镁合金高温单向压缩及多向变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多向锻造技术是一种强应变塑性变形技术,可以细化组织,提高性能。目前国际上有关镁合金多向锻造技术的研究报道很少,为此本文以两类代表性镁合金Mg-Al-Zn系(AZ31和AZ80合金)、Mg-Zn-Zr系(ZK60合金)为研究对象,探究了固溶处理工艺对镁合金变形性能的影响,进而系统研究了镁合金高温下单向压缩变形行为,在此基础上首次系统研究了镁合金铸锭多向锻造变形特性,为制备性能优异大尺寸镁合金锻坯提供了详细的实验数据和理论依据,主要研究内容和研究结论如下:
     (1)系统研究了固溶处理工艺对镁合金变形性能的影响,得到AZ80和ZK60两种合金的最佳固溶处理工艺参数,分别为390℃/16h和330℃/16h。实验结果表明合金内的粗大第二相粒子(共晶相)是材料在单向镦粗变形时开裂的根源,固溶处理能有效地提高合金变形能力,最大成形极限增幅可达20%~30%。
     (2)系统研究了Mg-Al-Zn系合金高温单向压缩变形行为。合金高温单向压缩流变应力行为呈现典型的动态再结晶特征,在温度T≥250℃时,流变应力行为对应变速率敏感;而温度T=200℃时,应变速率对流变应力影响不大。在高应变速率条件下变形,合金试样温度将有较大幅度升高,约为30~50℃,其温升变化量是应变量的函数。初始晶粒度差异和基面择优取向存在是造成挤压态AZ31合金与另两种铸态合金(AZ31和AZ80合金)流变应力和动态再结晶行为不同的主要原因。挤压态AZ31合金热压缩变形流变应力行为强烈地受到变形温度的影响,当变形温度低于300℃时,流变应力呈现幂指数关系;当变形温度高于350℃时,流变应力呈现指数关系;而铸态AZ31和AZ80合金高温压缩下的流变应力均符合幂指数函数关系。同时,合金元素铝含量的增加将降低Mg-Al-Zn系合金的堆垛层错能,阻碍位错束集,增加位错高温攀移倾向。随着合金化程度的增加,Mg-Al-Zn系合金的变形激活能呈现增大的趋势,与铸态AZ31合金变形激活能为167KJ/mol相比,相同条件下铸态AZ80合金变形激活能增大到220KJ/mol。
     (3)系统研究了变形条件(变形温度、应变速率和应变量等)对ZK60合金高温单向压缩变形过程中流变应力行为和显微组织演变规律的影响,并对ZK60合金在高温压缩道次间软化规律进行了研究。结果表明合金高温压缩道次间的静态软化程度较低,静态软化行为以亚动态再结晶为主,建立了亚动态再结晶动力学模型,相应的亚动态再结晶激活能约为50.12KJ/mol,远小于动态再结晶激活能189 KJ/mol。变形温度对亚动态再结晶过程影响较大,高于应变速率对其影响。
     (4)首次系统研究了Mg-Al-Zn系合金高温多向压缩变形行为。粗晶镁合金多向压缩大变形晶粒细化机制为变形带诱发晶粒破碎,同时伴随动态再结晶发生。形变中合金晶粒细化存在一定程度,继续变形晶粒度基本稳定;在一定范围内增大道次压下量和降低变形温度均有助于组织细化;重加热时再结晶组织得到一定程度的回复和软化,晶粒尺寸增大。与连续单向变形相比,多向变形时合金的变形带取向随外加载荷方向变化而改变,在晶粒内部相互交错,有利于组织细化。AZ80合金在多向压缩变形过程中,在晶粒细化的同时,合金中残留的少量大尺寸的Mg17Al12相颗粒在外加载荷作用下经历了破碎—回溶—析出—重溶过程,形成的细小点状析出相钉扎在再结晶晶界上,阻碍位错运动,限制晶粒的长大。
     (5)系统研究了合金化对Mg-Al-Zn系合金多向压缩变形过程中力学行为的影响。AZ31和AZ80两种合金具有相似的变化规律,硬度和抗拉强度随着变形道次的增加先升高而后逐渐降低,而伸长率则一直增加,经过7个道次的变形,两种合金的伸长率达到最大。在高温下反复加热导致合金回复软化是AZ31合金硬度值降低的主要原因,对于AZ80合金而言,析出相重溶是导致合金硬度值下降的另一因素。在相同变形条件下,适当地降低变形温度能有效提高合金的强度和伸长率。与多向压缩变形相比,连续单向锻压有助于合金的伸长率的提高,而强度则有所降低。
     (6)系统研究了多向锻造过程中镁合金的晶粒转动与取向行为。在对铸态AZ80合金研究中发现:多向锻造变形对合金晶粒转动和取向的定向流动是材料塑性变形过程发生择优取向的主要原因。在无新晶粒产生的小变形情况下即可通过滑移和孪生使晶粒发生转动形成较强的基面择优取向。本实验条件下,除第4道次外,其余前9道次压缩面均出现明显的基面取向。10道次后合金开始呈现随机取向分布。变形温度和变形方式对合金晶粒取向影响较大,适当降低变形温度和采用多向变形均能促使压缩面基面取向增强,而道次应变量在本实验中对晶粒取向影响不大。
     (7)研究了连续多向锻造工艺对大尺寸AZ80镁合金铸锭(110mm×70 mm×60 mm)组织和性能的影响,深入探究了合金在多向锻造过程中的开裂行为,存在两种方式:边部周向裂纹和芯部微裂纹。多向锻造工艺特点有利于阻碍合金内部微裂纹的扩展。变形温度和应变量的精确控制是保证合金形变中不发生开裂的关键。
Multiple forging technology is a novel severe plastic deformation method to prepare structural materials with refined grain and high performance. Fever reports are available about the application of this technology in magnesium alloy. In the present dissertation, two typical types of magnesium alloys, i.e. AZ31 and AZ80 alloy of Mg-Al-Zn system, ZK60 alloy of Mg-Zn-Zr system are chosen as the samples to study the effects of homogenizing annealing process on the deformability and the deformation behaviors during uni-axial compression and multi-directional deformation at elevated temperature. The main conclusions are drawn as follows:
     (1) The effect of homogenizing annealing process on the microstructures and mechanical properties of AZ80 and ZK60 alloy are systematically investigated. The best homogenizing annealing regularities of the two alloys are annealing at 390℃for 16h and at 330℃for 16h, respectively. The initiation of the cracks in the as-cast AZ80 alloy or ZK60 alloy during upset test is related with the second phase or eutectic compound in the matrix. After solution treatment, the plastic forming ability of the alloys can be effectively improved and the maximum amplitude of increment reaches 20%~30%.
