聚合物/聚合物纳米复合粒子及其复合材料的制备与结构控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将纳米粒子加入到聚合物中,不仅可以改善材料的物理机械性能,而且可以赋予其许多独特的功能。但是,普通的共混方法很难使纳米粒子均匀地分散在聚合物基体中,有时即使实现了均匀分散,但在加工或使用过程中己分散的纳米粒子又常常会发生二次团聚,使得纳米复合材料的特点无法充分实现。因此,如何实现纳米粒子在基体中的均匀稳定分散,是制备性能优异的纳米复合材料必须解决的首要问题。
     国内外不少研究组通过通过溶胶—凝胶法、反应器就地合成法、插层法(包括原位插层聚合、溶液插层和熔融插层)、或对纳米粒子表面改性后与聚合物直接混合等方法,实现了无机纳米粒子在聚合物中的均匀稳定分散。与无机纳米材料和聚合物基无机纳米复合材料相比,聚合物纳米材料具有更好的分子可设计性和结构可控性,更容易制备出具有各种独特性能的新材料,满足不同领域的特殊要求。
     本文的研究目标是通过设计合成具有可控结构的聚合物纳米复合粒子,并将纳米复合粒子直接加工制备块体聚合物/聚合物纳米复合材料,有效解决聚合物纳米粒子在基体中的均匀稳定分散性难题。研究思路和内容是:首先通过微皂乳液聚合制备交联的聚甲基丙烯酸甲酯(PMMA(CL))纳米粒子,研究聚合条件对PMMA乳胶粒子尺寸及其尺寸分布的影响。然后采用种子乳液聚合制备交联聚甲基丙烯酸甲酯/聚(丙烯腈—甲基丙烯酸甲酯)(PMMA(CL)/P(AN-MMA))纳米复合粒子,以及具有不同界面结构的交联聚甲基丙烯酸甲酯/聚苯乙烯(PMMA(CL)/PS)纳米复合粒子,研究聚合反应过程中各种热力学参数和动力学参数对复合粒子形态结构的影响。进而对具有不同界面结构的PMMA(CL)/PS系列纳米复合粒子直接进行熔融加工,制备出块体聚合物纳米复合材料。通过透射电镜(TEM)观察和动态流变实验,进一步研究聚合物/聚合物块体纳米复合材料的形态结构及其动态流变行为,探讨聚合物纳米粒子在基体中的稳定分散机理。研究得到了如下主要结论:
     (1)选择适当的聚合条件,通过微皂乳液聚合成功地获得了单分散性较好的PMMA纳米粒子。如在反应温度80℃,单体浓度小于等于10g/100mlH_2O,表面活性剂与单体的重量比为0.005~0.025的条件下,通过乳液聚合制备出的PMMA纳米粒子数均粒径在40~75nm,D_v/D_n≤1.18,且单体的转化率可达94%以上。(2)通过控制热力学因素和动力学因素进行聚合物/聚合物纳米复合粒子的可控合成。研究结果表明,通过控制二阶单体加入方式,采用饥饿喂料,能够从动力学上“硬性”控制复合粒子的形态结构,使热力学平衡态结构为半球状的PMMA(CL)/P(AN-MMA)纳米复合粒子(其中AN和MMA的重量比为9:1)最终形成核壳结构。研究还表明,二阶聚合时选用油溶性引发剂可避免水溶性较大的单体AN和MMA单独生成次级粒子。对于热力学平衡态结构为反向核壳结构的PMMA(CL)/PS复合体系,通过在高交联度的PMMA(HC)纳米种子粒子外增加一薄层低交联度的聚甲基丙烯酸丁酯(PBA(LC)),能够显著提高苯乙烯在其表面的接枝率,有效地降低核壳聚合物间的界面张力,从而得到具有核壳结构的PMMA(HC)/PBA(LC)/PS纳米复合粒子。通过在核壳聚合物之间引入梯度共聚物P(MMA-St),也可以有效降低核壳聚合物之间的界面张力,制备出具有完美核壳结构的PMMA(HC)/P(MMA-St,)/PS纳米复合粒子。
     (3)聚合物/聚合物核壳纳米复合粒子形态结构的准确表征。透射电镜(TEM)可以直观而有效地表征复合粒子的形态结构,但能否找到合适的选择性染色剂,增加两相之间的对比度是决定其适用性的关键。由于常用的选择性染色剂四氧化锇(O_SO_4)和四氧化钌(RuO_4)对PMMA和P(AN-MMA)均不能染色,为此必须寻找新的选择性染色剂。研究证明,以pH值为6.4的磷钨酸水溶液(浓度wt1.5%)为选择性染色剂,能够准确表征PMMA(CL)/P(AN-MMA)(其中AN和MMA的重量比为9:1)复合粒子的形态结构,该研究成果已作为封面论文2005年发表在Macromol.Mater.Eng.上。
