高速列车转向架刚度测试模型及新型动态测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为轨道车辆唯一走行部的转向架,其自身悬挂刚度参数的取值是否合理与行车安全性和乘坐舒适性密切相关,对列车运行的其它品质也起到了至关重要的作用。为此,深入研究转向架悬挂刚度的测试模型和方法,并开发测试方法简便、测试功能全面、测试结果可靠的高速列车转向架刚度参数测试台系统就显得尤为重要。
     本文首先对转向架悬挂刚度参数的测试方法进行了深入研究,提出了多种悬挂定位刚度的静、动态测试模型。以六自由度加载平台结构和双十字加载滑台结构为特点,建立了转向架各系悬挂刚度测试的加载方案,并对两种加载平台的运动姿态解算进行了深入分析,建立了多缸协调加载的平台运动姿态解算函数,在此基础上,对加载误差产生的原因进行了分析。根据测试系统结构特点,对液压加载系统的控制策略进行了研究,提出了基于RBF网络在线整定PID的多通道协调加载的控制策略,而对每个单通道则采用了零相差前馈跟踪补偿的控制方式,并给出分析结果。最后以CRH3型高速动车组的非动力转向架为例,在AMESime-ADMAS/Rail联合仿真测试系统中进行了仿真测试,对本文提出的测试模型、加载方案及控制策略进行了验证。
     综上所述,论文在转向架悬挂刚度的动、静态测试方面建立了一整套新颖的、系统的测试模型和加载方案,实现了对高速列车转向架悬挂多项刚度参数的动、静态测试。
Since 2007 the railway has accelerated for the sixth time in large scale, the main railway lines have run more than 160 groups of“Harmony”D-prefaced trains at the speed of 200km/h. The speed accelerates from 160km/h to 200km/h, and the speed of some section reaches 250km/h. In 2008 Jing-Jin inter-city high speed railway was run successfully and the highest speed reaches 400km/h.
     With the batches running of high-speed multiple units, continuously raising speed of high-speed trains brought economic benefit and social benefit to railway department, meanwhile, a series of technical difficulties were put forward. aim at bogie dynamic performance research and product development . As the unique running gear of railway vehicle, whether it rational about itself suspension parameters is closely related to the running safety, passing ability and passenger comfort, which react a decisive role to the running quality, the exploitation of bogie suspension stiffness parameters test bench to the promote train running stability and passenger comfort possess intuitive practical significance.
     At present, bogie parameters test benches at home and aboard have the characteristics of high price are expensive, long maintenance cycle and high maintenance cost, what is more, they can not evaluate bogie suspension stiffness roundly, accurately and efficiently, therefore, they can not be widely applied in the production of domestic rail vehicles. For these reasons, manufacture and development reasonable structure,simple testing method, comprehensive test function, reliable test function about high-speed train bogie stiffness parameters test benche system seems especially important.
     This paper focuses on the close relation between bogie suspension parameters and running quality. This paper makes a deep research on the new testing methods and new testing systems of bogie suspension positioning stiffness for high speed trains, based on the full research of the present situation of bogie parameter testing techniques at home and aboard. According to the current standard at home and aboard and specific requirements of the project, this paper makes a profound research on the new methods and novel testing systems of high-speed bogie suspension positioning stiffness and establishes a set of bogie suspension positioning parameters of testing models and testing methods. Centered on these new testing systems, the main contents of the study and the results are as follows:
     1、A set of bogie suspension positioning stiffness about static as well as dynamic testing models and testing methods were established. According to the structure characteristic of high-speed bogie simplified model, this paper puts forward various stiffness parameters testing models and testing methods, which including: static test about primary suspension, secondary suspension as well as composite positioning stiffness at vertical, transversal and longitudinal, addition some rotary stiffness and radial stiffness test models in each department be included also. Made further research on suspension incentive method and dynamic stiffness test method, established bogie elastic support spatial coupling motion model, deep analysed bogie model basing on coupling motion also. Proposed various stiffness parameters about dynamic testing models and methods, which including: dynamic test about primary suspension, secondary suspension as well as composite positioning stiffness at vertical, transversal and longitudinal. The stiffness dynamic characteristic of secondary suspension air spring has been researched also. According to these theoretical analysis and study about test models, for this implementation scheme of novel testing bench laying a foundation.
