超低碳铜时效强化钢的焊接冶金研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大工程为背景,通过焊接热模拟和实际焊接试验,对主要用于船舶及海洋采油平台领域的铜时效强化钢的焊接冶金进行了系统地研究。
     绘制了超低碳铜时效强化钢焊接CCT图,从焊接CCT图可以发现:t8/5=3.7-7秒时,模拟焊接热影响区主要为马氏体+贝氏体组织,贝氏体铁素体主要为板条状。在贝氏体铁素体板条间分布着残余奥氏体。当t8/5≥15秒时,开始出现少量粒状贝氏体组织。当t8/5>45秒时,在晶界开始形成先共析铁素体,此时主要获得粒状贝氏体组织。在很宽的热输入范围内(t8/5=3.7~2500秒)均有贝氏体组织产生。随着t8/5的增大,模拟焊接热影响区中的铁素体量逐渐增多。在极快的冷却速度条件下(t8/5=3.7秒),试验钢焊接热影响区粗晶区硬度仅为286HV,说明钢种的淬硬倾向小,有利于防止冷裂纹的产生。t8/5>7秒后,热影响区的硬度开始低于基材,粗晶区将发生软化。t8/5=2500秒时,维氏硬度值降为187HV。因此,为避免焊接热影响区的软化,焊接时应注意控制焊接线能量。从焊接CCT图可以大致确定实际冷却时间t8/5最佳范围为7-35秒,即以中小线能量为宜。
     研究了单次焊接热循环条件下铜时效钢模拟焊接热影响区粗晶区的组织和性能变化特征。研究发现:热连轧的铜时效强化钢焊接热输入或线能量范围较窄,在较大热输入或线能量条件下,焊接热影响区粗晶区出现脆化。脆化的原因是t8/5较大时生成了大量的粒状贝氏体,降低了冲击韧性,t8/5较小时生成的板条贝氏体使含铜钢冲击韧性增加。t8/5大于7秒后,粗晶区开始出现软化。软化的原因是ε-Cu粒子的回溶和组织软化共同作用的结果。研究了M-A组元对铜时效强化钢粗晶热影响区韧性的影响。研究发现:M-A组元的尺寸和体积百分数对冲击韧性均有影响,其有效直径平均小于1gm,体积百分数小于5%,对冲击韧性影响不大;大于1μm,体积百分数大于5%,冲击韧性显著下降。通过控制焊接热输入来减少焊接热影响区粗晶区中M-A组元的有效直径和体积百分数,可有效提高铜时效强化钢的低温韧性。
     研究了铜时效钢模拟焊接热影响区不同区域的组织和性能变化特征。研究发现:当t8/5=15秒时,两相区的硬度最低,硬度值较基材下降了约50个HV单位,细晶区的硬度有所增加,粗晶区的硬度最高。母材中部分析出物的回溶以及铁素体组织的存在导致了两相区硬度降低。细晶区因晶粒细化使硬度有所恢复。粗晶区中铜的固溶强化以及贝氏体的产生又使硬度有所增加。细晶区冲击韧性最高,两相区其次,粗晶区冲击韧性最差。粗晶区低温韧性较低的原因是奥氏体晶粒长大及冷却之后得到的贝氏体尺寸也较大所致;细晶区的组织细化及得到的板条和块状混合结构使其具有良好的低温韧性。
     研究了二次焊接热循环条件下铜时效钢模拟焊接热影响区粗晶区的组织和性能变化特征。研究发现:二次焊接热循环条件下,临界粗晶区的韧性最低,具有明显的局部脆化倾向。冷却速度越慢,脆化现象越严重,脆化的原因是富碳的孪晶马氏体降低了冲击韧性。因此,实际多层多道焊时必须严格控制焊接热输入或线能量。
     建立了铜在焊接过程中回溶动力学模型,从模型可以看出,ε-Cu颗粒的体积分数随焊接过程发生变化。ε-Cu粒子初始尺寸,焊接加热的峰值温度是影响ε-Cu粒子回溶速度的主要因素。Cu在α-Fe中的扩散系数是间接影响因素。焊接加热的峰值温度越高,ε-Cu粒子初始尺寸越小,ε-Cu粒子的回溶速度越快。模拟试验结果与动力学模型计算结果具有一致性,当峰值温度高于1000℃时,ε-Cu粒子几乎完全固溶于基体中。
     为铜时效强化钢研制了气体保护焊配套焊丝,与国内外同类焊丝相比,无Mo元素,Ni含量降低,采用Mn-Ni-Cr-Cu为主要强化元素,并利用Ti、B微合金化,来保证焊丝良好的性能。研制的焊丝冲击功优于同类焊丝,V型缺口-40℃平均冲击功可达97J以上,具有优良的低温冲击韧性。
     进行了铜时效钢埋弧焊、气体保护焊和手工电弧焊对接试验。研究发现:所选择的焊接材料和焊接工艺,试验钢接头的抗拉强度完全能满足钢种的技术条件要求,接头三区-40℃平均冲击功大于73J,具有较大的韧性储备余量。无论是埋弧焊、气体保护焊、还是手工电弧焊,焊缝组织均为针状铁素体加少量先共析铁素体。粗晶区为贝氏体组织。针状铁素体使焊缝具有优良的低温韧性。气体保护焊、手工电弧焊热影响区因铜回溶而引起的软化现象不明显;埋弧焊靠近母材的热影响区存在轻微软化现象,这与模拟焊接热影响区不同区域得到的维氏硬度结果一致,两相区硬度最低,粗晶区硬度最高,说明实际焊接接头与模拟焊接热影响区具有较好的对应性。
     不等温应力松弛试验研究发现:铜时效强化钢再热裂纹敏感温度为669℃,断裂时间为63秒,再热裂纹敏感温度区间为669~695℃,属于再热裂纹敏感型的钢种。粗晶区经再次加热到650~700℃时,由于有Cr、Mo等碳化物在晶内析出,使晶内与晶界产生强度差,开裂就在高温强度较弱的晶界发生,形成再热裂纹的粗晶区沿晶特征。
This thesis based on physical simulation technology and arc welding is focused on the welding metallurgy of ultra low carbon copper-bearing age strengthening steels which are used in construction of shipbuilding and oil platform.
     The determination of SH-CCT diagram, single and double thermal cycles simulating the behavior of HAZ during welding were performed on a dynamic thermal machine. As can be seen from SH-CCT diagram, martensite and bainite are obtained in simulated CGHAZ with t8/5from3.7s to7s. Bainite is characterized by lath. Retained austenite is found among the bainitic ferrite laths. Granular bainite begins to form when t8/5is more than15s. Ferrite starts to be observed when t8/5is more than45s. The more heat is input, the more ferrite