     (4)透射电镜研究的结果表明,PMMA(HC)/PS和PMMA(HC)/PBA(LC)/PS纳米复合粒子直接熔融加工制备成块体纳米复合材料时,PMMA(HC)纳米粒子能够均匀稳定地分散在PS形成的基体中;而将PMMA(HC),P(MMA-St),/PS纳米复合粒子直接制备成块体纳米复合材料时,尽管界面张力较小,但PMMA(HC)纳米粒子在基体中的分散仍很不稳定,无论在静态熔融条件下,还是在螺杆中熔融挤出加工时,均会发生明显的二次团聚。
     动态流变研究表明,由纳米复合粒子直接制备的聚合物/聚合物纳米复合材料熔体为切力变稀流体。与无机纳米粒子/聚合物复合体系类似,当聚合物纳米粒子含量超过一定值后,聚合物/聚合物纳米复合体系在低频区也会表现出类固体行为,但其逾渗值在10%~15%之间,明显高于无机纳米粒子/聚合物复合体系。这说明聚合物/聚合物纳米复合材料的可加工性优于无机纳米粒子/聚合物复合体系。
     (5)聚合物/聚合物纳米复合材料中纳米分散相的稳定机理。纳米复合材料中分散相的尺寸很小,熔融状态下,分散相粒子的布朗运动速度很快。特别是当纳米粒子的体积含量达到或超过10%后,在熔融加工时除了界面张力会引起分散相粒子的凝聚外,布朗运动的影响也不容忽视。因此,要制备结构稳定的聚合物/聚合物纳米复合材料,除了要降低分散相与基体的界面张力外,还必须降低分散相的布朗运动速度、或使分散相粒子间存在足够的斥力以阻止粒子间因布朗运动而引起的碰撞凝聚。
     研究表明,在种子乳液聚合制备复合粒子的过程中,由于自由基向种子聚合物大分子的转移,使得PMMA(HC)/PS和PMMA(HC)/PBA(LC)/PS体系中,PMMA(HC)纳米粒子表面接枝有一定数量的PS大分子,而PMMA(HC)/P(MMA-St,)/PS复合体系中PMMA(HC)粒子上接枝的是P(MMA-St)共聚物。由于前两个体系中纳米粒子表面接枝的大分子与连续相PS结构相同,相容性好,其分子构象在熔融的PS基体中较为伸展,这种伸展的接枝大分子不仅可以增加粒子的流体力学尺寸,降低粒子布朗运动的速度,特别是当两个纳米粒子相互接近时会产生足够的空间位阻效应,使其不易团聚,因此在这两个体系中PMMA(HC)纳米粒子的分散相当稳定。而第三个体系中纳米粒子表面接枝大分子与基体的相容性较差,其大分子则坍塌于粒子表面,所以不能有效阻止PMMA(HC)纳米分散相的团聚。因此,由纳米复合粒子制备聚合物/聚合物纳米复合材料时,纳米粒子表面接枝大分子在熔融的聚合物基体中的构象是决定纳米粒子能否均匀稳定分散的关键。即聚合物/聚合物纳米复合材料中纳米粒子的稳定机理类似于聚合物稳定剂对胶体体系的稳定机理。
The study of nanocomposite materials offers the possibility of substantialimprovements in material properties, ranging from mechanical to functionalproperties, with nanoparticles dispersed in polymer matrices. Unfortunately, ithas often proved difficult to form stable uniform dispersion of nanoparticles inpolymer matrices, slowing the rate of progress. In order to obtain polymernanocomposites with desired properties, the key problem is how to realize andkeep the stable uniform dispersion of nanoparticles in matrices.
