用户名: 密码: 验证码:
攀钢含钛高炉渣中钛组分的分离提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
攀西地区蕴藏着极其丰富的钒钛磁铁矿资源,是世界著名的钒钛之都。其钒和钛以钒钛磁铁矿的形式赋存于多金属共生矿床中。钒钛磁铁矿中50%左右的钛随经选矿后的铁精矿进入高炉,钛在炼铁过程中几乎全部进入渣相,形成钛含量约20%~26%的高炉渣。现已有大量的高炉渣堆积如山,造成环境污染,资源浪费。经过几十年的科技攻关,其利用问题仍未得到解决。研究高炉渣中有价组分的提取及其利用是迫切的现实问题。
     为了有效分离提取含钛高炉渣中的钛组分,本文对空冷和水淬2种含钛高炉渣的化学成分,渣相组成以及渣的微观组构进行了分析研究。结果表明,两种含钛高炉渣化学组成基本相近,渣相组成以及微观组构却差别很大,造成这种大的差异的原因主要是其冷却方式不同所致。为证明这一推论,通过对水淬含钛高炉渣的热处理研究了其相变情况,在1200℃热处理4h的水淬含钛高炉渣与空冷含钛高炉渣的XRD谱图相似,二者的相组成相同,其结晶顺序大致为钙钛矿、镁铝尖晶石、富钛透辉石、攀钛透辉石等。
     热力学计算表明,含钛高炉渣中各组分与盐酸的化学反应均能自发进行。
     通过试验研究确定对空冷含钛高炉渣采用酸浸-碱反应-酸浸的三步法工艺路线。在酸浸预处理阶段,当反应时间为4h、反应温度为100℃、酸渣比为1、盐酸浓度为6mol/L时,含钛高炉渣中镁、铝、钙的浸出率较高,钛的浸出率较低,可较好的实现钛组分与镁、铝、钙的初步分离。
     用氢氧化钠对经酸预处理除去大部分镁铝钙等杂质而钛相对富集的滤渣进行脱硅制备富钛料过程中,优化确定了工艺参数。反应温度为100℃、反应时间为2h、碱渣比为0.5时,所制得以钙钛矿形式存在的富钛料的品位较高,其TiO2含量接近80%。同时,反应滤液中硅组分为主的滤出物通过盐酸处理得到了回收。用盐酸对所制备的富钛料进行再除杂处理发现,富钛料中少量透辉石和尖晶石等杂质除去的同时,钙钛矿被酸溶的速率也加快。
Panzhihua and Xichang area is the world-famous Vanadium and Titanium Capital for the enrichment of V-Ti magnetite resources. The Vanadium and Ttitanium resources hosted in the polymetallic paragentic mineral deposits in the form of V-Ti magnetite. About 50% titanium in the V-Ti magnetite enter into the concentrate iron ore during the Mineral Separation, after the blast-furnace slag is smelted, which nearly all enter into the Ti-bearing blast furnace slag containing 20~26%TiO2. At present, a large number of slags have been piled up resulting in environmental pollution and resources waste. Although decades of researches and efforts, the utilization of the slags has not been given. Therefore, it is an urgent practical problem to study the extraction and utilization of valuable components from the blast-furnace slags.
     In order to extract the titanium components from the blast furnace slag effectively, the chemical composition, phase composition and microstructure of air-cooled and water-quenched blast furnace slags are analyzed and investigated. The results show that the two kinds of slags have similar chemical compositions. However, there are big differences in the phase compositions and microstructures between the two kinds of slags, which should be caused by the different cooling ways after the slags are ejected from the slag hole. To prove this deduction, the phase transformation of water-quenched blast furnace slag by heat treatment process was investigated. XRD analysis shows that the phase compositions are the same between the air-cooled blast furnace slag and the water-quenched one which is heated at 1200℃for 4h, and the crystallization order is about that perovskite, spinel, Ti-rich diopside and Titatic pyroxene.
     The Thermodynamic calculation indicates that the various components in blast furnace slag can react with hydrochloric acid spontaneously.
     By the experimental research, the three-step process route of acid-alkali-acid leaching reaction is adopted to deal with the air-cooled blast furnace slag. The pretreated experiment on the Ti-bearing blast furnace slag cooled in air by the Hydrochloric acid reveals that under the conditions of reaction time keeps for 4 hours, reaction temperature keeps at 100℃, the Hydrochloric acid concentration is 6mol/L, acid/slag mass ratio keeps at 1, a higher leaching rate of magnesium, aluminum, calcium and a lower leaching rate of titanium of blast furnace slag can be obtained as well as the preparatory selective impurity is achieved.
