
    [3]Strogatz S H.Exploring complex networks.Nature,2001,410:268-276.
    [4]Chua L O,Roska T.Cellular neural networks and visual computing:foundation and applications.New York,Cambridge University Press,2002,1-50.
    [5]Faloutsos M,Faloutsos P,Faloutsos C.On power-law relationships of the Interact topology.Computer Communication Revivew,1999,29-51.
    [6]Guelzim N,Bottani S,Bourgine P,et al.Topological and causal structure of the yeast transcriptional regulatory network.Nature Genetics,2002,31(1):60-63.
    [7]Newman ME L Scientific collaboration networks.I.Network construction and fundamental results.Physcial Review E,2001,64(1):016131.
    [8]Cardillo A,Sceilato S,Latora V,Porta S.Structural properties of planar graph of urban street patterns.Physical Review E,2006,73:066107.
    [9]Albert R,Baraba'siA L.Statistical mechanics of complex networks.Reviews of Modem Physics,2002,74:47-97.
    [10]S.Boccaletti,Latora V,Moreno Y,et al.Complex networks:Structure and dynamics.Physics Reports,2006,424(4-5):175-308.
    [11]Yook S H,Jeong H,Barabatai A L.Weighted evolving networks.Physical Review Letter,2001,85(25):5835-5838.
    [12]Wang W X,Wang B H,Hu B,et al.General dynamics of topology and traffic on weighted technological networks.Physical Review Letter,2005,94(18):188702.
    [13]Wang W X,Wang B H,Zhou T,et al.Mutual selection model for weighted networks.Physical Review E,2005,72(4):046140.
    [14]Park K,Lai Y C,Ye N.Characterization of weighted complex networks.Physical Review E,2004,70(2):026109.
    [15]Huberman B A,Adamic L A.Growth dynamics of the World-Wide Web.Nature,1999,401:6749.
    [16]Crucitti P,Latora V,Marchiori M,et al.Efficiency of scale-free networks:error and attack tolerance.Physica A,2003,320:622-642.
    [17]Vragovic I,Louis E,Diaz-Guilera A.Efficiency of informational transfer in regular and complex networks.Physical Review E,2005,71:036122.
    [18]Zhang G Q,Wang D,Li G J.Enhancing the transmission efficiency by edge deletion in scale-free networks.Physical Review E,2007,76:017101.
    [19]Albert R,Jeong H,Barabasi A L.Error and attack tolerance of complex networks.Nature,2000,406:378-382.
    [20]Albert R,Jeong H,Barabasi A L.Attack and error tolerance in complex networks.Nature,2000,406:387-482.
    [21]Crucitti P,Latora V,Marchiori M.Error and attack tolerance of complex networks.Physics A,2004,340:388-394.
    [22]Chua L O.CNN:A paradigm for complex.Singapore,World Scientific,1998,1-12.
    [23]Kaneko K Ed.Couple map lattices,Singapore,World Scientific,1992,1-24.
    [24]Ding M Z,Yang W M.Stability of synchronous chaos and on-off intermittency in coupled map lattices.Phycial Review E,1997,56(4):4009-4016.
    [25]Fink K S,Johnson G,Carroll T,et al.Three coupled oscillator as a universal probe of synchronization stability in coupled oscillator arrays.Physical Review E,2000,61(5):5080.
    [26]Jest J,Joy M P.Spectral properties and synchronization in coupled map lattices.Physical Review E,2001,65:016201.
    [27]Wu CW.Synchronization in coupled chaotic circuits and systems.Singapore,World Scientific,2002,1-12.
    [28]樊蓓蓓,祁国宁.基于复杂网络的产品族结构建模及模块分析方法.机械工程学报,2007,42(3):187-192.
    [29]Andrade Jr J S,Bezerra D M,et al.The complex topology of chemical plants.Physica A,2006,360:637-643.
    [30]Erdos P,Renyi A.On the evolution of random graphs-I.Publ.Math.Inst.Hung.Acad.Sci,1960,5,17.