     In-situ polymerization and melt intercalation solve the dispersion ofnaturally layered inorganics in polymer matrices. However, there is a limitednumber suitable for nanocomposite preparation. Comparing with inorganicmaterials, it is easier to design and control the structure of macromolecules.Polymer nanoparticles and nanocomposites with various novel properties can beobtained by different methods and procedures of polymerization.
     The aim of this research is to resolve the problem of the stable uniformdispersion of nanoparticles in polymer matrices. It is focused on the preparationand structure control of polymer nanoparticles, nano composite particles andbulk nanocomposites. The approach is to synthesize crosslinking poly(methylmethacrylate)(PMMA(CL)) nanoparticles at first, then to synthesize nanocomposite particles by emulsion polymerization with the nanoparticles as seeds.By directly melting the nano composite particles, the shell polymer forms thecontinuous phase and the PMMA(CL) nanoparticles uniformly and stablydisperse in the matrix. In this paper, the influences of various polymerizationparameters on the size, its distribution and morphology of polymer nanoparticles, nano composite particles are discussed. Then the influences of the interfacialstructure of nano composite particles on bulk nanocomposites structure arediscussed. Furthermore, the mechanism of stable uniform dispersion of polymernanoparticles in matrix is explored. The research results are as follows:
     (1) By controlling the proper polymerization parameters, PMMAnanoparticles with well monodispersity can be successfully obtained by emulsionpolymerization at very low surfactant level. For example, when thepolymerization conditions, are controlled as: reaction temperature 80℃, themonomer contration<10g/100mlH_2O, and the weight ratio of the monomer tosurfactant 0.005~0.025, PMMA nanoparticles can be prepared, whose averagenumber size is between 40~75nm, PDI<0.1, Dv/Dn≤1.18, and the conversion ofthe monomer is more than 94%.
     (2) The morphology of composite particles can be controlled bythermodynamic and kinetic factors during the seeded emulsion polymerization.The equilibrium morphology of PMMA(CL)/P(AN-MMA)(shell withAN/MMA=9/1 weight ratio) composite particles synthesized by batch-seededemulsion polymerization should be hemisphere structure when SDS is used assurfactant. However, the morphology of the composite particles can change fromhemisphere, sandwich to core-shell structure with the slowing of the adding rateof the second stage monomer. And though the equilibrium morphology ofPMMA(CL)/PS composite particles should be inverted core-shell structure, asthe matter of fact, the final morphology can be core-shell structure by changingthe interfacial structure. When there is low crosslinking poly(butyl acrylate)PBA(LC) interfacial layer which leads to more PS grafted on PMMA(HC) coreand decreases the interfacial tension between core and shell, or when there isgradient copolymer P(MMA-St) interfacial layer which also decreases theinterfacial tension between core and shell, PMMA(CL)/PS composite particleshave core-shell structure.
     (3) In order to characterizing the morphology of polymer composite particles by transmission election microscopy (TEM), it is necessary to enhanceimage contrast for polymers by using a selective staining agent. Unfortunately,neither(OsO_4) nor (RuO_4) is suitable for PMMA/PAN composite particles. In ourresearch, it is founded that pH 6.4 PTA solution can be a selective staining agentin the TEM for PMMA/PAN and PMMA/P(AN-MMA)(shell with AN/MMA=9/1weight ratio) composite particles.
     (4) Neither Brownian motion nor molecular forces between nanoparticles tothe ~coalescence can be ignored because the size of dispered phase is very small,and the distance of a nanoparticle from its nearest neighbour is also very small inpolymer/polymer nanocomposites. In order to keep the stable uniform dispersionof polymer nanoparticles in matrix, the coalescence resulting from Brownianmotion should be prevented besides decreasing the interfacial tension. Theexperiments show that PMMA(HC) nanoparticles can stably dispersed in thematrices without obvious coalescence for PMMA(HC)/PS andPMMA(HC)/PBA(LC)/PS bulk nanocomposites, but they happen seriouscoalescence in the matrix for PMMA(HC)/P(MMA-St)/PS. The reason is that thegrafted macromolecules on PMMA(HC) nanoparticles are polystyrene(PS) forPMMA(HC)/PS and PMMA(HC)/PBA(LC)/PS, which have stretchedconformation in melt PS matrix, and can provide enough steric stabilization toprevent the coalescence. And the grafted macromolecules on PMMA(HC) nano-particles are gradient copolymer P(MMA-St) for PMMA(HC)/P(MMA-St)/PS,the macromolecular chains collapse on the nanoparticles. The stable uniformdispersion of polymer nanoparticles in matrix should be contributed to the stericstabilization of nanoparticles resulting from the grafted macromolecules.