     (2) The deformation behaviors of Mg-Al-Zn alloys are studied by uni-axial compression (UC) testing under different deformation variables. The experimental results show that flow stress behavior, which is characteristic for hot working processes, strongly depends on the strain rate during high deformation temperatures(T≥250℃)except low temperature (T=200℃). The temperature rise is between 30~50℃and is a function of the strain when the specimens are compressed at high strain rate of 5s-1. Constitutive analysis suggests that the flow stress behaviors of the as-extruded AZ31 alloy strongly depend on the deformation temperature and the relationships between the flow stress and the deformation temperature as well as the strain rate can be represented by the exponential equation during deformation temperature below 350℃, and by the power equation when deformation temperature over 350℃, whereas the flow stress behaviors of as-cast AZ31 or AZ80 alloy can be represented by the exponent-type equation during the whole deformation temperatures (T≥250℃). Initial grain size and a distinctive basal texture lead to the great difference between as-extruded AZ31 alloy and the other two groups of cast alloys AZ31 and AZ80, including the variation in the flow stress equations and dynamic recrystallizaion behaviors. The increment of alloying element Al can decrease the stacking fault energy and enhance the process of dislocation climb, and thus reduce the tendency for dislocation pile-up to cross-slip. As a result, for cast AZ80 alloy, dynamic recrystallization (DRX) is delayed and the activation energy for the plastic deformation process sharply increases from 167 KJ/mol to 220 KJ/mol as compared with the cast AZ31 alloy under the same deformation condition.
     (3) Not only the effects of deformation variables, including deformation temperature, strain rate and strain, on the deformation behaviors of ZK60 alloy during UC are investigated, but also the static softening behaviors during multistage hot deformation of ZK60 alloy are studied by isothermal interrupted hot compression tests. The results show that the main static softening mechanism of the samples during the interrupted deformation is metadynamic recrystallization (MDRX). The MDRX model of ZK60 has also been established with the activation energy of approximately 50.12KJ/mol which is much lower than that of DRX, approximately 189 KJ/mol. In the present study, deformation temperature has a more important influence on the MDRX process than the strain rate.
     (4) The deformation behaviors of Mg-Al-Zn alloys under multi-compression (MC) at elevated temperature are systematically studied. A main characteristic of microstructure evolution is directly associated with grain splitting due to the formation of microbands that develop in various directions. Such microbands intersect with each other during hot MC processing, resulting in continuous subdivision of the coarse grains into misoriented fine domains. Further deformation leads to increase in the number and misorientation of these boundaries and finally development of fine equiaxed grains at high strain. During the deformation there exists a critical strainεc, above which a homogeneous microstructure with fine DRX grains can be attained, and after that the grains of the alloys can only be refined to a certain size. The second phase Mg17Al12 in the as-cast AZ80 alloy which remained after solution treatment experiences a series of change with the process of breaking up—dissolving—precipitating—re-dissolving. Fine precipitated phase locates at the DRX grain boundaries, restraining the slipping of the dislocations and the movement of the grain boundaries.
     (5) The effects of alloy composition on the mechanical properties of the Mg-Al-Zn alloys during hot MC process are systematically investigated. The results show that for AZ80 alloy and AZ31 alloy, both hardness and tensile strength firstly increase, then reduce gradually with increment of pass number. However, the elongation continuously increase with the pass number before 7-passes. Softening and the re-dissolving of the second phase Mg17Al12 during the re-heating process lead to the decrease of hardness of the AZ80 specimens. Decreasing deformation temperature in a certain range and deformation by multi-directional forging method can both refine the grains in the as-cast ingots and improve the mechanical properties. (6) The grain orientation of the as-cast AZ80 alloy during hot MC process is studied for the first time in the world. The results show that the preferred orientation during plastic flow is mainly resulted from grain rotation. For the samples deformed at small strain, slipping and twinning result in grain rotation and lead to the formation of relatively strong basal preferred orientation. Basal preferred orientation changes with the direction of the applied loading axis and is parallel to the compression direction during the first 9 passes except the 4th one. After 10 passes, no preferred orientation is observed by XRD. Forging temperature and deformation mode have an important influence on the evolution of grain orientation except for pass strain. Both decreasing deformation temperature in a certain range and multi-directional deformation mode can promote the formation of strong basal orientation.
     (7) Large sized AZ80 alloy samples with the dimensions of 110mm×70mm×60mm were produced by continuous multiple forging processing. The two fracture modes of the samples during forging are intensively investigated. Deformation temperature and pass strain are the key factors controlling the cracking of the samples during deformation.