forms. The microstructure is predominantly bainite in a wide heat input range from3.7s to2500s. The SH-CCT diagram indicates that even under the condition of fairly rapid cooling (t8/5=3.7s), entire martensite in simulated CGHAZ has not been attained and Vickers hardness is only286HV. So the copper-bearing steel possesses a small hardening quenching tendency and an excellent resistance to cold cracking under the condition of no preheating and no postheating. While t8/5is more than7s, CGHAZ starts softening; that is to say, the hardness begins to be less than the one of base metal. The higher heat input leads to the more softening. The hardness decreases to187HV when t8/5is2500s. So it is proposed to choose t8/5ranging from7s to35s during welding to prevent softening.
     Single thermal cycle experiments show that copper-bearing steel has a narrow range of heat input or line energy. Under the condition of higher heat input or line energy, brittlement is easy to happen in CGHAZ. Granular bainite transformed from austenite leads to brittlement. On the contrary, lath bainitic ferrite formed with lower heat input can increase toughness. Softening begins to occur in CGHAZ (t8/5>7s). The dissolution of ε-Cu and coarser lath bainitic ferrite and more ferrite cause softening in CGHAZ. The effect of M-A constituents on the impact toughness in simulated CGHAZ was studied. The dimensions and area fraction of granular M-A constituents also influence the impact toughness. There is no visible effect on the toughness when the dimensions of M-A constituents are less than1μm and the area fraction is less than5%. The toughness decreases greatly once the dimensions exceed1μm and the area fraction is more than5%. Therefore, decreasing the dimensions and area fraction of M-A constituents by controlling welding heat input will do good to improve the impact toughness of copper-bearing steel.
     Experiments simulating the whole HAZ show that the softening phenomena take place in the whole heat-affected zones when t8/5is15s. The hardness in intercritical (ICHAZ) decreases by50HV compared with that of the base metal and it is the most softened region due to re-dissolving of precipitate phase and ferrite compared with other regions in HAZ. The slight increase in hardness in FGHAZ is connected with microstructure refinement. The formation of lath bainitic ferrite and the enhancement of copper solid solution strengthening cause the hardness recovery for CGHAZ. Even so, the hardness value in CGHAZ is still less than that of the base metal but the softening phenomenon is not evident. CGHAZ has relatively low impact toughness owing to the growth of austenite grain size and coarse lath bainitic ferrite when t8/5is15s. FGHAZ achieves better impact toughness for its short time maintaining at higher temperature after austenization to reduce the austenite grain size. ICHAZ has also good impact toughness.