     (5) Polymer/polymer nanocomposites show that the viscosityη* decreaseswith the increasing of the shear stress. And they also show a solidlikeviscoelastic behavior when the volume fraction of polymer nanoparticles isbetween 10% and 15%, which is much higher than inorganicnanoparticles/polymer nanocomposites. It means that polymer/polymer nanocomposites have better processability than inorganic nanoparticles/polymernanocomposites.
引文
1. 徐国财,张立德,纳米复合材料,化学工业出版社,2002. 3,第1版
    2. Espuelas M.S,Legrand P,.Irache J.M,Gamazo C,Orecchioni A.M,Devissaguet J.Ph,Ygartua P,Poly( ε-caprolactone)nanospheres as an alternative way to reduce amphotericin B toxicity,J.Pharm.1007,158,19-27
    3. Yoo H.S,Oh J.E,Lee K.H,Park T.G,Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release,Pharm.Res.1999,16(7) ,1114-1118
    4. Murakami H,Kobayashi M,Takeuchi H,Kawashima Y,Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles,Powder Technology,2000,107,137-143
    5. Jung J,Perrut M,Particle design using supercritical fluid:literature and patent survey,J.Supercrit.Fluids,2001,20,179-219
    6. Zambaux M.F,Bonneaux F,Gref R,Maincent P,Dellacherie E,Alonso M.J,Labrude P,Vigneron C,Influence of experimental parameters on the characteristics of Poly(lactic acid) nanoparticles prepared by double emulsion method,J Control Rel.1998,50,31-40
    7. Kwon H.Y,Lee J.Y,Choi S.W,Jang Y,Kim J.H,Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method,Colloids and Surfaces A:Physicochem.Eng.Aspects 2001,182,123-130
    8. Kwon S.S,Nam Y.S,Lee J.S,Ku B.S,Han S.H,Lee J.Y,Chang I.S,Preparation and characterization of coenzyme Q_(10) -loaded PMMA nanoparticles by a new emulsification process based on microfluidization,Colloids and Surfaces A:Physicochem.Eng.Aspects 2002,210,95-104
    9. Eerikainen H,Watanabe W,Kauppinen E.I,Ahonen P.P,Aerosol flow reactor method for synthesis of drug nanoparticles,J.Pharm.Biopharm.2003,55,357-360
    10. Raula J, Eerikainen H, Kauppinen E. I, Influence of the solvent composition on the aerosol synthesis of pharmaceutical polymer nanoparticles, International Journal of Pharmaceutics, 2004, 284,13-21
    11. Ding J, Xue G, Dai Q, Cheng R, Polymer 1993, 34, 3325
    12. Xu X. J, Chen F. X, Preparation ofnanoparticles ofpoly(methyl methacrylate) latexes at θ Condition, Langrnuir 2004, 20, 528-531
    13. Nalwa H. S, Encylopedia of nanoscience and nanotechnology, 2004, 2, 199-220; 8,873-903
    14.曹同玉,刘庆普,胡金生,聚合物乳液合成原理性能及应用,化学工业出版社,1997.4,第1版
    15.施冠成,华载文,微乳液聚合及其应用,印染助剂,1997,14f2),1-5
    16.严峰,邓昌仁,微乳液聚合研究进展,化学和粘合,1998,2,100-105
    17. Zhang Guangzhao, Niu Aizhen, Peng ShuN, Jiang Ming, Tu Yingfeng, Li Mei, Wu Chi, Formation of novel polymeric nanoparticles, Acc. Chem. Res. 2001, 34, 249-256
    18. Landfester K, Bechthold N, Tiarks F, Antonietti M, Formulation and stability mechanisms of polymerizable miniemulsions, Macromolecules, 1999, 32, 5222-5228
    19. Antonietti M, Landfester K, Polyreactions in miniemulsions, Prog. Polym. Sci. 2002, 27, 689-757
    20. Shim S. E, Lee H, Choe S, Synthesis of functuinalized monodisperse poly(methyl methacrylate) nanoparticIes by a RAFT agent carrying carboxyl end group, Macromolecules, 2004, 37, 5565-5571
    21. Okubo M, Yamada A, Matssumoto T, Estimation of morphology of composite polymer emulsion particles by soap titration method, J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 3219-3228