    [31]Erdos P,Renyi A.On the evolution of random graphs-Ⅱ.Bull.Inst.Int.Star,1961,38,343-347.
    [32]Newman M E J,Watts D J.Renormalization group analysis of the small-world network model.Physics Letters A,1999,263:341-346.
    [33]Newman M E J,Watts DJ.Scaling and percolation in the small-world network model.Physical Review E,1999,60:7332-7342.
    [34]Wang X F.Complex networks:topology,dynamics and synchronization.International Journal of Bifurcation and chaos,2002,12(5):885-916.
    [35]赵家黎等.基于误差流理论的多工位装配过程质量稳定性.机械工程学报,2006,42(11):88-93.
    [36]Newman M E J.Scientific collaboration networks.Ⅱ.Shortest paths,weighted networks,and centrality.Physical Review E,2001,64:016132.
    [37]Krapivsky P L,Redner S,Leyvraz F.Connectivity of Growing Random Networks.Physical Review Letters,2000,85:4629.
    [38]Dorogovtsev SN,Mendes J F F.Effect of the accelerating growth of communications networks on their structure.Physical Review E,2001,63:025101.
    [39]Albert R,Barabasi A.Topology of evolving networks:local events and universality.Physical Review Letters,2000,85(24):5234-5237.
    [40]Dorogovtsev S N,Mendes J F.Scaling behavior of developing and decaying networks.European Physics Letters,2000,52(1):33-39.
    [41]Li X,Chen G.A local-world evolving networks model.Physica A,2003,328:274-286.
    [42]Chen G,Fan Z P,Li X.Modeling the complex Internet topology.In:Complex Dynamics in Communication Networks,Springer Verlag,2005,213-235.
    [43]Wang X F,Chert G.Synchronization in small-world dynamical networks.International Journal of Bifurcation and Chaos,2002,9:1435-1442.
    [44]Wang X F,Chen G.Synchronization in scale-free dynamical networks:Robustness and fragility.IEEE Transactions Circuit System-Ⅰ,2002,49:54-62.
    [45]Strogatz S H,Stewart Ⅰ.Coupled oscillators and biological synchronization.Scientific American,1993,269(6):102 109.
    [46]Gray C M.Synchronous oscillations in neuronal systems:mechanisms and functions.Journal of Computer Neurosci,1994,1(1-2):11-38.
    [47]Wang R Q,Chen L N.Synchronizing genetic oscillators by signaling molecules.Journal of Biological Rhythms,2005,20:257-269.
    [48]Nfda Z,Ravasz E,Vicsek T,et al.Physics of the rhythmic applause.Physical Review E,2000,61(6):6987-6992.
    [49]吕金虎.复杂动力网络的数学模型与同步准则。系统工程理论与实践,2004,4:17-22.
    [50]赵明等.复杂网络上动力系统同步的研究进展.物理学进展,2005,25(3):273-295.
    [51]Peeora L M,Carroll T L.Master stability functions for synchronized coupled systems.Physical Review Letters,1998,80:2109-2112.
    [52]Barahona M,Pecora L M.Synchronization in small-world systems.Physical Review Letters,2004,89(5):054101.
    [53]Pecora L M,Carroll T I.Master Stability Function for Synchronized Coupled Systems.Physical Review Letters,1998,80(10):2109-2112.
    [54]Heagy J F,Carroll T L,Pecora L M.Short Wavelength Bifurcations and Size Instabilities in Coupled Oscillator Systems.Physical Review Letters,1995,74(21):4185-4188.
    [55]Gade P M.Synchronization of oscillators with random nonlocal connectivity.Physical Review E,1996,54(1):64-70.
    [56]Hu G,Yang J,Liu W.Instability and controllability of linearly coupled oscillators:Eigenvalue analysis.Physical Review E,1998,58(4):4440-4453.
    [57]Fink K,Johnson G,Carroll T,et al.Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays.Physical Review E,2000,61(5):5080-5090.