     2、Designed as well as developed a novel testing bench system of bogie stiffness parameters. Basis for this project technical regulation, the structure and function has been expounded exhaustivly, a novel system of high-speed railway train suspension positioning stiffness test bench has been developed, mainly analyzed composition, structure, practical function about mechanical system, hydraulic system and measurement system, established bogie testing bench system. Taken for vantage point of bogie testing, made analysis about force condition in the process of bogie testing. Made thorough study on motion solution model of 6-dof loading plate and double cross loading slipway, established motion solution model of double cross loading slipway, deeply analyzed 3-dof moving posture about one of the double cross loading slipway as well as functional relation of 3 cylinders coordinated loading, then take X-Y direction translatory moving as well as round rotation center O rotatedψ-angle about cross-slipway for instance, to resolve 3 cylinders length. Determined the functional relation between 6-dof loading plate posture and 7 cylinders coordinated loading, taken 6-dof loading plate for instance, analyzed output error cause of plate also, proposed compensation algorithm of plate coupled motion.By detail design and deep analysis ,the novel high-speed train bogie stiffness testing bench system has been established.
     3、Research on control strategy of hydraulic loading system. According to the feature of hydraulic loading system, multivariate coordinated loading control strategy using RBF-network has been proposed, a controller of Zero Phase Error Tracking(ZPETC) using in every single hydraulic loading system has been designed. Carried out theoretical analysisand verification Aiming at single channel control effect as well as multi-channel coordinated loading capacity, for this preparative of simulation test system. simulation results show that the ZPETC can improve control effect of single hydraulic system with significantly, meanwhile, the ZPETC can eliminate amplitude error and phase error also, which made their error close to zero nearly. Using the control strategy of RBF-network on-line setting PID parameters coordinated individual cylinder’s motion, realized individual plate’s expected loading target.
     4、Established a co-simulation testing system of bogie. Taken the CRH3 bogie that without power for instance, established dynamics models both complete vehicle and independent bogie. According to the bogie testing models and method about static as well as dynamic, structural features, control strategy of hydraulic system, to carry out simulation test and verification work for these models in the environment of AMESim-Adams/Rail co-simulation test. Through the analyzing of simulation curves, verified the fact that testing results can reflect each suspension stiffness’s actual situation, obtained satisfied result, besides that, verified test model’s correctness and test bench construction design’s rationality, meanwhile, the hydraulic system can realize anticipated loading to bogie, these working proved the novel test bench system can realize testing about dynamic as well as static of bogie suspension locating stiffness, which reduced the development cycle and cost also.
     The research and the development work made by this paper is a whole system about test method as bonding phase test bench of bogie suspension stiffness, test bench construction, loading mode, control algorithm and emulation method own certainly unique feature. For the manufacture and extension about this novel test bench system laid a foundation. The results of this paper play a positive role to promote the technical content, shorten cycle of product development as well.
引文
[1].张曙光.高速列车设计方法研究[M].北京:中国铁道出版社,2009.
    [2].中国广播网.武广铁路客运专线跑出394.2公里每小时的时速[EB/OL]. (2009-12-10). http://www.cnr.cn/gundong/200912/t20091210_505737852_1.htm.
    [3].中华人民共和国国家标准.铁道车辆动力学性能评定和试验鉴定规范[S].GB/T 5599-1985.
    [4].中华人民共和国铁道行业标准.铁道客车转向架通用技术条件[S].TB/T 1490-2004.
    [5].中华人民共和国铁道行业标准.内燃机车转向架技术条件[S].TB/T 2740-2003.
    [6].中华人民共和国铁道行业标准.铁道车辆强度设计及试验鉴定规范[S].TB/T 1335-1996.
    [7].中华人民共和国铁道行业标准.铁道机车动力学性能试验鉴定方法及评定标准[S].TB/T 2360-1993.
    [8].中华人民共和国铁道行业标准. 200km/h及以上速度级电动车组动力学性能试验鉴定方法及评定标准[S].TB/T 5599-2008.