    22. Okubo M, Katsuta Y, Matssumoto T, Studies on suspension and emulsion: peculiar morphology of composite polymer latex particles produced by seeded emulsion polymerization, J. Polym. Sci. Polym. Lett. Ed. 1982, 20, 45-51
    23.马千里,顾丽霞,复合微球的制备、性能及应用,离子交换与吸附,2000,16(1):88-99
    24.张凯,雷毅,贾利军,江璐霞,核壳高分子微球的制备及应用,化工新型材料,2001,29(10),27-29,42
    25. Okubo M, Ichikawa K, Tsujihiro M, He Y, Production of anomalous polymer microspheres having uneven surface by "stepwise" Heterocoagulation Technique, Colloid Polymer Science, 1990, 268, 791-796
    26. Okubo M, He Y, Ichikawa K, Analysis of"stepwis" heterocoagulation process of small cationic polymer particles onto large anionic polymer particles using dynamic light scattering,, Colloid Polymer Science, 1991, 269, 125-130
    27. Okubo M, Miyachi N, He Y, Variation of surface uneveness of anomalous composite polymer particles by "stepwis" heterocoagulation of small particles onto large particlesbu heat treatment, Colloid Polymer Science, 1994, 272, 270-275
    28. Okubo M, Lu Y, Preparation of heterocoageneous film from core-shell composite polymer particles produced by the stepwis heterocoagulation with heat treatment, Colloid Polymer Science, 1996, 274, 1020-1024
    29. Ottewill R. H, Schofield A. B, Watersm J. A, Williams N. St. J, Preparation of core-shell polymer colloid particles by encapsulation, Colloid Polymer Science, 1997, 275,274-28
    30. Okubo M, Izumi J, Hosotani T, Yamashita T, Production of micron-sized monodispersed core-shell polymethyl methacrylate/polystyrene particles by seeded dispersion polymerization, Colloid Polymer Science, 1997, 275,797-801
    31. Okubo M, Izumi J, Takekoh R, Production of micron-sized monodispersed core-shell composite polymer particles by seeded dispersion polymerization, Colloid Polymer Science, 1999, 277, 875-880
    32. Okubo M, Takekoh R, Izumi J, Yamashita T, Morphology of micron-sized monodispersed poly(butyl methacrylate)/polystyrene composite particles produced by seeded dispersion polymerization, Colloid Polymer Science, 1999, 277, 972-978
    33. Okubo M, Takekoh R, Sugano H, Production of micron-sized monodispersed, multilayered composite polymer particles by multistep seeded dispersion polymerization, Colloid Polymer Science, 2000, 278, 559-564
    34. Okubo M, Hosotani T, Yamashita T, Influences of the locations of monomer and initiator in the seed polymerization systems on the morphologies of micron sized monodispersed composite polymer particles, Colloid Polymer Science, 1996, 274, 279-284
    35. Jungmann N, Schmidt M, Maskos M, Synthesis of amphiphilic poly(organo-siloxane) nanospheres with different core-shell architectures, Macromolecules 2002, 35, 6851-6857
    36. Zhang Wangqing, Shi Linqi, An Yingli, Gao Lichao, Wu Kai, Ma Rujiang, A convenient method of tuning amphiphilic block copolymer micellar morphology, Macromolecules 2004, 37, 2551-2555
    37. Chen Yi-Cherng, Dimonie V. L, E1-Aasser M. S, Effect of interfacial phenomena on the development of particle morphology in a polymer latex system, Macromolecules, 1991, 24, 3779-3787
    38. Chen Yi-Cherng, Dimonie V, E1-Aasser M. S, Interfacial phenomena controlling particle morphology of composite latexes, J. Applied Polymer Science, 1991, 42, 1049-1063