     In the above acid leaching residue, most of magnesium, alumina and calcium are removed off, and the titanium components are relatively enriched. In order to obtain Ti-rich slag, the residue then is treated by alkali leaching process to remove silicon, and the process parameters is optimized. In the process of removing silicon from the residue by alkali, where the most of magnesium, alumina and calcium are removed off, and the titanium components are relatively enriched. It is found that when the reaction temperature keeps at 100℃, reaction time keeps for 2h, alkali/slag mass ratio keeps at 0.5, the obtained Ti-enriched slag mainly occurs in the form of perovskite, which contains about 80% TiO2. In the meanwhile, the silicon components in the filtrate have been recovered by hydrochloric acid treatment process. To study the further enrichment of titanium components, the Ti-enriched slag is purified by the hydrochloric acid . The result shows that part of the diopside and spinel in slag can be removed off in the acid leaching process, at the same time, the perovskite is also participating the reaction.
引文
[1]朱旺喜.矿物资源与西部大开发[M].北京:冶金工业出版社,2002.
    [2]刘熙,邱克辉,张其春等.关于钒钛磁铁矿综合利用可持续发展问题的探讨[J].中国矿业大学学报,2001,10(4):21~23.
    [3]易小祥,李亚伟,杨大兵.用磁选的方法从含钛高炉渣中回收碳氮化钛[J].钢铁钒钛,2008,29(4):22~25.
    [4]吴本羡,孟长春,范章杰等.攀枝花钒钛磁铁矿工艺矿物学[M].四川科学技术出版社,1998.
    [5] SUI Zhi-tong, ZHANG Pei-Xin, Yamauchi C. Precipitation selectivity of compound from slags[J]. Acta Mater, 1999, 47(4): 1334~1337.
    [6]谭若斌.含钛高炉渣的生产与应用[J].钢铁钒钛,1994,15(2):4~9.
    [7]隋智通,张培新.硼渣中硼组分选择性析出行为[J].金属学报,1997,33(9):943~951.
    [8]夏玉虎,李彬,隋智通.玻璃分相与计算机模拟[J].东北大学学报(自然科学版),1999,20(5):511~514.
    [9]娄太平.含钛高炉渣富Ti相选择性富集和长大研究[D].沈阳:东北大学,1999.
    [10]李晨希,王宏,李润霞等.含钛高炉渣综合利用研究的进展[J].沈阳工业大学学报,2004,26(5):495~498.
    [11] R.Jiang, R.J.Frnehan. Fundamental Study of Slag Foaming in Bath Smelting[J]. Metall Trans B, 1991, 22(5): 481~484.
    [12]SM Jung, R.J.Fruehan. Foaming Characteristics of BOF Slags[J]. International, 2000, 40(4): 348~351.
    [13]兰尧中,许述林.攀钢含钛高炉渣综合利用科研现状及今后工作的建议[J].钒钛,1993,2(1):45~46.
    [14]徐楚韶,李祖树.高炉钛矿的综合利用[J].钒钛,1993,2(5):47~50.
    [15]刘松利,杨绍利.攀枝花高钛型高炉渣综合利用研究现状[J].轻金属,2007,(7):48~50.
    [16]周旭,李江龙,罗崇理.高钛型高炉渣碎石用做砼骨料的研究[J].钢铁钒钛,2001,22(4):43~47.
    [17]李兴华,王雪松,刘知路等.高钛型高炉渣综合利用新方向[J].钢铁钒钛,2009,30(3):10~16.
    [18]刘晓华.钛渣酸解提钛及原位凝渣保温层的研究[D].沈阳:东北大学,2003.
    [19]王杰,赵碧建,张桂玉.高钛渣系列建材产品的开发及应用[J].新型建筑材料,2002,(2):35~36.
    [20]潘宝风,谭克锋.新型钛矿渣砖的生产工艺研究[J].硫磷设计与粉体工程,2003,(6):6~9.
    [21]孙希文,张建涛,杨志远等.高钛型建筑矿渣砖的研制[J].新型建筑材料,2003,(3):5~7.
    [22]张彭义,余刚,蒋展鹏等.半导体光催化剂及其改性技术进展[J].环境科学进展,1997,5(3):1~10.
    [23]张峰,李庆霖,杨建军等.TiO2光催化剂的可见光敏化研究.催化学报,1999,20(3):329~332.
    [24]Bickley R I, Gonzalez - Carreno T, Gonzalez - Elipe A R. Characterization of Iron/ Titanium Oxide Photocatalysts[J]. Chem Soc, Faraday Trans, 1994, 90(15): 2257~2264.
    [25]Navio J A, Colon G,TrillasM. Heterogeneous photocatalytic reactions of nitrite oxidation and Cr (VI) reduction on iron doped titania prepared by the wet impregnation method[J]. Appl Catal B, 1998, 16(2): 187~196.
    [26]Litter M I, Navio J A. Photocatalytic properties of iron doped titania Semiconductors[J]. Photo Chem Photobiol A, 1996, 98(3): 171~181.
    [27]董学文,薛向欣,杨合等.攀钢高炉渣作为光催化原料的可行性分析[J].工业安全与环保,2004,30(9):10~12.
    [28]杨合,薛向欣,左良等.含钛和稀土高炉渣光催化降解活性艳红X-3B[J].硅酸盐学报,2003,31(9):896~899.
