超音速火焰喷涂中气固两相流的数值模拟与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超音速火焰喷涂技术之所以能形成结合强度高、空隙率低的涂层,主要归功于超音速火焰喷涂过程形成的高温高速的燃烧产物,通过拉伐尔喷管的压缩与再膨胀喷射出去达到超音速,高温高速的气体带动注射颗粒使得颗粒处于熔化或半熔化状态撞击到基材,形成优异的涂层性能。因此,对超音速火焰喷涂过程中气-固两相流的研究变得尤为重要。
     国内外论文中主要采用ANSYS CFX或FLUENT中物质转化反应模型对超音速火焰喷涂过程进行模拟计算分析,本文在Gambit软件中建立超音速火焰喷涂过程的模型,在前处理程序PrePDF对燃烧反应进行分析计算,利用FLUENT软件对超音速火焰喷涂整个过程进行模拟,在后处理中对模拟结果进行分析。
     本文从两相流的基本理论和输运方程出发,建立超音速火焰喷涂过程的气态流场的数学模型,以FLUENT软件为计算平台,采用k-?湍流模型模拟湍流流动,采用非预混燃烧模型设置反应过程,模拟超音速火焰喷涂过程中气态流场流动特性,研究超音速火焰喷涂过程中燃烧反应、燃烧物质含量比、喷枪结构等参数对气态流场的影响,分析了激波与马赫锥产生机理;然后采用离散相模型中颗粒随机跟踪轨道模型计算喷涂颗粒的动力学飞行行为,研究颗粒大小与颗粒注射速度对颗粒动力学行为的影响,并将结果与相关的文献作了对比,为以后喷涂工艺参数的选取和FLUENT在喷涂模拟中广泛应用提供有用的信息,最后采用试验方法研究了颗粒熔化状态和颗粒撞击扁平化过程,表明对于WC-17Co喷涂在Cr12钢基材上喷涂距离为342mm最佳。
High velocity oxygen fuel (HVOF) thermal spray technology is able to form high strength, low porosity coating, mainly because the formation of high-velocity and high-temperature combustion products are recompressed and expanded through the Laval nozzle to achieve supersonic expansion. High-velocity and temperature particles are translated semi-molten or molten state, which are impacted to the substrate to form a superior coating performance. Therefore, the gas-solid two-phase flow research in the HVOF thermal spray process is particularly important.
     Papers of simulation analysis at home and abroad mainly in ANSYS CFX or FLUENT for HVOF thermal spray process is used material transform reaction model. In the article, the fundamental theory about internal two-phase flow in HVOF thermal spray is introduced. And the mathematic model of gas-solid flow is founded, analysis of the reaction chamber is solved with the PrePDF pre-treatment process, the entire process of HVOF thermal spray is simulated with FLUENT6.3 software, the analysis of simulation results are observed in the post-processing software.
     In this paper, beginning with the basic theory of two-phase flow and transport equation, the gas flow field of the mathematical model is established in the HVOF thermal spary. In FLUENT software, turbulent flows and reaction process are solved with k-? turbulence model and the non-premixed combustion process model. The numerical study includes the progress of supersonic combustion flame spray reaction, burning material content ratio, the structure of spray parameters on the flow field of gas analysis, the gas analysis of the shock wave and mach cone mechanism; based on gas flow filed, the dynamics of flight spray particles behavior is tracked with the discrete particles with random orbit model to research particle size and particle injection velocity on the dynamic behavior of particles. The results associated with foreign literature are compared , the selection of the spraying process parameters and FLUENT simulation is in widely used in HVOF spray progress to provide useful information, and finally study the melted state of particles and flat particle collision process,it shows that the best flat behavior in the WC-17Co coating for Cr12 steel substrate is at the spraying distance of 342mm.
引文
[1]王汉功,查柏林.超音速喷涂技术[M].科技出版社. 2005.1
    [2]吴子建,吴朝军,曾克里.热喷涂技术与应用[M].北京:机械工业出版社. 2006: 25~26
    [3]刘任峰.固体火箭发动机内气固两相等温流动特性的数值分析[D].哈尔滨:哈尔滨工业大学. 2006.6: 1~2
    [4]王群,丁彰雄,陈振华等.枪管长度和喷涂距离对超音速火焰喷涂制备纳米WC -12Co涂层组织和硬度的影响[J].机械工程材料. 2008.9, Vol.32 No.9: 9~12
    [5]吴子牛.计算流体力学基本原理[M].北京:科技出版社. 2001.