    39. Chen Yi-Cherng, Dimonie V. L, El-Aasser M. S, Role of surfactant in composite latex particle morphology, J. Applied Polymer Science, 1992, 45,487-499
    40. Winzor C. L, Sundberg D. C, Conversion dependent morphology predictions for composite emulsion polymers: 1. synthetic latices, polymer, 1992, 33(18), 3797-3810
    41. Chen Yi-Cherng, Dimonie V. L, Shaffer O. L, El-Aasser M. S, Development of morphology in latex particles: the interplay between thermodynamic and kinetic parameters, Polymer International, 1993, 30, 185-194
    42.孙培勤,刘大壮,赵科,霍东霞,乳液聚合乳胶粒形态研究的理论问题分析,郑州工业大学学报,1998.Vol.19,增刊,7-10
    43.孙培勤,赵科,刘大壮,核壳乳液聚合乳胶粒形态的研究(Ⅰ)乳胶粒热力学平 衡形态的预测,粘接,2001,22(4),18-21
    44.孙培勤,赵科,刘大壮,核壳乳液聚合乳胶粒形态的研究(Ⅱ)乳胶粒达到平衡形态时间的预测,粘接,2001,22(5),25-28
    45.庞兴收,成国祥,陆书来,种子乳液聚合复合微粒形态的研究进展,胶体与聚合物,2002,20(1),30-34
    46. Gonzalez O. L. J, Ausa J. M, Development of particle porphology in emulsion polymerization. 1. cluster dynamics, Macromolecules, 1995, 28, 3135-3145
    47. Gonzalez O. L. J, Ausa J. M, Development. of particle morphology in emulsion polymerization. 2. cluster dynamics in reacting systems, Macromolecules, 1996, 29, 383-389
    48. Gonzalez O. L. J, Ausa J. M, Development of particle morphology in emulsion polymerization. 1. cluster nucleation and dynamics in polymerizing systems, Macromolecules, 1996, 29, 4520-4527
    49. Durant Y. G, Sundberg D. C, Effects of cross-linking on the morphology of structured latex particles. 1. theoretical considerations, Macromolecules, 1996, 29, 8466-8472
    50. Durant Y. G, Sundberg E. J, Sundberg D. C, Effects of cross-linking on the morphology of structured latex particles. 2. experimental evidence for lightly cross-linked systems, Macromolecules, 1997, 30, 1028-1032
    51. Jonsson J. E, Hassander H, Tdrnell B, Polymerization conditions and the development of a Core-shell morphology in PMMA/PS latex particles. 1. influence of initiator properties and mode of monomer addition, Macromolecules 1994, 27,1932-1937
    52. YU A, Li B, Cai M, Li B, Cao K, Emulsion polymerization of methyl methacrylate in concentrations of emulsifiers below their CMCs-polymerization rate, particle size and particle-size distribution, J. Applied Polymer Science, 1995, 55, 1209-1215
    53. Brown R. A, Price C, Randall P. D, Satgurunathan R, Effect of surfactant concentration on core-shell emulsion polymerization, Polymer Communications, 1989, 30, November, 349-352
    54. Yan Cui'e, Xu Zhanghuang, Cheng Shiyuan, Feng Linxian, Effect of amount of emulsifier added in the second stage on morphology of composite latex particles, J. Applied Polymer Science, 1998, 68, 969-975
    55.阎翠娥,黄世强,种子乳液乳化剂饱和量的确定,湖北大学学报(自然科学版),1998,20(4),359-363
    56. Lee Chia-Fen, Chiu Wen-Yen, Kinetic study on the poly(methyl methacrylate) seeded soapless emulsionpolymerization of styrene. Ⅲ. seeds with cross-linking, J. Applied Polymer Science, 1997, 65,425-438
    57.王铀,沈静姝,制备聚合物纳米复合材料展望,化工新型材料,1998,No.1,8-12
    58.黎学东,陈鸣才,黄玉慧,丛广民,聚合物共混物的原位成纤复合,高分子通报,1998,3,26-32
    59.黎学东,陈鸣才,黄玉慧,丛广民,热塑性树脂共混物的原位成纤复合及其增韧作用,高分子材料科学与工程,1999,15(6),120-122
    60.李强,林薇薇,宋春芳,聚合物基纳米复合材料的合成 性质及应用前景,材料科学与工程,2002,20(1),107-110,67
    61. Ruckenstein E, Yuant Y, Nanocomposites of rigid polyamide dispersed in flexible vinyl polymer, Polymer, 1997, 38(15), 3855-3860
    62. Kalinina O, Kumacheva E, A "core-shell" approach 3D polymer nanocomposites, Macromolecules, 1999, 32, 4122-4129