    [9].倪文波.铁道车辆转向架性能参数测试台[J].机床与液压,2002,29(6):237-238.
    [10].张卫华.机车车辆运行动态模拟研究[M].成都:西南交通大学出版社,2006.
    [11].魏培虎,张济民.货车转向架动力学参数测试方法研究[J].铁道车辆2006, 40(6):16-18.
    [12].任利惠,张辉,胡用生.货车转向架动力学参数测试台研究与试验[J].中国铁道科学,2001, 22(3):72-77.
    [13]. E.H.Law,N.K.Cooperrider.铁道车辆动力学研究述评[J].动态系统测量及控制,1974,98(2):132-146.
    [14]. Vijay K.Garg, Rao V. Dukkipati.铁道车辆系统动力学[M].成都:西南交通大学出版社,1998.
    [15].铁道科学研究院高速铁路技术研究总体组.高速铁路技术[M].北京:中国铁道出版社,2005.
    [16].董锡明.高速动车组工作原理与结构特点[M].北京:中国铁道出版社,2007.
    [17]. ZENG JING. Numerical Analysis of Nonlinear Stability for Railway Cars[J]. Chinese Jounal of Mechanical Engineering.2001,14(2):97-100.
    [18].董锡明.近代高速列车技术进展[J].铁道机车车辆,2006,26(5):1-10.
    [19]. ZENG JING, ZHANG JIYE, SHEN ZHIYUN. Hopf Bifurcation and Nonlinear Oscillations in Railway Vehicle System[J].Vehicle System Dynamics,1999,33(6):552-564.
    [20].池茂儒,张卫华,曾京等.高速客车转向架悬挂参数分析[J].大连交通大学学报,2007,28(3):14-18.
    [21].李芾,安琪,付茂海等.高速动车组转向架的发展及其动力学特性综述[J].铁道车辆,2008,46(4):6-8.
    [22].严隽耄.车辆工程[M].北京:中国铁道出版社,2003.
    [23].张洪.基于运行模态识别的铁路客车动力学特性研究[D].上海:同济大学,2005.
    [24]. H.Scheffel.铁道车辆悬挂的新设计[M].南非:国际铁道出版社,1974.
    [25].计强.新一代货车通用性能参数试验台研究[D].成都:西南交通大学,2005.
    [26].张立民,董铁军.铁道车辆悬挂系统振动特征频率灵敏度分析[J].振动与冲击,2009,28(1):28-29.
    [27].王兴宇,苏建,刘玉梅等.一种新型转向架刚度试验台设计及测试方法研究[J].铁道车辆,2009,47(10):6-10.
    [28].王兴宇,苏建,刘玉梅等.基于Cosmosworks转向架刚度试验台优化设计分析[J].电力机车与城轨车辆,2009,32(3):34-36.
    [29].王兴宇,苏建,刘玉梅等.基于虚拟仪器的转向架测控系统的构建[J].机械制造,2009,47(10):66-68.
    [30]. B.M.Eikhoff,J.R.Evans,A.J.Minnis.A Review of Modeling Methods for Railway Vehicle Suspension Components. Vehicle System Dynamies[J].1995,24(5):469-496.
    [31].刘宏友.高速列车中的关键动力学问题研究[D].成都:西南交通大学,2003.
    [32].高利民,马志援.货车转向架参数测试台的研制[J].铁道车辆,2000,138(5):35-37.
    [33].夏禾.车辆与结构动力相互作用[M].北京:科学出版社,2002.
    [34]. Wickens A. H. The Dynamic Stability of Railway Vehicle Wheel-set and Bogies Having Profiled Wheels[J].Inst.J.Solids Structure, 1965,32(1):318-339.
    [35].张以民.机械振动[M].北京:清华大学出版社,2007.
    [36].李芾,安琪,王华.高速动车组概论[M].成都:西南交通大学出版社,2008.
    [37].张卫华,陈良麒,黄丽湘.车辆参数测定方法的研究[J].铁道车辆,2000,38(12):3-4.
    [38]. Testing and approval of railway vehicles from the point of view of their dynamic behavior-Safety-Track fatigue-Ride quality[S]. UIC518.