    [29]刘卯,薛向欣,杨合等.含钛高炉渣光催化降解邻硝基酚的实验研究[J].材料导报, 2006,20(1):140~142.
    [30]郑建忠,唐丽娟.含钛高炉水淬渣在高炉煤气净化水处理中的应用[J].四川冶金,2001, (6):1~2.
    [31]郑轶荣,李文兴,胡长胜.用高炉渣处理含磷废水的试验研究[J].河北冶金,2004,(3):13~15.
    [32]倪建娣,陈文燕,叶树峰等.高炉渣基矿物聚合材料的制备及其对铅离子的固定[J].现代地质,2008,22(5):852~856.
    [33]隋智通,娄太平.含Ti高炉渣的氧化与钙钛矿结晶研究[J].金属学报,2000,33(2):943~946.
    [34]马俊伟,隋智通.改性高炉渣中钛的赋存状态及分离可能性的研究[J].矿产综合利用,2000,(2):22~24.
    [35]夏玉虎,娄太平.钙钛矿结晶形貌的研究[J].东北大学学报(自然科学版),2001,22 (3):307~310.
    [36]马俊伟,隋智通.攀钢含钛高炉渣的综合利用[J].金属矿山,1999,(9):21~24.
    [37]隋智通,郭振中.含钛高炉渣中钛组分的绿色分离技术[J].材料与冶金学报,2006,5(2):93~97.
    [38]彭毅.攀钢高炉渣提钛技术进展[J].钛工业进展,2005,22(3):44~48.
    [39]陈启福,张燕秋,方民宪等.攀钢高炉渣提取二氧化钛及三氧化二钪的研究[J].钢铁钒钛,1991,12(3):23~24.
    [40]裴润等编著.硫酸法钛白生产[M],北京:化学工业出版社,1982.
    [41]彭兵,易文质,彭及等.含钛高炉渣水解制取钛白的动力学研究[J].湖南大学学报,1997,24(2):31~35.
    [42]陈启福.攀钢高炉渣提取TiO_2及Sc_2O_3扩大试验[J].钢铁钒钛,1995,16(3):64~68.
    [43]刘晓华,隋智通.含Ti高炉渣的加压酸解[J].中国有色金属学报,2002,12(6):1281~1284.
    [44]徐程浩,刘代俊.高炉渣制取高钛渣的新工艺研究[J].四川化工,2005,8(5):7~9.
    [45]严芳,李春,梁斌.水淬含钛高炉渣二段酸解工艺[J].过程工艺学报,2006,(6):413~417.
    [46]王道奎等.用稀盐酸处理高炉渣的方法[J].钒钛,1995,11(3):32~35.
    [47]王道奎,雷茂林.用稀盐酸处理高炉渣的方法[P].中国专利:94108086.2,1994.
    [48]马光强,张云,邹敏.从攀钢高炉渣中提取分离TiO2制备高钛渣研究[J].四川理工学院学报,2007,20(6):95~97.
    [49]熊瑶,李春,梁斌等.盐酸浸出自然冷却含钛高炉渣[J].中国有色金属学报,2008,18(3):557~562.
    [50]曹洪杨,付念新,康常波等.改性含钛高炉渣的盐酸加压浸出[J].矿产综合利用,2008,(4):11~14.
    [51]周志明,张丙怀.高钛型高炉渣的渣钛分离试验[J].钢铁钒钛,1999,20(4):35~38.
    [52]徐楚韶,刘天福.用高炉钛渣冶炼钛硅合金的研究[J].重庆大学学报,1988,11(13):107~109.
    [53]徐楚韶,刘天福.高炉渣冶炼钛硅合金的机理研究[J].矿冶工程,1988,11(2):43~46.
    [54]李祖树,徐楚韶.提高钛硅合金等级的研究[J].重庆大学学报(自然科学版),1994,17(4):96~98.
    [55]杨德建.攀钢高炉渣综合利用及磷酸钛的制备研究[D].四川:四川大学化学与化工学院,2007.
    [56]冯成建,张建树.采用攀钢高炉渣制取碳化钛的试验研究[J].矿产综合利用,1997,(6):34~41.
    [57]李惠,仇永全.等离子炉碳(氮)化处理高钛型高炉渣[J].北京科技大学学报,1996,18(3):232~236.
    [58]成海芳,文书明,殷志勇.高炉渣综合利用的研究进展[J].矿业快报,2006,(9):21~23.
    [59]周玉,武高辉编著.材料分析测试技术[M].哈尔滨工业大学出版社,2004.
    [60]廖华栋.攀钢高钛型高炉渣渣钛分离试验研究[D].重庆:重庆大学化学化工学院,2006.
    [61]严芳.水淬含钛高炉渣的酸解研究[D].四川:四川大学化学与化工学院,2006.
    [62] MO Pei-gen (莫培根),CHEN Jun-shan (陈钧珊).高炉型钛渣的粘度、熔化性及矿物组成的研究[J].ActaMetallurgica Sinica (金属学报),1964,7(4):339~350.
    [63]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700