    [58]Jost J,Joy M P.Spectral properties and synchronization in coupled map lattices.Physical Review E,2001,65(1):016201(9).
    [59]Barahona M,Pecora L M.Synchronization in Small-World Systems.Physical Review Letters,2002,89(5):054101(4).
    [60]Chen Y,Rangarajan G,Ding M.General stability analysis of synchronized dynamics in coupled systems.Physical Review E,2003,67(4):026209(4).
    [61]Heagy J F,Carroll T L,Pecora L M.Synchronous chaos in coupled oscillator systems,Physical Review E,1994,50(3):1874-1885.
    [62]Rangarajan G,Ding M.Stability of synchronized chaos in coupled dynamical systems.Physics Letters A,2002,296:204-209.
    [63]汗小帆,李翔,陈关荣编.复杂网络理论及其应用,北京,清华大学出版社,2006,18-46.
    [64]Belykh I V,Belykh V N,Hasler M.Connection graph stability method for synchronized coupled chaotic systems.Physica D,2004,195:159-187.
    [65]Leyva I,Sendina-Nadal I,Almendral J A,Sanjuan M A F.Sparse repulsive coupling enhances synchronization in complex networks.Physical Review E,2006,74:056112.
    [66]Amritkar R E,Hu C K.Synchronized state of coupled dynamics on time-varying networks.Chaos:An Interdisciplinary Journal of Nonlinear Science,2006,16:015117.
    [67]Skufca J D,Bollt E.Communication and synchronization in disconnected networks with dynamic topology:Moving neighborhood networks.Mathematical Biosciences English,2004,1(2):347-359.
    [68]Stilwell D J,Bollt E,Roberson D.Sufficient conditions for fast switching synchronization in time-varying network topologies.SIAM Journal on Applied Dynamical System,2006,5(1):140-156.
    [69]Lii J H,Chen G.A time-varying complex dynamical network model and its controlled synchronization criteria.IEEE Transactions on Automatic Control,2005,50:841-846.
    [70]Wu C W.Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal Time-Varying Coupling.IEEE Transactions on Circuits and Systems-I:Express Briefs:Fundam.Theory Application,2005,52(5):282-286.
    [71]Lu J H,Yu X H,Chert G.Chaos synchronization of general dynamical networks.Physica A,2004,334:281-302.
    [72]Daniel J S,Erik M B,Roberson D G.Synchronization of time-varying networks under fast switching.Proceedings of the 2006 American Control Conference,Minneapolis,Minnesota,USA,June 14-16,2006.
    [73]Belykh I V,Hasler M,Laurent M,Nijmeijer.Synchronization and graph topology.International Journal of Bifurcation and Chaos,2005,15(11):3423-3433.
    [74]Belykh I,Belykh V,Hasler M.Blinking model and synchronization in small-world networks with a time-varying coupling.Physica D,2004,195:188-206.
    [75]Belykh I,Belykh V,Hasler M.Generalized connection graph method for synchronization in asymmetrical networks.Physica D,2006,224(1-2):42-51.
    [76]Chen M Y.Synchronization in time-varying networks:A matrix measure approach.Physical Review E,2007,76:016104.
    [77]Li C G,Chen G.Synchronization in general complex dynamical networks with coupling delays.Physica A,2004,343:263-278.
    [78]Gao H J,Lam J,Chen G.New criteria for synchronization stability of general complex dynamical networks with coupling delays.Physics Letters A,2006,360(2):263-273.
    [79]Li C P,Sun W G,Kurths J.Synchronization of complex dynamical networks with time delays.Physica A,2006,361(1):24-34.
    [80]Li P,Yi Z,Zhang U Global synchronization of a class of delayed complex networks.Chaos,Solitons & Fractals,2006,30(4):903-908.
    [81]Lu W L,Chert T P,Chen G.Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay.Physica D,2006,221(2):118-134.
    [82]Wang W W,Cao J D.Synchronization in an array of linearly coupled networks with time-varying delay.Physica A,2006,366:197-211.