    [39]. BS ENV 12299:1999 Railway applications-Ride comfort for passengers Measurement and evaluation[S].
    [40].赵明生.机械工程手册(第二版)[M].北京:机械工业出版社,1996.
    [41].蒋伟.机械系统动力学[M].北京:中国传媒大学出版社,2005.
    [42]. J.H.金斯伯格.机械与结构振动[M].北京:中国宇航出版社,2005.
    [43]. SOIZE,C.A. Model and Numerical Method in the Medium Frequency Range for Vibroacoustic Prediction Using the Theory of Structural Fuzzy[J].Acoustical Society of America,1993,94:849-865.
    [44]. PIERCE. Acoustics[M]. New York:Acoustical Society of America,1981.
    [45]. EWINS D.J.Modal Testing: Theory and Practice [M].England Letchworh: ResearchStudies Press Ltd.,1986.
    [46]. NEWLAND. Mechanical Vibration Analysis and Computation[M].White Plains:NY Longman Scientific and Technical,1989.
    [47]. DEN HARTOG, J.P. Mechanical Vibration [M]. New York: McGraw-Hill, 1956.
    [48]. S.M, Kelly.机械振动[M].北京:科学出版社,2002.
    [49].罗元文.用MTS试验机进行动刚度测试的试验研究[J].湖北工学院学报,2007,12(3):56-57.
    [50]. T Yagi ,A Stensson,C Hardell. Simulation and visualization of the dynamic behavior of an overhead power system with contact breaking[J].Vehicle System Dynamics, 1996,25(1):31-49.
    [51]. S D Iwnicki,A H Wickens.Validation of a MATLAB railway vehicle simulation using a scale roller rig[J] .Vehicle System Dynamics,1998,30(2) :257-270.
    [52]. K. KNothe, F. Bohm. History of Stability of Railway and Road Vehicle [J].Vehicle System Dynamics. 1999,315(3):5-6.
    [53].袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社,1992.
    [54]. Zeng J,Wu P B. Stability Analysis of High Speed Railway Vehicles[J].The Japan Society of Mechanical Engi-neers International Journal SeriesC,2004, 47 (2):464-470.
    [55].翟婉明.车辆-轨道耦合动力学[M].北京:科学出版社(第三版),2007.
    [56]. Zeng J. Numerical Analysis of Nonlinear Stability of Railway Vehicle [J].Chinese Journal of Mechanical Engineering, 2001,14(2):97-100.
    [57]. X. Wang, J. Su, Y. Liu, D. Zhou.Research on dynamic measuring system and model of novel high speed railway vehicle bogie[C].ICCTP,Aug,2009.
    [58]. Dukkipati R V, Narayana swamy S, Osman M. Independently rotating wheel systems for railway vehicles- a state of the art review .Vehicle System Dynamics[J], 1992, 21(21):297-330.
    [59]. Y. Suda. High Speed Stability and Curving Performance of Longitudinally Asymmetric Trucks with Semi-active Control.Vehicle System Dynamics[J].1994, 23(23):29-52.
    [60].张振淼.城市轨道交通车辆[M].北京:中国铁道出版社,1998.
    [61].全国汽车标准化技术委员会.汽车悬架用空气弹簧橡胶气囊[S].GB/T 13061-1991.
    [62].中华人民共和国铁道行业标准.铁道车辆用空气弹簧试验方法[S].TB/T 2841-2005.
    [63].刘增华.铁道车辆空气弹簧动力学特性及其主动控制研究[D].成都:西南交通大学,2007.
    [64].赵明生.机械工程手册第二版[M].北京:机械工业出版社,1996.
    [65]. Railway applications-Rubber suspension components-Rubber diaphragms forneumatic suspension springs[S]. BSEN13597,1997.
    [66]. Bachrach, B.I. and Rivin, E. Analysis of a Damped Pneumatic Spring .Journal of Sound and Vibration[J],1993,86(2):191-197.
    [67]. Hostens K,Deprez H Ramon. An improved design of air sus-pension for seats of mobile agricultural machines[J].Journalof Sound and Vibration,2004, 276(2):141-156.