     Double thermal cycle experiments demonstrate that obvious brittlement happens in the intercritically reheated CGHAZ. The reason is martensite twin formed and coarse granular bainite, which reduce the impact toughness. The higher heat is input, the more serious brittlement becomes. Thus, during multilayer welding, it is proposed to control strictly heat input.
     Kinetic model of ε-Cu re-solution during welding was established. The volume fraction of ε-Cu re-solution keeps changing during welding. The initial size of ε-Cu and the peak temperature mainly influence re-solution kinetics of ε-Cu. The diffusion coefficient of ε-Cu in α-Fe is the indirect reason to influence re-solution of s-Cu. The smaller the initial size of ε-Cu is, the higher the peak temperature is, and the more ε-Cu re-dissolve. Calculation results of the kinetic model and simulation results in HAZ reach an agreement, that is to say, when the peak temperature is more than1000℃, ε-Cu completely re-dissolve into matrix phase.
     Wire for GMAW was developed by using Mn-Ni-Cr-Cu as the main reinforcing elements, and Ti and B micro alloying without Mo and less Ni. Compared with the same strength grade for other wires in the world, this developed wire has excellent low temperature impact toughness and Charpy V-notch impact energy at-40℃is over97J.
     GMAW, SAW and SMAW tests were investigated using patent welding wires. The tests show that the joints get good impact toughness at low temperature for three welding methods and the average impact energy (-40℃) in the welding joints is more than73J with great allowance compared with the requirement. The tensile strengths completely meet the strength requirement of base metal. Acicular ferrites (AF) and some proeutectoid ferrites exist in the weld metal. The great amount of AF in the weld metal can significantly improve both the strength and the toughness of weld metal. Bainite is attained in actual CGHAZ. Softening phenomena are not obvious in welding joints for GMAW and SMAW. There exists a slight softening phenomenon approaching the base metal, which and simulation results have a consistency. That is to say ICHAZ has the lowest hardness value.
     Non-isothermal stress relief test results show that susceptible temperature of reheat cracking of copper-bearing steel is669℃and relevant cracking time is63seconds. The susceptible temperature interval is from669℃to695℃. So test steels have reheat cracking susceptibility. When CGHAZ is reheated to the temperature between650℃and700℃, intracrystalline strength is high for the distribution of carbonide of Cr and Mo. Intercrystalline failure cracking takes place owing to low strength on the grain boundary.
引文
[1]吴始栋.美国HSLA和HY系列钢及其焊接技术的开发与应用研究[J].中外船舶科技.2003,1:28-30.
    [2]GORNI A A, MEI P R. Austenite Transformation and Age Hardening of HSLA-80 and ULCB Steels [J]. J. of Materials Processing Technology,2004,155-156:1513-1518.
    [3]DHUA S K, MUKERJEE D, SARMA D S. Weldability and Microstructural Aspects of Shielded Metal Arc Welded HSLA-100 Steel Plates [J]. ISIJ International,2002,42(3):290-298.
    [4]YOO J Y, CHOO W Y, PARK T W, et al. Microstructures and Age Hardening Characteristics of Direct Quenched Cu Bearing HSLA Steel [J]. ISIJ Int.,1995,35(8):1034-1040.
    [5]BALAGUER J P, WANG Z, NIPPES E F. Stess-relief Cracking of A Copper-containing HSLA Steel [J]. Welding Research Supplement,1989,7:121s-131s.
    [6]BANADKOUKI S S, YU D and DUNNE D P. Age Hardening in a Cu-bearing High Strength Low Alloy Steel [J]. ISIJ International,1996,36(1):61-67.
    [7]LUNDIN C D, MENON R and LAWSON J M. HAZ Transformation and Toughness in A710 Grade A Class 3 Precipitation-strengthened Steel [J]. Welding Research supplement,1989,68(12):467s-472s.
    [8]VENKATRAMAN M, MAJUMDAR S and MOHANTY N. Modelling of Strength and Continuous Cooling Transformation Behavior of HSLA-100 Plate steel [J]. Ironmaking and Steelmaking,2001, 28(5):373-383.
    [9]HORNBOGEN E. A Metallographic Study of Precipitation of Copper from Alpha Iron [J]. Trans. Metall.Soc.,1960, AIME 218:1064-1070.
    [10]WRIEDT H A. The Solubility of Copper in Ferrite [J]. Trans. Metall. Soc.,1960, AIME 218:30-36.
    [11]LEHTINEN B AND HANSSON P. Characterization of Microalloy Precipitation in HSLA Steel Subjected to Different Weld Thermal Cycles [J]. Scand. J. Metall.,1989,18:295-300.