    [83]Chen G R,Zhou J,Liu Z R.Global synchronization of coupled delayed neural networks and applications to chaotic CNN model,International Journal of Bifurcation and Chaos,2004,14(7):2229-2240.
    [84]Lu W L,Chen T P.Synchronization of coupled connected neural networks with delays,IEEE Transactions Circuits System-I,2004,51(12):2491-2503.
    [85]Xiong W,Xie W,et al.Adaptive exponential synchronization of delayed chaotic networks.Physica A,2006,370(2):832-842.
    [86]Hua C C,Wang Q G,et al.Global adaptive synchronization of complex networks with nonlinear delay coupling interconnections.Physics Letters A,2007,368(3-4):281-288.
    [87]Liu B,Teo K L,et al.Global synchronization of dynamical networks with coupling time delays.Physics Letters A,2007,368(1-2):53-63.
    [88]Liu X,Chen T P.Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling.Physica A,2007,381:82-92.
    [89]Sun Y,Cao J D,et al.Exponential synchronization of stochastic perturbed chaotic delayed neural networks.Neurocomputing,2007,70(13-15):2477-2485.
    [90]Wang L,Dai H P,Sun Y X.Synchronization criteria for a generalized complex delayed dynamical network model.Physica A,2007,383(2):703-713.
    [91]Wang Q Y,Chen G R,et al.Novel criteria of synchronization stability in complex networks with coupling delays.Physica A,2007,378(2):527-536.
    [92]Zhou J,Xiang L,Liu Z R.Synchronization in complex delayed dynamical networks with impulsive effects.Physica A,2007,384(2):684-692.
    [93]Zhou J,Xiang L,Liu Z R.Global synchronization in general complex delayed dynamical networks and its applications.Physica A,2007,2(385):729-742.
    [94]Wu J,Jiao L.Synchronization in complex delayed dynamical networks with nonsymmetric coupling.Physica A,2007,2(384):684-692.
    [95]Lago-Fernandez L F,Huerta R,Corbacho F,Sigiienza J A.Fast response and temporal coherent oscillations in small-world networks,Physical Review Letters,2000,84(12):2758-2761.
    [96]Hong H,Choi M Y,Kim B J.Synchronization on small-world networks,Physical Review E,2002,65:026139.
    [97]Qi F,Hou Z,Xin H.Ordering chaos by random shortcuts.Physical Review Letters,2003,91:064102.
    [98]Nishikawa T,Motter A E,Lai Y H,Hoppensteadt F C.Heterogeneity in oscillator networks:are smaller worlds easier to synchronize? Physical Review Letters,2003,91:014101.
    [99]Hwang D U,Chavez M,Amann A,Boccaletti S.Synchronization in complex networks with age ordering.Physical Review Letters,2005,94:138701.
    [100]Wu C W.Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems.Physical Letters,Section A,2003,319(5-6):495-503.
    [101]Zhou C,Motter A E,Kurths J.Universality in the synchronization of weighted random networks.Physical Review Letters,2006,96(3):034101.
    [102]Motter A E,Zhou C,Kurths J.Networks synchronization,diffusion,and the paradox of heterogeneity.Physical Review E,2005,71(1):016116.
    [103]Motter A E,Zhou C S,Kurths.Enhancing complex networks synchronization.Europhysics Letters,2005,69(3):334340.
    [104]Dhamala M,Jirsa V K,Ding M.Enhancement of neural synchrony by time delay.Physical Review Letters,2004,92(7):074104.
    [105]Chavez M,Hwang D U,Amann A,et al.Synchronization is enhanced in weighted complex networks.Physical Review Letters,2005,69:334-340.
    [106]Chavez M,Hwang D U,Amann A,et al.Synchronizing weighted complex networks.Chaos,2006,16:015106.
    [107]Sumpter D J T.The principle of collective animal behavior.Phil.Transactions R.Soc.B,2006,361(1465):5-22.
    [108]杨文,汪小帆,李翔.一致性问题综述.第25届中国控制会议,2006,哈尔滨,黑龙江.