引文
[1] Mordike B L, Ebert T. Magnesium properties-applications-potential[J]. Materials Science and Engineering A, 2001, A302 (1): 37-45
    [2] Polmear I J. Magnesium alloys and applications[J]. Materials Science and Technology, 1994, 10 (2): 1-16
    [3] Friedrich H, Schumann S. Research for a “new age of magnesium” in the automotive industry[J]. Journal of Materials Processing Technology, 2001, 117 (3): 276-281
    [4] 刘奎立,张治民,杨宝付. 镁合金成形技术及其应用研究[J]. 锻压技术,2004, (5): 5-8
    [5] 周海涛,马春江,曾小勤等. 变形镁合金材料的研究进展[J]. 材料导报,2003, 17 (11): 16-18
    [6] 余琨,黎文献,王日初等. 变形镁合金的研究、开发及应用[J]. 中国有色金属学报,2003, 13 (2): 277-288
    [7] 王渠东,丁文江. 镁合金及其成形技术的国内外动态与发展[J]. 世界科技研究与发展,2004, 26 (3): 39-46
    [8] 陈振华,夏伟军,严红革等. 变形镁合金[M]. 第一版. 北京:化学工业出版社,2005: 1-3
    [9] 魏宇. 变形镁合金的形变加工工艺研究:[东南大学硕士学位论文]. 南京:东南大学,2004:1-2
    [10] 余琨. 稀土变形镁合金组织性能及加工工艺研究:[中南大学博士学位论文]. 长沙:中南大学,2002: 3-5
    [11] 闵学刚.几种合金元素对改善AZ91合金显微组织和力学性能的作用的研究:[东南大学博士学位论文]. 南京:东南大学, 2002: 2
    [12] 陈振华,严红革,陈吉华等. 镁合金[M]. 第一版. 北京:化学工业出版社,2004:39-56
    [13] 邓玉勇,朱江,李立. 新型金属材料镁合金的发展前景分析[J]. 科技导报,2002, 10 (): 37-39
    [14] 尹守义. 国外镁合金的新发展[J]. 世界有色金属,1994, (7): 9-11
    [15] Froes F H, Eliezer D, Aghion E. How to increase the use of magnesium in aerospace applications, In: Aghion E, Eliezer D, ed.Proceedings of the second israeli international conference on magnesium science & technology. Israel: Dead Sea, 2000:43
    [16] 刘兵. 加强技术创新,为经济结构调整提供强大动力—论实施“镁合金开发应用及产业化”重大专项的战略意义[J]. 材料热处理学报,2001, 22 (增刊): 1
    [17] 张士宏,许沂,王忠堂等. 镁合金成形加工技术[J]. 世界科技研究与发展,2001, 23 (6): 18-21
    [18] 陈振华,夏伟军,严红革等. 变形镁合金[M]. 第一版. 北京:化学工业出版社,2005: 48-100
    [19] Yoo M H, Agnew S R, Morris J R, et al. Non-basal slip systems in hcp metals and alloys: source mechanisms[J]. Materials Science and Engineering A, 2001, 319-321 (1/2): 87-92
    [20] Couret A, Cailiard D. Prismatic slip in beryllium Ⅰ: the controlling mechanism at the peak temperature[J]. Philosophical Magazine A, 1989, 59 (4): 783-800
    [21] Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy[J]. Materials Transactions, 2003, 44 (4): 426-435
    [22] Couret A, Cailiard D. Prismatic glide in divalent hcp metals[J]. Philosophical Magazine A, 1991, 63 (5): 1045-1057
    [23] Couret A, Cailiard D. An in situ study of prismatic glide in magnesium-Ⅰ. the rate controlling mechanism[J]. Acta Metallurgic, 1985, 33 (8): 1447-1454
    [24] Couret A, Cailiard D. An in situ study of prismatic glide in magnesium-Ⅱ. microscopic activation parameters[J]. Acta Metallurgic, 1985, 33 (8): 1455-1462
    [25] Püschl W. Models for dislocation cross-slip in close-packed crystal structures: a critical review[J]. Progress in Materials Science, 2002, 47(4): 415-461
    [26] Vrtek V, Igarashi M. Core structure of 1 31120 screw dislocations on basal and prismatic planes in hcp metals: an atomistic study[J]. Philosophical Magazine A, 1991, 63 (5): 1059-1075
    [27] 小池淳一,宫村剛夫. 多结晶マグネシゥム合金板における塑性变形的微視的機構[J].軽金属, 2004, 54 (11): 460-464
    [28] Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science, 1995, 39 (1-2): 1-157
    [29] Yoo M H. Slip, twinning and fracture in hexagonal close-packed metals[J]. Metallurgical Transaction, 1981, 12A(3): 409-418
    [30] Yoshinaga B H, Horiuchi R. Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis[J]. Trans JIM, 1963, 4(): 1-6
    [31] Koike J, Ohyama R, Kobayashi T, et al. Grain-boundary sliding in AZ31magnesium alloys at room temperature to 523K[J]. Materials Transactions, 2003, 44 (4): 445-451
    [32] 吕宜振. Mg-Al-Zn 合金组织、性能、变形和断裂行为研究:[上海交通大学博士学位论文]. 上海:上海交通大学,2001: 89-111
    [33] Tan J C, Tan M J. Superplasticility and grain boundary sliding characteristics in two stage deformation of Mg-3Al-Zn Alloy sheet[J]. Materials Science and Engineering A, 2003, 339 (1): 81-89
    [34] Ohyama R, Koike J, Kobayashi T, et. al. Enhanced grain-boundary sliding at room temperature in AZ31 magnesium alloy[J]. Materials Science Forum, 2003, 419-422 (1): 237-241
    [35] Koike J. New deformation mechanisms in fine-grain Mg alloy[J]. Materials Science Forum, 2003, 419-422 (1): 189-194
    [36] 张佩武,夏伟,刘英等. 变形镁合金成形工艺研究及其应用[J]. 材料导报,2005, 19 (7): 82-85
    [37] 王祝堂. 镁及镁合金型材的挤压[J]. 有色金属加工,2004, 33 (1): 31-36
    [38] 陈礼清,于宝海,马宗义. 镁合金主要制备成形技术述评[J]. 世界有色金属,2005, (8): 17-23
    [39] 王祝堂. 镁合金的锻造[J]. 有色金属加工,2005, 34 (6): 30-42
    [40] 吕炎,徐福昌,薛克敏等. 镁合金上机匣等温精锻工艺的研究[J]. 哈尔滨工业大学学报,2000, 32 (4): 127-129
    [41] 王祝堂. 镁板材轧制工艺及性能[J]. 有色金属加工,2004, 33 (3): 8-20
    [42] 陈振华,夏伟军,严红革等. 镁合金材料的塑性变形理论及其技术[J]. 化工进展,2004, 23 (2): 127-135
    [43] Hosokawa H, Chino Y, Shimojima K,et al. Mechanical properties and blow forming of rolled AZ31 Mg alloy sheet[J]. Materials Transaction, 2003, 44 (4): 484-489
    [44] 尉胤红,王渠东,刘满平等. 镁合金超塑性研究现状及发展趋势[J]. 材料导报,2002, 16 (9): 20-23
    [45] 王庆娟,杜忠泽,刘长瑞等. 镁合金塑性加工技术的研究进展[J]. 轻合金加工技术,2006, 34 (1): 14-18
    [46] Chen F X, Su J H, Yang Y L, et a1. Research on superplasticity and superplastic extrusion of MB26 magnesium alloy[J]. Journal of Materials Science and Technology,2001, 17 (1): 147-148
    [47] 王素梅,孙康宁,毕见强. 大塑性变形法制备块体纳米材料[J]. 金属热处理,2003, 28 (5): 5-7
    [48] 赵新,高聿为,南云等. 制备块体纳米/超细晶材料的大塑性变形技术[J]. 材料导报,2003, 17 (12): 5-8
    [49] 许晓嫦,刘志义,党朋等. 强塑性变形(SPD)制备超细晶粒材料的研究现状与发展趋势[J]. 材料导报,2005, 19 (1): 1-5
    [50] Zhernakov V S, Latysh V V, et a1. The developing of nanostructured SPD Ti for structural use[J]. Scripta Materialia, 2001, 44 (8-9): 1771-1774
    [51] Ravi Kumar N V, Blandin J J, Desrayaud C, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical processing[J]. Materials and Engineering A, 2003, A359 (1-2): 150-157
    [52] Wu Xia, Liu Yi. Superplasticity of Coarse-grained Magnesium Alloy[J]. Scripta Materialia, 2002, 46 (4): 269-274.