    [12]HORNBOGEN E. Precipitation from Binary Substitutional Solid Solution of Alpha Iron [C]. Symposium on Precipitation from Iron-based Alloys,1965, AIME,1-7.
    [13]ASHBY M F and EASTERLING K E. A First Report on Diagrams for Grain Growth in Welds [J]. Acta Metall.,1982,30:1969-1978.
    [14]SEN S K, RAY A, AVTAR R, et al. Microstructure and Properties of Quenched-and Aged Plates Produced from a Copper-bearing HSLA Steel [J]. J. of Mater. Eng. and Performance,1998, 7(4):504-510.
    [15]LLEWELLYN D T. Copper in Steels, Ironmaking and Steelmaking,1995,22(1):25-34.
    [16]ARAKI T. Bainitic Intermediate Microstructures of Very Low-C Steels [C]//Proceedings of the International Conference on Processing, Microstructure and Properties of Microalloyed and Other Modern HSLA Steels, Pittsburgh,1992,249-255.
    [17]THOMPSON S W, COLVIN D J and K.RAUSS G. Austenite Decomposition during Continuous Cooling of an HSLA-80 Plate Steel [J]. Metall. and Mater. Trans. A,1996,27A (6):1557-1571.
    [18]蔡廷文译.美国海军舰艇船体用钢[J].中外舰船科技,1995,3:12-17.
    [19]XUE Q, BENSON D and MEYERS M A, et al. Constitutive Response of Welded HSLA 100 Steel [J]. Mater. Sci. and Eng.,2003, A354:166-179.
    [20]高惠临,董玉华,R. W. Hendricks.超低碳QT钢焊接二次热循环的组织转变与局部脆化[J].金属学报,2001,37(1):34-38.
    [21]李大超.船体结构钢的现状及其发展趋势[J].武汉造船,1995,3:30.
    [22]CULLISON A.Two Paths. One Goal:a Consumable to Weld HSLA100 [J]. Welding J.,1994, 73(1):51-53.
    [23]GHOSH A, MISHRA B, DAS S et al. Microstructure, Properties, and Age Hardening Behavior of a Thermomechanically Processed Ultralow-carbon Cu-bearing High-strength Steel [J]. Metall. and Mater. Trans. A,2005,36A (3):703-712.
    [24]JESSEMAN R J and SCHMID G C. Submerged Arc Welding a Low-carbon Copper-strengthened Alloy Steel [J]. Welding Research Supplement,1983,12:321s-330s.
    [25]EWI. Evaluation of Low-preheat Welding Procedures for HSLA100 [J]. Welding J.,1995,74 (4):118-124.
    [26]户部阳一朗.潜水艇用材料的过去、现在、将来[J].防卫技术,1990,11:18-39.
    [27]董文卜,傅作宝.舰艇用钢的新发展[J].鞍钢技术,1994,9:16-23.
    [28]毛卫民,任慧平.含铜结构钢的发展[J].钢铁,2000,35(6):49-53.
    [29]KICHIDA K(岸田宏司)and AKISUEO(秋末冶).Effect of Copper Content on Mechanical Properties of Continuously Annealed Extra-low-carbon Titanium-added Steel Sheets [J]. Tetsu-To-Hagane,1990,76:759-766.
    [30]LIU W Y, WANG L, LIU J B, et al. Microstructures and Toughness in Simulated Coarse Grain Heat-affected Zones of Copper-bearing Steel [J]. Materials Science Forum,2008,575-578:910-914.
    [31]刘文艳,王来,刘吉斌,等.含铜时效钢模拟焊接热影响区的组织与性能[J].焊接学报,2008,29,5:93-96.
    [32]冼爱平,张盾,王仪康.钢中残余元素及其对钢性能的影响[J].钢铁,1999,10:64-68.
    [33]李正邦.超洁净钢的新进展[J].材料与冶金学报,2002,1(3):161-165.
    [34]TAK.AHASHI A and LINO M. Microstructural Refinement by Cu Addition and Its Effect on Strengthening and Toughening of Sour Service Line Pipe Steels [J]. SIJ Inter.,1996,36:241-245.
    [35]刘宗昌,安治国,任慧平.含铜高纯低碳钢及其沉淀强化[J].国外金属热处理,2005,26(4):11-16.
    [36]SPEICH G R, GULA J A and R.M.FISHER R M. The Electron Microprobe [J]. John Wiley & Sons, 1966,525-530.
    [37]王九清,王文亮,吴建鹏.提高低合金高强度钢强韧性的措施[J].宽厚板,2001,7(5):10-15.
    [38]MASSALSKI T B. Binary Alloy Phase Diagrams [J]. Ohio:ASM,1986,1:915-919.