    [68].丁良旭.空气弹簧悬挂特性的计算机模拟[J].中国公路学报.1997.10(3):97-104.
    [69].吴善跃,黄映云.有限元法计算长方型橡胶控制弹簧隔振器的垂向刚度[J].噪声与振动控制.2002,22(5):16-18.
    [70]. W.Geuenich, Ch Gunther, R.Leo. The Dynamics of Fibre Composite Bogies with Creep-Controlled Wheelsets[J].Vehicle System Dynamics, 1983, 12-16.
    [71].王士杰.复合材料学导引[M].重庆:重庆大学出版社,1987.
    [72]. Toyofuku. Katuya. Study on Dynamic Characteristic Analysis ofAir Spring with Auxiliary Chamber[J]. JSAE Review, 1999, 20(3):350-355.
    [73]. Giuseppe Quaglia, Massimo Sorli. Ari Suspension Dimension-less Analysis and Design Procedure[J]. Vechicle System Dy-namics, 2001,35(6):443-475.
    [74]. Alf Homeyer,Carsten Massmann,Hannover. Mode-rne Verfahren zur Auslegun von Luftfeder systemen[J].ZEV,1998,9(10):549-553.
    [75].原亮明,宫相太,王渊等.铁道车辆空气弹簧-可变节流阀垂向动态特性的研究[J].铁道学报,2005,27(1):40-44.
    [76]. Giuseppe Ouaglia, Massimo Rorli.Air Suspension Dimensionless Analysis and Design Procedure[J].Vehicle System Dynamics, 2001,35(6):443-475.
    [77].张卫华.机车车辆动态模拟[M].北京:中国铁道出版社,2006.
    [78]. Toyofuku. Katuya. Study on Dynamic Characteristic Analysis ofAir Spring with Auxiliary Chamber[J]. JSAE Review,1999,20(3):350-354.
    [79]. Esat I. Genetic Algorithm-based Optimization of A Vehicle Suspension System[J]. J.Vehicle Design, 1999,212/3, 21(2/3):148-160.
    [80].严隽耄,傅茂海.车辆工程[M].北京:中国铁道出版社,2008.
    [81].中华人民共和国铁道行业标准.铁道车辆用空气弹簧试验方法[S].TB/T2841-2005.
    [82].张宪荣.工业设计理念与方法[M].北京:北京理工大学出版社,1996.
    [83]. KNight,T.Wdissmam, Color Grammars:The Representation of Form and Color in Design[J].LEONARDO.1993,26(2):117-124.
    [84]. Whllanee, R.David, Jakieia, Mark J. Automated Produet Coneept Design. Unifying Aestheties and Engineering[C].IEEE CG&A.1993, July:66-75.
    [85]. Tushar.H Dani,Rajit Gadh. Creation of concept shape designs via a virtual Reality interfaee[J].Computer-Aided Design,1997,29(8):555-563.
    [86]. Tong Shao-cheng,Chen Bin,Wang Yong-fu. Fuzzy Adaptive Output FeedbackControl for MIMO Nonlinear Systems[J] .Fuzzy Sets and Systems, 156(2):285-299 .
    [87].陆元章.现代机械设备设计手册[M].北京:机械工业出版社,1996.
    [88].陆一心.液压阀使用手册[M].北京:化学工业出版社.2009.
    [89].北京富力通达.试验软件产品-全数字伺服控制系统软件功能[EB/OL].(2009-5). http://www.bjfts.com/products/ruanjian.htm.
    [90].关广丰.液压驱动六自由度振动试验系统控制策略研究[D].哈尔滨:哈尔滨工业大学,2007.
    [91].刘延柱,杨海兴,朱本华.理论力学[M].北京:科学出版社,2001.
    [92]. John F.Gardner. Dynamic Simulation of Planar Linkage Based on MATLAB /Simulink [M].Haerbin Technology University Press,2007.
    [93].于靖军,刘辛军,丁希仑等.机器人机构学的数学基础[M].北京:机械工业出版社,2008.
    [94]. Besinger F H, Cebon D and Coe D J. Force control of a semi-active damper[C].VSD, 1995,9:695-723.