    [53] Akihiro Yamashita, Zenji Horit, Terence G. Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering A, 2001, A300 (1-2): 142-147
    [54] Yu Yoshida, Lawrence Cisar, Shigeharu Kamado, et al, Texture Development of AZ31 Magnesium Alloy during ECAE Processing[J]. Materials Science Forum, 2003, 419-422 (1): 533-538
    [55] Si-Young Chang, Sang-Woong Lee, Kae Myung Kang, et al, Improvement of Mechanical Characteristics in Severely Plastic-deformed Mg Alloys[J]. Materials Transactions, 2004, 45 (2): 488-492
    [56] Sitdikov O, Goloborodko A, Sakai T, et al. Grain refinement in as-cast 7475 Al alloy under hot multiaxial deformation[J]. Materials Science Forum, 2003, 426-432 (1): 381-386
    [57] Sitdikov O, Sakai T, Goloborodko A, et al. Effect of pass strain on grain refinement in 7475 Al alloy during hot multidirectional forging[J]. Materials Transaction, 2004, 45 (7): 2232-2238
    [58] Desrayaud C, Ringeval S, Girard S, et al. A novel high straining process for bulk materials—the development of a multipass forging system by compression along three axes[J]. Journal of Materials Processing Technology, 2006, 172 (1): 152-158
    [59] Imayev R M, Imayev V M, Salishchiv G A. Formation of submicrocrystalline structure in TiAl intermetallic compound[J]. Journal of Materials Science, 1992, 27 (16): 4465-4471
    [60] Salishchev G A, Valiakhmetov O R, Galeyev R M. Formation of sub- microcrystalline structure in the titanium alloy VT8 and its influence on mechanical properties[J]. Journal of Materials Science, 1993, 28 (10): 2898-2902
    [61] Zherebtsov S V, Salishchev G A, Galeyev R M, et al. Production of sub- microcrystalline structure in large-scale Ti-6Al-4V billet by warm severe deformation processing[J]. Scripta Materialia, 2004, 51 (12): 1147-1151
    [62] Zherebtsov S, Salishchev G, Galeyev R, et al. Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation[J]. Materials Transaction, 2005, 46 (9): 2020-2025
    [63] Sitdikov O, Sakai T, Goloboradko A, et al. Grian fragmentation in a coarse-grained 7475 Al alloy during hot deformation[J]. Scripta Materialia, 2004, 51 (2): 175-179
    [64] Belyakov A, Sakai T, Miura H, et al. Grain refinement in copper under large strain deformation[J]. Philosophical Magazine A, 2001, 81 (11): 2629-2643
    [65] Belyakov A, Gao W, Miura H, et al. Strain-induced grain evolution in polycrystalline copper during warm deformation[J]. Metallurgical and Materials Transaction A, 1998, 29A (12): 2957-2965
    [66] Belyakov A, Sakai T, Miura H. Fine-grained structure formation in Austenitic stainless steel under multiple deformation at 0.5 Tm[J]. Materials Transaction, 2000, 41 (4): 476-484
    [67] Mironov S Yu, Salishchev G A, Myshlyaev M M, et al. Evolution of misorientation distribution during warm ‘abc’ forging of commercial-purity titanium[J]. Materials Science and Engineering A, 2006, A418 (1): 257-267
    [68] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation[J]. Progress of Materials Science, 2000, 45 (2): 103-189
    [69] Belyakov A, Sakai T, Miura H, et al. Continuous recrystallization in austenitic stainless steel after large strain deformation[J]. Acta Materialia, 2002, 50 (6): 1547-1557
    [70] 张廷杰,张小明,田锋等. 7075 铝合金在多向大变形锻造和退火中细晶粒结构的演变[J]. 稀有金属材料与工程, 2001, 30 (5): 335-338
    [71] 张小明,张廷杰,田锋等. 多向锻造对改善 7075 铝合金性能的作用[J]. 稀有金属材料与工程, 2003, 32 (5): 372-374
    [72] Sitdikov O, Sakai T, Goloboradko A, et al. New grain formation in a coarse-grained 7475 Al Alloy during sever hot forging[J]. Materials Science Forum, 2004, 467-470 (1): 421-426
    [73] Belyakov A, Tsuzaki K, Miura H, et al. Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation[J]. Acta Materialia, 2003,51 (3): 847-861
    [74] Belyakov A, sakai T, Miura H. Microstructure and deformation behaviour of submicrocrystalline 304 stainless steel produced by severe plastic deformation[J]. Materials Science and Engineering A, 2001, A319-321 (1): 867-871
    [75] Aghion E, Bronfin B. Magnesium alloys development towards the 21st century[J]. Materials Science Forum, 2000, 350-351 (1): 19-29
    [76] Suzuki M, Sato H, Maruyama K. Creep behavior and deformation microstructures of Mg-Y alloy at 550K[J]. Materials Science and Engineering A, 1998, A252 (1): 248-255
    [77] Tateishi H, Inone M, Kojima Y. Recycling of thin walled AZ91D magnesium die-casting with paint finishing[J]. Light metals, 1998, 48 (1): 19-23
    [78] Kleiner S, Beffort O, Uggowitzer P J. Microstructure evolution during reheating of an extruded Mg-Al-Zn alloy into the semisolid state[J]. Scripta Materialia, 2004, 51 (5): 405-410
    [79] Cizek L, Greger M, Pawlica L. Study of selected properties of magnesium alloy AZ91 after heat treatment and forming[J]. Journal of Materials Processing Technology, 2004, 157-158 (3): 466-471