    [39]杨才福,张永权.新一代易焊接高强度高韧性船体钢的研究[J].钢铁,2001,36(11):50-54.
    [40]OKADA H, MATSUDA F, LI Z. Decomposition Behavior of M-A Constituent and Recovery of Toughness [J]. Quartly J. Japan Weld Society,1994,12(3):398-403.
    [41]JESSEMAN R J and MURPHY G J. Precipitation Hardening Alloy Steel Provides Strength and Low Temperature Toughness under Severe Service Conditions [J]. Industrial Heating,1979,9:27-32.
    [42]THOMPSON S W. COLVIN D J and KRAUSS G. Continuous Cooling Transformations and Microstructures in a Low-carbon, High-strength Low-alloy Plate Steel [J]. Met. Trans. A,1990, 21 A:1493-1507.
    [43]DUNNE D P, BANADKOUKI S S G and YU D. Isothermal Transformation Products in a Cu-bearing High Strength Low Alloy Steel [J]. ISIJ International,1996,36(3):324-333.
    [44]GOODMAN S R, BRENNER SS, LOW J R. J. Met. Trans.,1973,4:2363-2369.
    [45]OTHEN P J. Philosophical Magazine A,1994,70(1):1-7.
    [46]HO WELL P R. Microstructural Development in HSLA-100 Steel Weld Metals [C]//Paper Received from Author at David Taylor Research Center Meeting on HSLA-100 Steel,1990,10.
    [47]KRISHNADEV M R, SOJKA G J, BANERJI S K. Engineering Mater. Technology,1981,103: 207-215.
    [48]ZIKEEV V N. Met. Sci. Heat Treatment,1986,28:11-16.
    [49]刘静,文慕冰,吴国运等.Cu对IF钢再结晶动力学的影响[J].金属学报,1999,35(1):57-61.
    [50]陆在学,汪福成,张云燕,等.高强度高韧性海洋钻井平台钢A710-PT的研制[J].钢铁研究,2005,6:17-25.
    [51]王学敏,周桂峰,杨善武等.不同Cu含量超低碳钢中的时效行为[J].金属学报,2000,36(2):113-119.
    [52]MARUYAMA N, SUGIYAMA M, HARAT, et al. Precipitation and Phase Transformation of Copper Particles in Low Alloy Ferritic and Martensitic Steels [J]. Mater. Trans. JIM,1990, 40:268-277.
    [53]MIKALAC S J, et al. HSLA,1991,331.
    [54]CZYRYCA E J. Advances in High Strength Steel Technology for Naval Hull Construction [J]. Key Eng. Mater.,1993,84-85:491-520.
    [55]朱炳琨.HSLA-80/100钢的焊接[J].兵器材料科学与工程,1998,21(6):59-64.
    [56]陈楚,张月嫦著.焊接热模拟技术[M].北京机械工业出版社,1985.
    [57]李志远,胡伦骥,刘建华.焊接再热裂纹的模拟试验研究[C].第六届全国焊接学术会议论文集(第二集),西安,1990,180-184.
    [58]唐虹.利用焊接热模拟法评40Cr钢的再热裂纹敏感性[J].望江科技,1989,1:41-45.
    [59]罗志昌,陈佩寅,鹿安理,等.利用热模拟技术研究焊接粗晶区的再热脆性和再热裂纹敏感性[C].全国动态热/力模拟技术学会论文集.哈尔滨,1990,62-65.
    [60]姜运健,孙裕昌,李禄臣.102钢焊口粗晶区性能对产生再热裂纹的影响[J].河北电力技术,1992,4:4-8.
    [61]NIPPES E F and SAVAGE W F. Development of Speicmen Simulating Weld Heat-affected Zones [J]. Welding J.,1949,28(11):543-546.
    [62]NIPPES E F and SAVAGE W F. Tests of Specimens Simulating Weld Heat-affected Zones [J]. Welding J.,1949,28(12):599-616.
    [63]张文钺.国外焊接技术.1978,20(3):1-19.
    [64]张田宏,张俊旭,邓晚平,等.10Ni8CrMoV钢热影响区粗晶区组织和性能研究[J].焊接,2006,8:43-46.
    [65]彭云,田志凌,何长红,等.400MPa级超细晶粒钢板焊接热影响区的组织和力学性能[J].焊接学报,2003,24(5):21-24.
    [66]陈俊华,亓效刚,李华宾,等.Ti-V-Nb微合金钢中的第二相粒子及其对焊接热影响区奥氏体晶 粒长大的影响[J].热加工工艺,2004,6:13-15.
    [67]尹桂全,查显著,陆佰忠STE355(?)(?)焊后显微组织中的粒贝及其对韧性的影响[J].焊接学报,2003,24(2):55-58,
    [68]尹十科,郭怀力,王移山.焊接热循环对10Ni5CrMoV钢组织的影响[J].焊接学报,1996,17(1):25-30.