    [109]Partridge B L.The structure and function offish schools.Scientific America,1982,114-123.
    [110]Reynolds C.Flocks,herds,and schools:a distributed behavioral model.Computer Graphics,1987,21,25-34.
    [111]Vicsck T,et al.Novel type of phase transition in a system of self-driven particles.Physical Review Letter,1995,75:1226-1229.
    [112]Flierl G,Grunbaum D,Levin S,Olson D.From individual to aggregation:the interplay between behavior and physics.J.Theoret.Biol,1999,196:397-454.
    [113]姜洪权,高建民,陈富民等.基于复杂网络理论的流程工业系统安全性分析.西安交通大学学报,2007,41(7):806-810.
    [114]Adbabaie A,Lin J,Morse A S.Coordination of groups of mobile autonomous agents using nearest neighbor rules,IEEE Transactions On Automatic Control,2003,48:988-1001.
    [115]Lynch N A.Distributed Algorithms.Morgan Kaufmann Publishers,Inc,1997.
    [116]Ren W,Beard R W.Consensus seeking in multi-agent systems under dynamically changing interaction topologies,IEEE Transactions on Automatic Control,2005,50(5):655-660.
    [117]Olfati-Saber R,Murray R M.Consensus problems in networks of agents with switching topology and time-delays,IEEE Transactions on Automatic Control,2004,149:1520-1533.
    [118]Moreau L.Stability of continuous-time distributed consensus algorithms.Proceedings of the 42nd IEEE Conference on Decision andControl CDC,12-17 December,2004.
    [119]Ren W,Beard R W.Coordination variables and consensus building in multiple vehicle systems,Cooperative Control,Springer-Verlag Series:Lecture Notes in Control and Information Sciences,2004,309:171-188.
    [120]Lin Z,Francis B,Maggiore M.Necessary and sufficient graphical conditions for formation control of unicycles,IEEE Transactions On Automatic Control,2005,50:121-127.
    [121]Moreau L.Stability of mutiagent systems with time-dependent communication links.IEEE Transactions Automatic Control,2005,50(2):169-181.
    [122]Jadbabaie A.On coordination strategies for mobile agents with changing nearest neighbors sets.IEEE Mediterranian Conference on Control and Automation,June,Greece,2003.
    [123]Lin Z,Broucke M,Francis B.Local control strategies for groups of mobile autonomous agents.IEEE Transactions on Automatic Control,2004,49(4):6222629.
    [124]俞辉,蹇继贵,王永骥.多智能体时滞网络的加权平均一致性.控制与决策,2007,22(5):558-561.
    [125]Ren W,Beard R W.A survey of consensus problems in mutiagent coordination.Proceeding of the 2005 American Control Conference,2005,1859-1864.
    [126]Olfati-Saber R.Ultrafast consensus in small-world networks.Proceedings of the 2005 American Control Conference,2005,4:2371-2378.
    [127]Hatano Y,Mesbahi M.Agreement over random networks.IEEE Transactions on Automatic Control,2005,50:1867-1872.
    [128]Lu X B,Wang X F,Fang J Q.Consensus in Scale-free Networks.International Conference on Communications,Circuits and Systems,2006,4:2638-2641.
    [129]Fax J A,Murray R M.Information flow and cooperative control of vehicle formations.IEEE Transactions on Automatic Control,2004,49(9):1465-1476.
    [130]Lin Z,Francis B,Maggiore M.Necessary and sufficient graphical conditions for formation control of unicycles.IEEE Transactions on Automatic Control,2005,50:121-127.
    [131]Ren W.Consensus based formation control strategies for multi-vehicle systems.Proceedings of the 2006 American Control Conference,Minneapolis,Minnesota,USA,June 14-16,2006.
    [132]Dunbar W B,Murray R M.Distributed receding horizon control for multi-vehicle formation stabilitzation.Automatica,2006,42:549-558.
    [133]孙优贤等.造纸过程的建模和控制.杭州:浙江大学出版社,1993.