    63. Kumacheva E, Kalinina O, Lilge L, Three-dimensional arrays in polymer nanocomposites, Adv. Mater. 1999, 11(3), 231-234
    64. Kalinina O, Kumacheva E, Siwick B, R. Miller J. D, Polymer nanostructure mterials prepared using a core-shell approach, Polym. Mater. Sci. Eng. 2000, 83, 450
    65. Kalinina O, Kumacheva E, Polymeric nanocomposite material with a periodic, Chem. Mater. 2001, 13(1), 35-38
    66. Siwick B. J, Kalinina O, Kumacheva E, Miller R. J. D, Noolandi J, Polymeric nanostructured material for high-density three-dimensional optical memory storage, J. Applied Physics, 2001, 90(10), 5328-5334
    67. Kumacheva E, Nanocomposite materials and methods of production thereof, PCT Int. Appl. Wo 2001062830 A2 30 Aug. 2001, 30pp
    68. Kumacheva E, Kalinina O, Polymeric nanocomposite materials with a functional matrix for optical recording materials and a method of reading and writing thereto, PCT Int. Appl. Wo 2001040872 A1 7 Jun.2001, 28pp
    69. Gourevich I, Pham H, Jonkman J. E. N, Kumacheva E, Multidye nanostructured material for optical data storage and security labeling, Chem. Mater. 2004, 16, 1472-1479
    70. Helminiak T E ,et al. WO,79/01029. 1978
    71.钱人元,陈雨萍等.CN,86101389.1986
    72. Lindsey. S. E, Street. G. B, Conductive composites from polyvinyl alcohol and polypyrrole, Synthetic Metals, 1984, 10(1), 67-69
    73.白宗武,冯威,金日光,原位聚合法分子复合材料的研究进展,高分子通报,1997,1,37-42
    74.白宗武,冯威,金日光,分子复合型尼龙—6合金材料的研究进展,化工进展,1997,1,32-35
    75.曹艳霞,杜淼,郑强,粒子填充聚合物体系的特征粘弹行为,高分子材料科学与工程,2003,19(3),17-20
    76.卢红斌,杨玉良,填充聚合物的熔体流变学,高分子通报,2001,6,18-26
    77. Gramespacher H, Meissner J, Interfacial tension between polymer melts measured by shear oscillations of their blends, J .Rheol. 1992, 36(6), 1127-1141
    78. Gleinser W, Braun H, Friedrich Chr, Cantow H. J, Correlation between rheology and morphology of compatibilized immiscible blends, Polymer, 1994, 35(1), 128-135
    79. Friedrich Chr, Gieinser W, Korat E, Maier D, Weese J, Comparsion of sphere-size distributions obtained from rheology and transmission electron microscopy in PMMA/PS, J Rheol. 1995, 39(6), 1411-1425
    80. Vinckier I, Moldenaers P, Mewis J, Relationship between rheology and morphology of model blends in steady shear flow,Rheol.1996,40(4) ,613-631
    81. Kitade S,Ichikawa A,Imura N,Takahashi Y,Noda I,Rheological properities and domain structures of immiscible polymer blends under steady and oscillatory shear flows,Rheol.1997,41(5) ,1039-1060
    82. Nazir A.Memon,Rene Muller,Interface,morphology,and the rheological properties of polymethylmethacrylate/impact modifier blends,J Polym Sci:Part B:Polym Phys.1998,36,2623-2634
    83. Zhang Q,Archer L.A,Poly(ethylene oxide)/silica nanocomposites:structure and rheology,Langmuir,2002,18,10435-10442
    84. Aoki Y,Nakayama K,Dynamic viscoelastic properties of ABS polymers in the molten state IV.Effect of rubber particle size,Polymer J,1982,14(12) ,951-958
    85. Y Aoki,Dynamic viscoelastic properties of ABS polymers in the molten state.5. effect of grafting degree,Macromolecules,1987,20,2208-2213
    86. Bousmina M,Muller R,Linear viscoelasticity in the melt of impact PMMA.Influence of concerntration and aggregation of dispersed rubber particles,J Rheol.1993,37(4) ,663-679
    87. Fahrlander M,Bruch M,Menke T,Friedrich C,Rheological behavior of PS-melts containing surface modified PMMA-particles,Rheol.Acta,2001,40,1-9