    [69]邬占田,郭久柱,周振华.低合金高强钢20Mn2WNbB焊接热模拟粗晶区组织与性能[J].焊接学报,1995,16(1):40-44.
    [70]FERGUSON H S and CHEN W C. Development of Gleeble System and Its Application [C].中-美双边暨第二届全国材料物理模拟会议论文集.哈尔滨,1996,28:12-33.
    [71]柴锋,杨才福,张永权,等06NiCuCrMoNb钢焊接热影响区组织与性能研究[C].全国材料与热加工物理模拟与数值模拟学术年会论文集,哈尔滨.2005,244-251.
    [72]SPANOS G, FONDA R W, VANDERMEER R A, et al. Microstructural Changes in HSLA-100 Steel Thermally Cycled to Simulate the Heat-affected Zone during Welding [J]. Metall. and Mater. Trans.1995,26A:3277-3293.
    [73]BAYRAKTAR E, KAPLAN D. Mechanical and Metallurgical Investigation of Martensite-austenite Constituents in Simulated Welding Conditions [J]. J. of Mater. Proce. Tech.,2004,153-154:87-92.
    [74]LAMBERT A, DRILLET J, GOURUES A F, et al. Microstructure of M-A Constituent in HAZ of HSLA Steel Welds in Relation with Toughness Properties [J]. Sci. Technol. Welding Joining,2000, 5(2):1-13.
    [75]AKSELSEN O M, GRONG Q and SOLBERG J K. Effects of M-A Islands on Intercritical HAZ of Low-carbon Microalloyed Steels [J]. Scand. J. Metall.,1988,17:194-199.
    [76]FUKUHISA, MATSUDA. Review of Mechanical and Metallurgical Investigation of Martensite-austenite Constituent in Welded Joints in Japan [J]. Welding in the World,1996,137 (3): 134-154.
    [77]DAVIS C L and KING J E. Cleavage Initiation in ICCGHAZ. Part Ⅱ. Failure Criteria and Statistical Effects [J]. Metall. Mater. Trans.,1996, A27:3019-3029.
    [78]IKAWA H, OSHIGE H, TANOUE T. Study on the Martensite-austenite Constituent in Weld Heat Affected Zone of High Strength Steel, Japan Weld Society,1980:49-62.
    [79]三村宏.铁と铜,1972,58:1822.
    [80]王青峰,李平和,缪凯,等.铜时效贝氏体钢焊接热影响区软化现象的研究[C].全国材料与热加工物理模拟与数值模拟学术年会论文集,哈尔滨.2002,85-90.
    [81]柴锋,徐洲,杨才福,等.含铜时效钢气体保护焊热影响区的组织与性能[J].焊接,2005,9:43-47.
    [82]陈大伟.铜和铌对HSLA钢多层焊焊缝组织和性能的影响[D].燕山大学硕士论文,2006..
    [83]牛济泰.材料和热加工领域物理模拟技术[M].国防工业出版社,1999.
    [84]机械电子工业部哈尔滨焊接研究所编.国产低合金钢焊接CCT图册[M].北京:机械工业出版社,1990.
    [85]林慧国,傅代值著.钢的奥氏体转变曲线:原理、测试与应用[M].北京:机械工业出版社,1988.
    [86]刘吉斌.RPC超细组织钢的焊接物理冶金研究[D].华中科技大学博士论文,2005.
    [87]顾钰熹,干宗杰编.焊接连续冷却转变图及其应用[M].机械工业出版社,1990.
    [88]李亚江著.焊接组织性能与质量控制[M].北京:化学工业出版社,2005.
    [89]刘文艳,袁桂莲,刘吉斌,等.Gleeble2000热模拟试验机的典型应用[J].武汉工程职业技术学院学报,20007,4:1-4.
    [90]王青峰,钟鄂康,蔡建华,等.Gleeble2000试验机的故障诊断[C].全国材料与热加工物理模拟与数值模拟学术年会论文集,哈尔滨,2002,103-108.
    [91]荆洪阳译.结构钢的焊接[M].冶金工业出版社,2004.
    [92]徐学利,辛希贤,石凯,等.焊接热循环对X80管线钢粗晶区韧性和组织的影响[J].焊接学报,2005,26(8):69-72.
    [93]李友,李强,王嘉麟.P460NL1钢的焊接热影响区粗晶区组织和性能[J].尔北大学学报(自然科学版),2001,22(2):150-153.
    [94]方洪渊,魏金山,张田宏.10CrNi3MoV钢焊接热影响区组织和晶粒度研究[J].材料科学与工艺,2003,11(3):240-243.