    [134]Saric A T,Stankovic A M.Integration of equation-and signial=based models in transient analysis of electric energy systems.IEEE Transactions on Cirsuits and Systems-I:regular papers,2006,53(7):1589-1596.
    [35]铁鸣等.冷连轧动态过程混合智能建模方法.自动化学报,2007,33(1):104-108.
    [36]史运涛等.电厂湿法烟气脱硫仿真系统设计与实现.系统仿真学报,2006,18(7):848-1852.
    [137]Jadbabaie A,Motee N,Barahona M.On the stability of the kuramoto model of coupled nonlinear oscillators.Proc of the 2004 American Control Conference,2004,4296-4301.
    [138]Tanner H G,Jadbabaie A,Pappas G J.Stable flocking of mobile agents,Part I:Fixed topology.Proceedings of IEEE Conference on Decision and Control,Maui,Hawaii USA,2003,2:2010-2015.
    [139]Hu G,Qu Z L.Controlling spatiotemporal chaos in coupled map lattice systems.Physical Review Letters,1994,72(1):68-71.
    [140]Wang X F,Chen G.Pinning control of scale-free dynamical networks.Physica A,2002,310(3-4):521-531.
    [141]Li X,Wang X F,Chen G.Pinning a complex dynamical networks to its equilibrium.IEEE Transactions Circuit System-I,2004,51(10):2074-2087.
    [142]Fan Z P,Chen G.Pinging control of scale-free complex networks.IEEE International Symposium on Circuits and Systems,Kobe,Japan,2005,1:284-287.
    [143]Liu Z X,Chen Z Q,et al.Pinning control of weighted general complex dynamical networks with time delay.Physica A,2007,375(1):345-354.
    [144]Chen T P,Liu X W,Lu W L.Pinning complex networks by a single controller.IEEE Transactions Circuit System-I,2007,54(6):1317-1326.
    [145]Yao J,Guan Z H,Hill DV,Wang H O.On passivity and impulsive control of complex dynamical networks with coupling delays.Proceeding of the 44~(th)IEEE conference on Decision and control,and the European Control Conference 2005,Seville,Spain,December 12-15,2005,1595-1600.
    [146]姚静,关治洪.拓扑切换网络的脉冲控制.复杂系统与复杂性科学,2005,2(2):24-29.
    [147]Guan Z H,Zhang H.Stabilization of complex network with hybrid impulsive and switching control.Chaos,Solitons & Fractals,In Press,Doi:10.1016/j.chaos.2006.10.064.
    [148]Li P,Cao J D,Wang Z D.Robust impulsive synchronization of coupled delayed neural networks with uncertainties.Physica A,2007,373:261-272.
    [149]Li Z,Chen G.Robust adaptive synchronization of uncertain dynamical networks.Physics Letters A,2004,324(2-3):166-178.
    [150]Zhou J,Lu J A,Lu J H.Adaptive synchronization of an uncertain complex dynamical network.IEEE Transactions Automatic Control,2006,51(4):652-656.
    [151]Chen M Y,Zhou D H.Synchronization in uncertain complex networks.Chaos,2006,16:013101.
    [152]Lu W L.Adaptive dynamical networks via neighborhood information:Synchronization and pinning control.Chaos,2007,17:023122.
    [153]项林英等.复杂动态网络的建模、分析与控制研究综述.自然科学进展,2006,16(12):1543-1551.
    [154]方锦清.非线性网络的动力学复杂性研究的若干进展.自然科学进展,2007,7(17):841-857.
    [155]Gu Y Q,Shao C,Fu X C.Complete synchronization and stability of star-shaped complex networks.Chaos,Solutions and Fractals,2006,28:480-488.
    [156]Lu W L,Chen T P.Synchronization analysis of linearly coupled networks of discrete time systems.Physica D,2004,198:148-168.
    [157]Tanaka K.,lkeda T,Wang H O.Robust stabilization of a class of uncertain nonlinear systems via fuzzy control:quadratic stabilizability,H∞ control theory,and linear matrix inequalities.IEEE Transactions on Fuzzy Systems,1996,I(4):1-13.