    [80] 马龙舟,崔建忠,张晓博. 均匀化退火对 Al-Mg-Li(01420)合金加工性能及力学性能的影响[J]. 材料工程,1994, (10): 25-28
    [81] 张东立,姜石峰,高兴锡. 均匀化处理对 3004 铝合金显微组织的影响[J]. 中国有色金属学报,1999, 9 (3): 556-561
    [82] 黄光胜,汪凌云,黄光杰等. 均匀化退火对 AZ31B 镁合金组织与性能的影响[J]. 重庆大学学报(自然科学版),2004, 27 (11): 18-21
    [83] 彭建,张丁非,杨椿楣等. ZK60 镁合金铸坯均匀化退火研究[J]. 材料工程,2004, (8): 32-35
    [84] 崔忠圻. 金属学与热处理[M]. 哈尔滨:哈尔滨工业大学出版社,1989:128
    [85] 孙茂才. 金属力学性能[M]. 哈尔滨:哈尔滨工业大学出版社,2003:73
    [86] 余永宁. 金属学原理[M]. 北京:冶金工业出版社,2000:89
    [87] Staehler J M, Predebon W W, Pletka B J, et al. Micromechanisms of deformation in high-purity hot-pressed alumina[J]. Materials Science and Engineering A, 2000, A291 (1): 37-45
    [88] Koike J, Ohyama R. Geometrical criterion for the activation of prismatic slip in AZ61 Mg alloy sheets deformed at room temperature[J]. Acta Materialia, 2005, 53 (7): 1963-1972
    [89] Kim W J, Chung S W, Chung C S, et al. Superplasticity in thin magnesium alloysheets and deformation mechanism maps for magnesium alloys at elevated temperatures[J]. Acta Materialia, 2001, 49 (16): 3337-3345
    [90] Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J]. Acta Materialia, 2003, 51 (7): 2055-2065
    [91] Wang X S, Lu X, Wang D H. Investigation of surface fatigue microcrack growth behavior of cast Mg-Al alloy[J]. Materials Science and Engineering A, 2004, A364 (1-2): 11-16
    [92] Lu Y Z, Wang Q D, Ding W J, et al. Fracture behavior of AZ91 magnesium alloy[J]. Materials Letter, 2000, 44 (5): 265-268
    [93] Yuan G Y, Wang Q D, Ding W J. High temperature deformation behavior of permanent casting AZ91 alloy with and without sb addition[J]. Journal of Materials Science, 2002, 37 (1): 127-132
    [94] Zheng M Y, Zhang W C, Wu K, et al. The deformation and fracture behavior of SiCw/AZ91 magnesium matrix composite during in-situ TEM straining[J]. Journal of Materials Science, 2003, 38 (12): 2647-2654
    [95] Dunlop G L, Sequeira W P, Dargusch M S, et al. Microstructure and properties of magnesium die castings. In: Aghion E. Proceedings of the 55th meeting of the International Magnesium Association. California: Coronado,1998: 68-73
    [96] Yoo M H, Zou J, Fu C L. Mechanistic modeling of deformation and fracture behavior in TiAl and Ti3Al[J]. Materials Science and Engineering A, 1995, A192/193 (1): 14-23
    [97] Polmear I J. Recent developments in light alloys[J]. Materials Transaction, JIM, 1996, 37 (1): 12-31
    [98] 余锟,黎文献. Mg-Al-Zn 系变形镁合金轧制及热处理后组织及性能[J]. 金属热处理,2002, (5): 8-11
    [99] 张少卿. MB15镁合金的相组成及其微观形态[J]. 金属学报,1989, 25(6): A346-A351
    [100] Wei L Y, Dunlop G L, Westengen H. The intergranular microstructure of cast Mg-Zn and Mg-Zn-Rare earth alloys[J]. Metallurgical and Materials Transaction A, 1995, 26A (8): 1947-1955
    [101] Lu Y Z, Wang Q D, Ding W J, et al. Fracture behavior of AZ31 magnesium ally[J]. Materials Letters, 2000, 44 (5): 265-268
    [102] Ma Q X, Wang Z C, Zhong Y X. The mechanism of faults originating from inclusions in the plastic deformation processes of heavy forging[J]. Journal ofMaterial Processing Technology, 2002, 123 (1): 61-66
    [103] Ma C J, Liu M P. Tensile properties of extruded ZK60-RE alloys[J]. Materials Science and Engineering A, 2003, A349 (1-2): 207-212
    [104] 刘满平,马春江,王渠东等. 工业态 AZ31 镁合金的超塑性变形行为[J]. 中国有色金属学报,2002, 12 (4): 797-801
    [105] Mohri T, Mabuchi M, Nakamura M, et al. Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn[J]. Materials Science and Engineering A, 2000, A290 (1-2): 139-144
    [106] Ion S E, Humphreys F J, White S H. Dynamic recrystallization and development of microstructure during the high temperature deformation of magnesium[J]. Acta Metallurgica, 1982, 30 (10): 1909-1919
    [107] Kaibyshev R, Galiyev A. On the possibility of superplasticity enhanced by recrystallization[J]. Materials Science Forum, 1997, 243-245 (1): 131-136
    [108] Yang X Y, Miura H, Sakai T. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation[J]. Materials Transactions, 2003, 1 (1): 197-203
    [109] Galiyev A, Kaibyshev R, Sakai T. Continuous dynamic recrystallization in magnesium alloy[J]. Materials Science Forum, 2003, 419-422 (1): 509-514
    [110] Tan, J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet[J]. Materials Science and Engineering A, 2003, A339 (1-2): 124-132
    [111] 曹乃光. 金属塑性加工原理[M]. 北京:冶金工业出版社,1989: 231-235
    [112] 黄勇,刘心宇,曾中明. 1050 铝合金热轧流变应力研究. 轻合金加工技术,2002, 30 (9): 15-18
    [113] Barnett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31[J]. Journal of Light Metals, 2001, 1 (3): 167-177
    [114] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia, 2001, 49 (7): 1199-1207
    [115] Yang X, Miura H, Sakai T. Dynamic nucleation of new grains in magnesium alloy during hot deformation[J]. Materials Science Forum, 2003, 419-422 (1): 515-520