    [95].王兴宇,苏建,张立斌,徐观,熊伟.新型转向架刚度试验台液压伺服系统设计分析[J].机床与液压,2009,37(9):86-89.
    [96]. Shen Cheng,Cao Guang-yi,Zhu Xin-jian. Nonlinear modeling of MCFC stack based on RBF neural networks identification[J].Simulation Modelling Practice and Theory, 2002,10(2):109-119 .
    [97].何玉彬.神经网络控制与大型智能电液伺服结构试验系统研究[D].西安:西安交通大学,1999.
    [98].汤志勇.神经网络变结构控制及其在电液伺服系统中应用的研究[D].西安:西安交通大学,1997.
    [99]. Zhang Wei-dong, Frank Allgower, Liu Tao. Controller Parameterization for SISO and MIMO Plants with Time-delay [J].Systems & Control Letters,2006,55(10): 795-801.
    [100]. Tong Shao-cheng, Chen Bin, Wang Yong-fu. Fuzzy Adaptive Output Feedback Control for MIMO Nonlinear Systems [J].Fuzzy Sets and Systems,156(2):286-298.
    [101]. Hui Peng, Tohru ozaki and Valerie haggan et al. A Parameter Optimization Method for Radial Basis Function Type Models [C].IEEE Trans. on neural network, 2003,2(14): 377-387.
    [102]. Angerer B T, Hintz C, Schroder D. Online Identification of a Nonlinear Mechatronic System [J]. Control Engineering Pratice, 2004, 39(12):1465-1477.
    [103].刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [104]. Hui Peng, Tohru ozaki,Valerie haggan et al. A Parameter Optimization Method for Radial Basis Function Type Models [C].IEEE Trans.on neural network,2003,2 (14):377-389 .
    [105]. J Gonzalez, I Rojas, H Pomares,et al. A New Clustering Technique for FunctionApproximation[J]. IEEE ACM Transactions on Networking. 2002,13(1):132-142 .
    [106].刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989.
    [107].陶永华.新型PID控制及其应用(第2版)[M].北京:机械工业出版社,2002.
    [108]. Atiya A, Ji C Y. How initial conditions affect generalization performance in large networks[C].IEEE Trans Neural Networks, 1997,82,8(2):448-451.
    [109]. Drucker H, Cun Y L. Improving generalization using double backpropagation [C]. IEEE Trans Neural Networks, 1992,36,3(6):991-997 .
    [110]. TOMIZUKA M.Zero phase error tracking algorithm for digital control [J].ASME Journal of Dynamic Systems Measurement and Control,1987,109(1):65-68.
    [111].颜晓河,施三保,夏泽中.高精度伺服系统的ZPETC控制仿真研究[J].计算机仿真2007, 28(9):121-123.
    [112].刘金琨.先进PID控制的MATLAB仿真(第2版)[M].北京:清华大学出版社,2004.
    [113].付永领.AMESIM系统建模和仿真:从入门到精通[M].北京:北京航空航天大学出版社,2006.
    [114].郑建荣.ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2002.
    [115].石博强,申炎华,宁晓斌等.ADAMS基础与工程范例教程[M].北京:中国铁道出版社.2007.
    [116].范成建,熊光明,周明飞等.虚拟样机软件MSC.ADAMS应用于提高[M].北京:机械工业出版社,2006.
    [117].佘建国,赵同铭.基于Adams和AMESim的海下平台拖缆系统的设计与联合仿真[C].海洋工程(第四届全国船舶与海洋工程学术会议论文集),2009,10:562-564.
    [118].晋兵营,林逸,施国标.基于AMESim的EPS系统的建模与仿真[J].江苏大学学报(自然科学版).2007,28(5):391-392.
    [119].高速铁路动车组.海子铁路网[EB/OL].(2009-09-12).http://bbs.hasea.com/thread- 387934-1-1.html.
    [120].丘铭军,赵航,姚培.AMEsim软件及其应用[J].筑路机械与施工机械化, 2008, 10(8): 60-61.
    [121].郭占正,苑士华,荆崇波等.基于AMESim的液压机械无级传动换段过程建模与仿真[J].农业工程学报,2009,25(10):86-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700