    [158]Lee T N,Radovic U L.General decentralized stabilization of large-scale linear continuous and discrete time-delay systems.International Journal of Control,1987,46(6):2127-40.
    [159]Boyd S,et al.Linear Matrix Inequalities in Convex Programming.Philadelphia,PA:SIAM,1994.
    [160]Yu Y G,Zhang S C.Global synchronization of three coupled chaotic systems with ring connection.Chaos,Solutions and Franctals,2005,24:1233-1242.
    [161]Wang Q Y,Lu Q S,Chen G R Guo D H.Chaos synchronization of coupled neurons with jap junctions.Physics Letters A,2006,356:17-25.
    [162]Yuan W J,Luo X S,Jiang P Q,et al.Stability of a complex dynamical network model.Physica A,2007,374:478-482.
    [163]Xiang J,Chen G R.On the V-satbility of complex dynamical networks.Automatica,in Press,Doi:10.1016/j.automatica.2006.11.014.
    [164]Tanaka K,Sugeno M.Stability analysis and design of fuzzy control systems.Fuzzy Sets and System,1992,45:135-156.
    [165]Siljak D D.Large-Scale Dynamic Systems:Stability and Structure.North-Holland:Amsterdam,1978.
    [166]Siljak D D.Decentralized Control of Complex systems.New York:Academic Press,1991.
    [167]Buckley J J.Universal fuzzy controllers.Automatica,1997,9(33):1771-1773.
    [168]Hsiao F H,Hwang J D.Stability analysis of fuzzy large-scale systems.IEEE Transactions on Systems,Man and Cybernetics-Part B,Cybernetics,2001,1(32):122-126.
    [169]Chen C W,Chiang W L,Hsiao F H.Stability analysis of T-S fuzzy models for nonlinear multiple time-delay interconnected systems.Mathematics and Computers in Simulation,2004,66:523-537.
    [170]Dou C X,Jia Q Q,Jin S J,Bo Z Q.Delay-independent decentralized stabilizer design for large interconnected power systems based on WAMS.2007,Electrical Power and Energy Systems,Doi:10.1016/j.ijqaes.2007.06.024.
    [171]徐永红等.FNN 在分布式环境中的负载均衡研究.小型微型计算机系统,2002,23(12):1486-1488.
    [172]高自有,赵小梅,黄海军等.复杂网络理论与城市交通系统复杂性问题的相关研究.交通运输系统工程与信息,2006,6(3):41-47.
    [173]Liu X W,Zhang H B,Zhang F L.Delay-dependent stability of uncertain fuzzy large-scale systems with time delays.Chao,Solitons and Fractals,2005,26:147-158.
    [174]Hong H,et al.Factors that predict better synchronizability on complex networks,Physical Review E,2004,69:067105.
    [175]Barrat A,Barthelemy M,Vespignani A.Weighted evolving networks:coupling topology and weights dynamics.Physical Review E,2004,70:066149.
    [176]Tan Y J,Wu J.Network structure entropy and its application to scale-free networks.Acta Math.Sinica,2004,6.
    [177]L.Donetti,Hurtado P,Munoz M A.Entangled networks,synchronization,and optimal network topology.Physical Review Letters,2005,95:188701.
    [178]Latora V,Marchiori M.Efficient behavior of small-world networks.Physical Review Letters,2001,87:198701.
    [179]Beygelzimer A,Grinstein G,Linsker R,Rish I.Improving network robustness by edge modification Physica A,2005,357:593.
    [180]Burgard W,Moors M,Fox D,et al.Collaborative multi-robot exploration.Proceedings of the IEEE International Conference on Robotics and Automation.San Francisco,CA,USA,2000,476-481.
    [181]Asama H.Design of an autonomous distributed robot system:ACTRESS.Proceedings of the IEEE/RSJ International Workshop on Intelligence Robots and Systems.Tsukuba.Piscataway,1989,283-29.