    [116] Grosvenor A, Davies C H J. Microstructural evolution during the hot deformation of magnesium alloy AZ31[J]. Materials Science Forum, 2003, 426-432 (5): 4567-4572
    [117] Elwazri A M, Wanjara P, Yue S. Dynamic recrystallization of austenite in microalloyed high carbon steels[J]. Materials Science and Engineering A, 2003, A339 (1-2): 209-215
    [118] Barnett M R, Beer A G, Atwell D, et al. Influence of grain size on hot working stresses and microstructures in Mg-3Al-1Zn[J]. Scripta Materialia, 2004, 51 (1): 19-24
    [119] Magd E El, Abouridouane M. Influence of Strain Rate and Temperature on Deformation and Fracture Behaviour of Magnesium Alloy MgAl8Zn: Tests and Numerical Simulations. In: Kainer K U. Proceedings of the 6th International Conference 2004. Germany: WILEY-VCH, 2004: 402-408
    [120] Magd E El, Abouridouane M. Compression test on magnesium alloy MgAl8Zn at high strain rates and temperatures. In: Kainer K U. International Congress “Magnesium Alloys and Their Applications”. Germany: WILEY-VCH, 2000: 325-329
    [121] Máthis K, Chmelík F, Trojanová Z, et al. Investigation of some magnesium alloys by use of the acoustic emission technique[J]. Materials Science and Engineering A, 2004, A387-389 (1): 331-335
    [122] Tian S, Wang L, Sohn K Y, et al. Microstructure evolution and deformation features of AZ31 Mg-alloy during creep[J]. Materials Science and Engineering A, 2006, A415 (1-2): 309-316
    [123] Munitz A, Ricker R E, Pitchure D J, et al. The influence of thermomechanical treatment on the comples modulus of Mg alloy AZ31[J]. Metallurgical and Materials Transaction A, 2005, A35 (9): 2403-2413
    [124] Manuel M, Louis G. H, Ravi V, et al. Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors[J]. Materials Science and Engineer A, 2006, A418 (1-2): 341-356
    [125] Myshlyaev M M, McQueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Materials Science and Engineering A, 2002, A337 (1-2): 121-133
    [126] Kaibyshev R, Sitdikov O. Dynamic recrystallization of magnesium at ambient temperature[J]. Zeitschriftfur Metallkunde, 1994, 85 (10): 738-743
    [127] Kaibyshev R, Sitdikov O. On the role of twinning in dynamic recrystallization[J]. Fizika Metallov I Metallovedenie, 2000, 89 (4): 70-77
    [128] Yin D L, Zhang K F, Wang G F, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy[J]. Materials Science and Engineering A, 2005, A392 (1-2):320-325
    [129] McQueen H J. Metal forming: Industrial, mechanical, computational and microstructural[J]. Journal of Materials Processing Technology, 1993, 37 (1-4): 3-36
    [130] Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures[J]. Journal of Materials Processing Technology, 1998, 80-81 (4): 513-516
    [131] Hamouda A M S. Effect of energy losses during an impact event on the dynamic flow stress[J]. Journal of Materials Processing Technology, 2002, 124 (1-2): 209-215
    [132] Luo G M, Wu J S, Fan J F, et al. Deformation behavior of an ultrahigh catbon steel (UHCS-3.0Si) at elevated temperature[J]. Materials Science and Engineering A, 2004, A379 (1-2): 302-307
    [133] Nabil Bassim M, Panic N. High strain rate effects on the strain of alloy steels[J]. Journal of Materials Processing Technology, 1999, 92-93(): 481-485
    [134] Ramesh K T. Effects of high rates of loading on the deformation behavior and failure mechanisms of hexagonal close-packed metals and alloys[J]. Metallurgical and Materials Transaction A, 2002, A33 (3): 927-935
    [135] Zhou M, Clode M P. Effects of specimen geometry on temperature rise and flow behavior of aluminium alloys in hot torsion testing[J]. Materials and Design, 1996, 17 (5-6): 275-281
    [136] Watanabe H, Tsutsui H, Mukai T, et al. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization[J]. Materials Transactions, 2001, 42 (7): 1200-1205
    [137] Prasad Y. V. R. K, Rao K. P. Effect of crystallographic texture on the kinetics of hot deformation of rolled Mg-3Al-1Zn alloy plate[J]. Materials Science and Engineering A, 2006, A432 (1-2): 170-177
    [138] Barnett M R. Recrystallization during and following hot working of magnesium alloy AZ31[J]. Materials Science Forum, 2003, 419-422 (1): 503-508
    [139] Medina S F, Hernandez C A. Influence of chemical composition on peak strain of deformed austenite in low alloy and microalloyed steels[J]. Acta Materialia, 1996, 44 (1): 149-154
    [140] Guo Q, Yan H G, Chen Z H, et al. Elevated temperature compression behaviour of Mg-Al-Zn alloys[J]. Materials Science and Technology, 2006, 22 (6): 725-729
    [141] Essadiqi E, Liu W J, Kao V, et al. Recrystallization in AZ31 magnesium alloyduring hot deformation[J]. Materials Science Forum, 2005, 475-479 (1): 559-562
    [142] Zhou H T, Zeng X Q, Liu L L, et al. Microstructural evolution of AZ61 magnesium alloy during hot deformation[J]. Materials Science and Technology, 2004, 20 (11): 1397-1402