    [95]周振丰,张文钺著.焊接冶金与金属焊接性[M].北京:机械工业出版社,1993.
    [96]薛小怀,周昀,钱百年,等.X80管线钢焊接粗晶区组织与韧性的研究[J].上海交通大学学报,2003,37(12):1854-1857.
    [97]方鸿生,王家军,杨志刚,等著.贝氏体相变[M].科学出版社,1999.
    [98]邹增大,李亚江,尹士科著.低合金调质高强度钢焊接及工程应用[M].化学工业出版社.2000.
    [99]李纪委.含硅钢纳米贝氏体组织形成研究[D].天津理工大学硕士论文,2008.
    [100]AARONSON H 1. The Mechanism of Phase Transformations in Crystalline Solids [J]. The Institute of Metals, London,1969,270-281.
    [101]BOSWELL P G, KINSMAN K R, SHIFLET G J, et al. Mechanical Properties and Phase Transformations in Engineering Materials [J]. TMS-AIME, Warrendale, PA,1986,445-455.
    [102]王家军,方鸿生,郑燕康,等.贝氏体铁素体片条的超微亚结构观察[J].兵器材料科学与工程,1993,16(4):3-5.
    [103]方鸿生,王家军,杨志刚,等.下贝氏体组织的扫描隧道显微镜研究[J].自然科学进展,1993,3(6):525-538.
    [104]FUJITA, YOSHIE A, MORICAWA H. Formation of M-A Constituent in the Plate Produced with Thermo-mechanical Control Process and Its Effect on Toughness [J], CAMP-ISU,1988,1 (6): 1737-1745.
    [105]HIRAI Y. Effect of Martensite-austenite Constituent on High Strength Steel Weldments [J]. Japan Weld Society,1981,50(1):37-46.
    [106]OKADA H, MATSUDA F, LI Z. The Behavior of M-A Constituent in Simulated HAZ with Single and Multiple Thermal Cycle [J]. Quartly J. Japan Weld Society,1990,12(1):126-131.
    [107]KOMIZO Y, FUKADA Y. CTOD Properties and M-A Constituent in the HAZ of C-Mn Micro-alloyed Steel [J]. Quartly J. Japan Weld Society,1988,8(2):41-52.
    [108]KAPLAN D and LAMBERT A. Influence of M-A Constituents on HAZ of C-Mn Steel Welds [J]. La Revue de Metallurgie-CIT,2001,10:889-898.
    [109]王青峰.含铜超低碳贝氏体钢焊接冶金的研究[D].华中理工大学博士论文,2000.
    [110]余大涛,李岩,高惠临.X65管线钢二次焊接热循环的局部脆化[J].焊管,2001,24(5):11-16.
    [111]徐学利,辛希贤,智彦利.X80管线钢焊接二次热循环粗晶区的韧性和显微组织研究[J].机械工程材料,2005,29(12):49-52.
    [112]钱白年.管线钢的局部脆性研究[J].焊管.1993,6(6):24-29.
    [113]Yukio Tomita et al, Development of 590-MPa Class High Tensile Strength with Superior HAZ Toughness by Copper Precipitation Hardening [J], ISIJ International,1994,34 (10):836-842.
    [114]彭冀湘,张田宏,杜义,等.二次焊接热循环对超高强度钢过热区冲击性能的影响[J].材料开发与应用,2006,21(3):23-25.
    [115]张伟10CrNi5MoV钢二次焊接热循环局部脆化研究[J].材料开发与应用,2004,19(3):25-28.
    [116]李玉衡,包芳涵.低碳低合金钢焊接热影响区组织遗传性及其对韧性的影响[J].焊接学报,1987,8(4):56-60.
    [117]王建会.X60管线钢焊接粗晶区组织遗传及韧性的研究[D].华中理工大学硕士论文,1994.
    [118]柴锋,杨才福,张永权,等.粒状贝氏体对超低碳含铜时效钢粗晶热影响区冲击韧性的影响[J].钢铁研究学报,2005(1):42-46.
    [119]李亚江,邹增大,吴会强,等.HQ130钢热影响区的ICHAZ区组织性能[J].焊接学报,2001,22(2):54-58.
    [120]余永宁编.金属学原理[M].冶金工业出版社,2007.
    [121]OZBAYSAL K and INAL O T. Age Hardening Kinetics and Microstructure of 15-5 Stain Steel after Laser Melting and Solution Treating [J]. J. of Mater. Sci.,1994,29:1471-1480.
    [122]蔡大勇.GH169及GH696高温合金热加工工艺[D].燕山大学博士论文,2003.