    88. Pusch J,Herk A.M.V,Emulsion polymerization of novel transparent latices by pulsed electron beam initiation,Macromolecules,2005,38,6939-6945
    89. Smulders W,Monteiro M.J,Seeded emulsion polymerization of block copolymer core-shell nanoparticles with controlled particle size and molecular weight distribution using xanfhate-based RAFT polymerization,Macromolecules,2004,37,4474-4483
    90. Li P,Zhu Junmin,Sunintaboon P,Harris F.W,New route to amphiphilic core-shell polymer nanospheres:graft copolymerization of methyl methacrylate from water-soluble polymer chains containing amino groups,Langmuir,2002,18,8641-86462
    91. Hulicova D,Hosoi K,Kuroda S.-I,Abe H,Oya A,Carbon nanotubes prepared by spinning and carbonizing fine core-shell polymer microsphere, Adv. Mater. 2002, 14(6), 452-455
    92.李小琴,陈沛智,秦昌华,廖寿贤,磷钨酸在核壳型乳液TEM表征技术中的应用,高分子材料科学与工程,1999,15(1),129-131
    93.张开,高分子界面科学,中国石化出版社,1997
    94.周同惠,纸色谱和薄层色谱,科学出版社,1989
    95. Min T. I, Klein A, El-aasser M. Vanderhoff S, J. W, Morphology and grafting in polybutylacrylate-polystyrene core-shell emulsion polymerization, J Polym Sci: Polym. Chem. Ed. 1983, 21, 2845-2861
    96. Crist B, Nesarikar A. R, Coarsening in polyethylene-copolymer blends, Macromolecules, 1995, 28, 890-896
    97. Cavanaugh T. J, Nauman E. B, Particulate growth in phase-separated polymer blends, J. Polym. Sci. Part B: Polym. Phys. 1998, 36, 2191-2196
    98. Lee C.-F, Chen Y.-H, Chiu W, Morphology, thermal property and mechanical property of core-shell latex polymer. Ⅰ. effect of heating and pressuring on PBA/PS linear composite polymer, J. Applied Polymer Science, 1998, 69, 13-23
    99. Lee C.-F, The properties of core-shell composite polymer latex, effect of heating on the morphology and physical propertiesof PMMA/PS core-shell composite latex and the polymer blends, Polymer, 2000, 41, 1337-1344
    100. Fortelny I, Zivny A, Coalescence in molten quiescent polymer blends, Polymer, 1995, 36(21), 4113-4118
    101. Fortelny I, Zivny A, Juza J, Coarsening of the phase structure in immiscible polymer blend, coalescence or ostwa!d ripening?, J Polym Sci: Part B: Polym Phys. 1999, 37, 181-187
    102. Roland C. M, Bohm G. G. A, Shear-induced coalescence in two-phase polymeric systems. Ⅰ. determination from small-angle neutron scattering measurements, J Polym Sci: Polym Phys Ed. 1984, 22, 79-93
    103. Vorobyoya O, Winnik M. A, Confocal microscopy studies of shear-induced coalescence in blends of poly(butyl methacrylate) and poly(2-ethylhexyl methacrylate), J Polym Sci: Part B: Polym Phys. 2001, 39, 2317-2332
    104. Rusu D, Peuvrel-Disdier E, In situ characterization by small angle light scattering of the shear-induced coalescence mechanisms in immiscible polymer blends, J Rheol. 1999, 43(6), 1391-1409
    105. Borschig C, Fries B, Gronski W, Weis C, Friedrich Ch, Shear-induced coalescence in polymer blends-simulations and rheo small angle light scattering, Polymer, 2000, 41, 3029-3035
    106. Clarke C. J, Jones A. L, The structure of grafted polystyrene layers in a range of matrix polymers, Macromolecules, 1995, 28, 2042-2049
    107. Jones R. A. L, Richards R. W, Polymers at surfaces and interfaces, Cambridge University Press, 1999
    108.沈钟,赵振国,王果庭,胶体与表面化学,第三版,化学工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700