    [143] 于翔. AZ61B 镁合金均匀化处理与热挤压变形行为的研究:[重庆大学硕士学位论文]. 重庆:重庆大学,2004:33
    [144] Peng J, Zhang D F, Ding P D, et al. Dynamic analysis on thermal deformed AZ61B magnesium alloy[J]. Materials Science Forum, 2005, 488-489(): 551-554
    [145] 金军兵. Mg-Al-Zn 合金均匀化处理与热挤压变形行为的研究:[北京科技大学硕士学位论文]. 北京:北京科技大学,2006: 40-42
    [146] 李淑波,吴昆,郑明毅等. SiCw/AZ91 复合材料及 AZ91 镁合金的高温压缩变形的研究[J]. 材料工程,2003, (2): 15-18
    [147] Watanabe H, Mukai T, Ishikawa K, et al. Refinement of High-strain-rate Superplasticity at low temperatures in a Mg-Zn-Zr Alloy[J]. Materials Science and Engineering A, 2001, A307 (1-2): 119-125
    [148] 夏伟军,陈振华. 轧制工艺对 AZ31 镁合金组织性能的影响[J]. 湖南大学学报(自然科学版),2005, 32 (6): 107-112
    [149] 胡建平,庄景云,杜金辉等. In718 合金锤击锻造过程中的本构方程[J]. 金属学报,2000, 36 (9): 952-955
    [150] Dutta B, Palmiere E J. Effect of prestrain and deformation temperature on the recrystallization behavior of steels microalloyed with niobium[J]. Metallurgical and Materials Transaction A, 2003, A34 (6): 1237-1247
    [151] Verlinden B, Wouters P, McQueen H J, et al. Effect of different homogenization treatments on the hot workability of aluminum alloy AA2024[J]. Materials Science and Engineering A, 1990, A123 (1-2): 229-237
    [152] Rao K P, Prasad Y K D V, Hawboly E B. Study of fractional softening in multi-stage hot deformation[J]. Journal of Materials Processing and Technology, 1998, 77 (1-3): 166-174
    [153] Andrade H L, Akben M G, Jonas J J. Effect of molybdenum, niobium and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels[J]. Metallurgical and Materials Transaction A, 1983, 14 (10): 1967-1977
    [154] Barraclough D R, Sellars C M. Static recrystallization and restoration after hot deformation of type 304 stainless steel[J]. Metal Science, 1978, 13 (3-4): 257-267
    [155] Mabuchi M, Iwasaki H, Yanase K, et al. Low temperature superplasticity in anAZ91 Magnesium alloy processed by ECAE[J]. Scripta Materialia, 1997, 36 (6): 681-686
    [156] Watanabe H, Mukai T, Ishikawa K. Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion[J]. Scripta Materialia, 2002, 46 (12): 851-856
    [157] Koike J. New deformation mechanisms in fine-grain Mg alloys[J]. Materials Science Forum, 2003, 419-422 (1-2): 189-194
    [158] Zhang Xiao-ming, Zhang Ting-jie, Ma Guang-lai, et al. Limit of structure refinement for 7075 aluminum alloy at elevated temperature by hot deformation[J]. Transactions of Nonferrous Metals Society of China, 2003, 13 (3): 645-648
    [159] 周建,张廷杰,张小明等. 锻造方式对 7075 铝合金锻件动态再结晶的影响[J]. 稀有金属材料与工程, 2004, 33 (8): 827-830
    [160] Pérez-Prado M T, del Valle J A, Contreras J M, et al. Microstructural evolutional during large strain hot rolling of an AM60 Mg alloy[J]. Scripta Materialia, 2004, 50 (5): 661-665
    [161] Pérez-Prado MT, del Valle J A,. Ruano O A. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling[J]. Scripta Materialia, 2004, 50 (5): 667-671
    [162] Xing J, Yang X Y,. Miura H, et al. Grain refinement in magnesium alloy AZ31 during multidirectional forging under decreasing temperature conditions[J]. Materials Science Forum, 2005, 488-489(): 597-600
    [163] 村上雄. マグネツゥム合金展伸材の集合組織[J]. 軽金属,2002, 52 (11): 536-541
    [164] Valiev R Z, Mukherjee A K. Nanostructures and unique properties in intermetallics, subjected to severe plastic deformation[J]. Scripta Materialia, 2001, 44 (8-9): 1747-1750
    [165] Kaibyshev R, Sitdikov O, Goloborodko A, et al. Grain refinement in as-cast 7475 aluminum alloy under hot deformation[J]. Materials Science and Engineering A, 2003, A344 (1-2): 348-356
    [166] Baojun Han, Zhou Xu. Microstructural evolution of Fe-32%Ni alloy during large strain multi-axial forging[J]. Materials Science and Engineering A, 2007, A447 (1-2): 119-124
    [167] Yang X Y, Miura H, Sakai T. Grain refinement in magnesium alloy AZ31 during hot deformation[J]. Materials Science Forum, 2004, 467-470 (1): 531-536
    [168] 杨壳耀,三浦博已,酒井拓. AZ31 マグネシウム合金の高温变形にょる動的微细粒组織の生成[J]. 輕金属, 2002, 52 (7): 318-322
    [169] 刘楚明,刘子娟,朱秀荣等. 镁及镁合金动态再结晶研究进展[J]. 中国有色金属学报, 2006, 16 (1): 1-12
    [170] Rosales H J D, Lopez D L R, Santiago F H, et al. Microstructural changes of the as-quenched Zn-22%A1-2%Cu alloy during cold rolling[J]. Materials Transactions, 2002, 43 (5): 1240-1242
    [171] Murayama M, Horita Z, Hono K. Microstructure of two-phase A1-1.7at.%Cu Alloy deformed by equal-channel angular pressing[J]. Acta Materialia, 2001, 49 (1): 21-29
    [172] 许晓嫦,刘志义,张坤等. 强变形诱导析出相回归后的再时效行为[J]. 中国有色金属学报,2004, 14 (5): 759-765
    [173] 许晓嫦,刘志义,党朋等. 室温强塑性变形下回溶和再析出的机理研究[J]. 材料科学与工艺,2005, 13, (2): 178-181
    [174] Senkov O N, Froes F H, Stolyarov V V, et al. Microstructure and minohardness of an Al-Fe alloy subject to severe plastic deform ention and ageing[J]. Nanostructured Materials, 1998, 10 (6): 691-698.