    [123]GUI C B, YANG S H, XIONG Z, et al. Simulation for Weld Thermal Cycle Using Model of Carbontride Particles Precipitation [J]. Acta Metallurgica Sinica,2000,13(1):145-150.
    [124]贺信莱,尚成嘉,杨善武.高性能低碳贝氏体钢[M].冶金工业出版社,2008.
    [125]MORITA M. Factors Affecting Texture Formation of Cu-precipitation Harding Cold-rooled Sheet [J]. ISIJ International,1994,34(1):92-98.
    [126]刘继雄,干青峰,李平和,等.高性能耐火耐候建筑用钢焊接性能研究[J].钢铁,2002,37(12):40-44.
    [127]刘文艳,刘吉斌,王来,等.含铜时效钢焊接性能研究[J].第四届中国金属学会青年学术年会论文集,2008,10.
    [128]张文钺著.焊接冶金学[M].机械工业出版社,2004.
    [129]史耀武编.中国工程材料大典-材料焊接工程(上)[M].北京:化学工业出版社,2006.
    [130]黄治军.高性能管线钢焊接性能及焊接材料研究[D].华中科技大学博士论文,2007.
    [131]尹十科,王移山,朱明生等.世界焊接材料手册[D].北京:中国标准出版社,1996,145-386.
    [132]张国栋,李志远,王永生,等.低合金高强钢焊缝针状铁素体转变动力学及其仿真[J].电焊机,2002,32(6):9-12.
    [133]LIU Y and OLSON D L. The Role of Inclusion in Controlling HSLA Steel Weld Microstructure [J]. Welding Journal,1996,75(6):139s-147s.
    [134]HEINTZE G N and PHERSON R MC. Solidification Control of Submerged Arc Welds in Steels by Inoculation with Ti [J]. Welding Journal,1986,65(3):71s-82s.
    [135]BASU B and RAMAN R. Microstructural Variations in a High-strength Structural Steel Weld under Isoheat Input Conditions [J]. Welding Journal,2002,81(11):239s-248s.
    [136]黄治军,缪凯,郑琳.X80管线钢焊接性能试验研究[J].焊管,28(4):27-31.
    [137]SNYDER J P, PENSE A W. The Effects of Titanium on Submerged Arc Weld Metal [J]. Welding Journal,1982,61 (7):201-211.
    [138]张国栋,李志远,王永生,等.低合金高强钢焊缝针状铁素体转变动力学及其仿真[J].电焊机,2002,32(6):9-12.
    [139]SHIGERU E, MORIYASU N, MOTOKIYO I, et al. Method for Gas shield Arc Welding of a Pipe and Weld Wire for Use in the Welding Method:United States Patent:5300751 [P].1994-04-05.
    [140]田志凌,马成勇,何长红等.超低碳高强度气体保护焊丝材料:中国,CN 1413795A[P].
    [141]SURIAN E S and DE VEDIA L A. All-weld-metal Design for AWS E10018M, E11018M and E12018M Type Electrode [J]. Welding Journal,1999,78(6):217s-228s.
    [142]COLDREN A P, FIORE S R and SMITH R B. Welding Electrodes for Producing Low Carbon Bainitic Ferrite Weld Deposits:US Patent,5523540[P].
    [143]李前.07MnCrMoVR高强钢球罐分拆搬迁整体组焊技术研究[D].华东理工大学硕士论文,2008.
    [144]姚钦.HQ-80钢再热裂纹机理[J].焊接学报,2004,25(6):77-81.
    [145]张建勋,张晓亮,李平谨.插销法研究SPV490Q钢焊接再热裂纹敏感性[J].电焊机,2005,35(4):24-27.
    [146]吴军,刘国众,赵永宁,等.钢研102焊接接头再热裂纹分析[J].山东电力技术,1999,6:80-82.
    [147]周维愚,张茂龙.SA508-Ⅲ优化钢焊接性试验研究[J].锅炉技术,1992,10:1-4.
    [148]刘建华,胡伦骥,李志远,等.焊接结构应力松弛开裂模拟试验研究[J].金属热处理学报.1996.17(4):36-41.
    [149]王青峰,董汉雄,陈序,等.WDL钢焊接再热裂纹的模拟试验研究[C].中-美双边暨第二届全国材料物理模拟学术会议论文集.哈尔滨,1996,69-72.
    [150]王珏.珠光体耐热钢焊接再热裂纹的防治[J].石油工程建设,1999,12(6):11-14.
    [151]边美华.15CrMoR厚壁压力容器焊接工艺研究[D].重庆大学硕士论文,2006.
    [152]宁保群.插销式再热裂纹试验装置的研究[D].天津大学硕士论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700