    [182]Ren W,Beard R W,Atkins E M.Information consensus in multi-vehicle cooperative control.IEEE Control systems Magazine,2007,71-82.
    [183]Dias M B,Stentz A.A market approach to multi-robot coordination.Technical Report CMU-R ITR-01-26.Robotics Institute,Carnegie Mellon University,August,2001.
    [184]Balch T,Arkin R C.Behavior-based formation control for multi-robot teams.IEEE Transactions on Robotics and Automation,1998,14(6):1-15.
    [185]韩学东,洪炳熔,孟伟.多机器人任意队形分布式控制研究.机器人,2003,25(1):66-72.
    [186]Yun X P,Alptekin G,Albayrak O.Line and circle formation of distributed physical mobile robots.Journal of Robotic Systems,1997,14(2):63-76.
    [187]Yamaguchi A,Fukuchi M,Ota J,et al.Motion planning for cooperative transportation of a large object by multiple mobile robots in a 3d environ-men.Proceedings of IEEE International Conference on Robotics & Automation,2000,3144-3151.
    [188]Balch T,Arkin R C.Behavior-based formation control for multi-robot teams.IEEE Transactions on Robotics & Automation,1998,14(6):926-939.
    [189]Ren W.Consensus Based Formation Control Strategies for Multi-vehicle systems.Proceedings of the 2006 American Control Conference Minneapolis,Minnesota,USA,June 14-16,2006.
    [190]Beard R W,Lawton J,Hadaegh F Y.A coordination architecture for spacecraft formation control.IEEE Transactions on Control Systems Technology,2001,9(6):777-790.
    [191]曹志强,张斌,谭民.基于行为的多移动机器人实时队形保持.高技术通信,2001,10:74-77.
    [192]Bachmayer R,Leonard N E,Graver J,et al.Underwater gliders:Recent developments and future applications.International symposium on underwater technology,2004,195-200.
    [193]Burgard W,Moors M,Stachniss C,Schneider F E.Coordinated multi-robot exploration.IEEE Transactions on Robotics,2005,21(3):376-386.
    [194]Clark J,Fierro R.Cooperative hybrid control of robotic sensors for perimeter detection and tracking.Proceedings of the American control conference,2005,Portland,3500-3505.
    [195]Olfati-Sabor R.Flocking for multi-agent dynamic systems:Algorithms and theory.IEEE Transactions on Automatic Control,2006,51(3):401-420.
    [196]Maurizio P,Gray R,Daniel J S.Tracking and formation control of multiple automous agents:A two-level consensus approach.Automatica,2007,43:1318-1328.
    [197]Li W,Farrell J A,Pang S,Arrieta R M.Moth-inspired chemical plume tracing on an autonomous underwater vehicle.IEEE Transactions on Robotics,2006,22(2),292-307.
    [198]Oren P,Fiorelli E,Leonard N E.Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment.IEEE Transactions on Automatic Control,2004,49(8),1292-1302.
    [199]Porta S,Crucitfi P,Latora V.The network analysis of urban streets:A dual approach.Physica A,2006,369:853-866.
    [200]Gao Z Y,Li K P,Li X G,et al.Scaling laws of the network traffic flow.Physica A,2007,380:577-584.
    [201]Guan W,He S Y.Statistical features of traffic flow on urban freeways.Physica A,Doi:10.1016/j.physa.2007.09036.
    [202]Yusof S B,Rogers F J,Aldern R T H.Slow coherency based network partitioning including load buses.IEEE Trans on Power Systems,1993,8(3):1375-1382.
    [203]Sheng W H,Yang Q Y,Tan J D,Xi N.Distributed multi-robot coordination in area exploration.Robotics and Autonomous Systems,2006,54:945-955.
    [204]Hill D J,Chert G R.Power systems as dynamic Networks.IEEE International Symposium on Circuits and Systems,2006,722-725.
    [205]Kundur P,et al.Definition and classification of power system stability.IEEE Trans Power Systems,2004,19(3):1387-1401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700