    [175] Oh-ishi K, Hashi Y, Sadakata A, et al. Microstructural control of an Al-Mg-Si alloy using equal-channel-angular pressing[J]. Materials Science Forum, 2002, 396-402 (2): 333-338
    [176] 周建. 7075铝合金在锻造过程中显微组织的演化和工艺模拟:[东北大学硕士学位论文]. 辽宁:东北大学,2003: 43-45
    [177] 陈振华, 夏伟军, 程永奇等. 镁合金织构与各项异性[J]. 中国有色金属学报, 2005, 15 (1): 1-11
    [178] Robert G, Matthias M F, Gottstein G. Texture effects on plastic deformation of magnesium[J]. Materials Science and Engineering A, 2005, A395 (1-2): 338-349
    [179] Watanabe H, Mukai T, Ishikawa K. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties[J]. Journal of Materials Science, 2004, 39 (4): 1477-1480
    [180] 程永奇, 陈振华, 夏伟军等. 等径角轧制AZ31镁合金板材的组织与性能[J]. 中国有色金属学报, 2005, 15 (9): 1369-1375
    [181] Ringeval S, Piot D, Desrayaud C, et al. Texture and microtexture development in an Al-3Mg-Sc(Zr) alloy deformed by triaxial forging[J]. Acta Materialia, 2006, 54 (11): 3095-3105
    [182] Mark D N, Matthew R B. Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scripta Materialia, 2004, 51 (9): 881-885
    [183] Del Valle J A, Perez-Prado M T, Ruano O A. Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction[J]. Metallurgical and Materials Transactions A, 2005, A36 (6): 1427-1438
    [184] Bohlen J, Li S B, Swiosteck J, et al. Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31[J]. Scripta Materialia, 2005, 53 (2): 259-264
    [185] Del Valle J A, Perez-Prado M T, Ruano O A. Texture evolution during large-strain hot rolling of the AZ61 Mg alloy[J]. Materials Science and Engineering A, 2003, A355 (1): 68-78
    [186] Tanno Y, Mukai T, Asakawa M, et al. Study on warm caliber rolling of magnesium alloy[J]. Materials Science Forum, 2003, 419-422 (1): 359-364
    [187] Wu S K, Chou T S, Wang J Y. The deformation texture in an AZ31B magnesium alloy[J]. Materials Science Forum, 2003, 419-422 (1): 527-532
    [188] DiDomizio R, Gigliotti M F, Marte J S, et al. Evolution of a Ni-20Cr alloy processed by multi-axis forging[J]. Materials Science Forum, 2006, 503-504 (1): 793-798
    [189] Xing J, Yang X Y, Miura H, et al. Grain refinement in magnesium alloy AZ31 during multidirectional forging under decreasing temperature conditions[J]. Materials Science Forum, 2005, 488-489 (1): 597-600
    [190] Xing J, Sodo H, Yang X Y, et al. Ultra-fine grain development in an AZ31 magnesium alloy during multi-directional forging under decreasing temperature conditions[J]. Materials Transactions, 2005, 46 (12): 1646-1650
    [191] Yang X Y, Jing X, Miura H, et al. Strain-induced grain refinement in magnesium alloy AZ31 during hot forging[J]. Materials Science Forum, 2006, 503-504 (1): 521-526
    [192] John A. Wart, Paton N E. Refining the grains of 7075 aluminum alloy by thermo-mechanical treatment[J]. Metall. Trans,1981, A12 (10): 1267-1276
    [193] Pérez-Prado M T, del Valle J A, Ruano O A. Grain refinement of MG-Al-Zn alloys via accumulative roll bonding[J]. Scripta Materialia, 2004, 51 (12): 1093-1097
    [194] Yoo M H, Wei C T. Growth of deformation twins in Zinc crystals[J]. Philosophical Magazine A, 1996, 14 (129): 573-587
    [195] Kim H K, Kim W J. Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation[J]. Materials Science and Engineering A, 2004,A385(): 300-308
    [196] Jiang H, Zhu Y T, Butt D P, et al. Microstructural evolution, microhardness and thermal stability of HPT-processed Cu[J]. Materials Science and Engineering A, 2000, A290 (1): 128-138
    [197] Li Y, Li S X, Li G Y. The dislocation structure evolution of deformation band and crack formation in a copper bicrystal with a perpendicular grain boundary[J]. Materials Science and Engineering A, 2004, A372 (1-2): 221-228
    [198] Belyakov A, Sakai T, Miura H, et al. Substructures and internal stress developed under warm severe deformation of austenitic stainless steel[J]. Scripta Materialia, 2000, 42 (3): 319-325
    [199] 陈军. 新型两相钛合金 Ti700 锻件组织性能研究:[西北工业大学硕士学位论文]. 陕西:西北工业大学,2005: 43-45
    [200] 王占学. 塑性加工金属学[M]. 北京:冶金工业出版社,1991:49
    [201] 赵志业. 金属塑性变形与轧制理论[M]. 北京: 冶金工业出版社,1991:63
    [202] Cheng W C, Lin Y C, Liu C F. The fracture behaviors in an Fe-Mn-Al alloy during quenching processes[J]. Materials Science and Engineering A, 2003, A343 (1): 28-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700