    [6]陈作斌.计算流体力学及应用[M].北京:国防工业出版社. 2002
    [7]方坤.计算流体力学的几种常用软件[J].煤炭技术. 2006.12. Vol.25,No.12
    [8]李勇,刘志友,安亦然.介绍计算流体力学通用软件—Fluent[J].水动力学研究与进展,2001,16 (2) :254~258
    [9]许涛,过学讯. FLUENT在汽车行业中的应用[J].北京汽车学术论坛. 2006.No 5: 39~42
    [10]朱立奎,雷永平,史耀武. FLUENT在焊接模拟中的应用[J].电焊机. 2007.8, Vol.37 No.8:13~19
    [11]潘丽萍,李建锡,卢凯芳. CFD模拟技术在陶瓷内衬多通道煤粉燃烧器中的应用[J].佛山陶瓷. 2007.9(第130期):5~7
    [12]罗铭,刘金凤,杜特专.基于FLUENT的多相模拟反应器的设计[J].计算机与应用化学. 2007.9,Vol.24, No.9: 1153~1158
    [13]赵洪章,岳春国,李进贤.基于FLUENT的导弹气动特性计算[J].弹箭与制导学报.第27卷第2期: 203~205
    [14]马洪安,张宝诚,王平.航天发动机燃烧室主燃区特性的研究[J].沈阳航空工业学院学报. 2005.6,Vol.22, No.3: 1~3
    [15]解永杰,牛二武,曹晓明.超音速火焰喷涂技术的发展与特点[J].金属材料的开发与应用. 2004.2:32~34
    [16] Dolatabadi D. Numerical modeling of particle laden flow in HVOF torch with gas shroud[A]. Proceeding of the 16th intl .thermal spray conf[C].2000: 89~91
    [17] Ahmed A M. Mathematical model of in-flight oxidation of metallic particles [J]. Thermal Spraying, 2000, 27(5):74~77.
    [18]查柏林,王汉功,徐可为.多功能超音速火焰喷涂喷枪拉伐尔喷嘴的设计[J].焊接学报. 2005.8Vol.26 No. 8: 61~64
    [19] E. Dongmo*,M. Wenzelburger, R.Gadow, Analysis and Optimization of the HVOF Process by Combined Experimental and Numerical Approaches[J], Surface & Coating Technology. 2008.4
    [20]邢亚哲. HVAF系统喷枪与雾化喷嘴的研究[D].西安:长安大学. 2003.4: 21~22
    [21] Mingheng Li,Panagiotis D.Christofides. Modeling and analysis of HVOF thermal spray process accounting for powder size distribution[J], Chemical Engineering Science 58 (2003) :849~857
    [22] Mingheng Li, Panagiotis D.Christofides. Multi-scale modeling and analysis of an industrial HVOF thermal spray process[J], Chemical Engineering Science 60(2005): 3694~3669
    [23] Mingheng Li, Panagiotis D.Christofides. Computational study of particle in-flight behavior in the HVOF thermal spray process[J], Chemical Engineering Science 61(2006) :6450~6552
    [24] Tariq Shamim, Chunmei Xia, Pravansu Mohanty. Modeling and analysis of combustion assisted thermal spray processes[J], International Journal of Thermal Sciences 46(2007) :755~767
    [25] S.Kamnis, S.Cu. Numerical modeling of propane combustion in a high velocity oxygen-fuel thermal spray gun[J], Chemical Engineering and Processing 45(2006): 246~253
    [26] S.Kamnis, S.Gu, T.J.Lu et al. Computational simulation of thermally sprayed WC-Co powder [J], Computational Matetials Science, 43 (2008) :1172-1182
    [27] S. Kamnis, S.Gu,N.Zeoli. Mathematical modelling of Inconel 718 particles in HVOF thermal spraying[J], Surface & Coatings Technology 202 (2008) :2715~2724
    [28]李长久,李京龙.等离子体喷涂熔滴扁平过程数值模拟[J].航天制造技术.1999.5:57~62
    [29]王汉功,袁晓.超音速火焰喷涂Ni粒子特性数值仿真[J].兵工学报. 2006.3,Vol.27 No. 2:310~314
    [30]侯根良,王汉功,袁晓等.超音速火焰喷涂流场有限元分析[J].焊接学报. 2005.3:77~80
    [31]吴玉新,张建胜等.简化PDF模型对Texaco气化炉的三维数值模拟[J].化工学报.2007.9, Vol.58 No 9: 2369~2374
    [32]胡文斌,王建江等.有限元法在热喷涂技术中的应用和发展[J].新技术与新工艺.2007.2: 9~10
    [33]袁晓,王汉功等.氧气含量对超音速火焰喷涂燃烧特性的影响.材料科学与工艺. 2007.4, Vol.15 No12: 197~201
    [34]候根良,王汉功.超音速火焰喷涂燃烧室燃气成分与温度的计算[J].兵器材料科学与工程. 2005.3, Vol.28 No2: 16~18
    [35] Chang-Jiu Li,Hui Yang,Hua Li. Effect of gaseous conditions on the characteristics of HVOF flame and structure and property of WC-Co coatings [J]. Materials and Manufacturing Processes. Vol.14,No.3, 1999: 383~395
    [36]候根良,王汉功等.送粉参数对超音速火焰喷涂粒子速度与温度的影响[J].兵器材料科学与工程. 2005.5,Vol.2 No.3: 23~26
    [37]王志健,田欣利,胡仲翔.空气超音速火焰喷枪设计理论与数学模型的建立[J].材料科学与工程. Mar.2002, Vol.20, No.1: 54~57
    [38]王汉功,查柏林.多功能超音速火焰喷涂的燃烧特性研究[J].材料保护. Apr. 2002, Vol.35, No.4: 28~30
    [39]张军红,温瑾林,黄石生.超音速火焰喷涂枪的研究[J].焊接学报. June,1999, Vol.20, No.2
    [40]项建海,索双福.超音速电弧喷枪的拉瓦尔喷嘴设计及流场的数值模拟[J].第八届全国热喷涂年会论文. 2004: 133~136
    [41]王福军.计算流体力学分析——CFD软件原理与应用[M].北京:清华大学出版社.2004.
    [42]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].北京:清华出版社. 2007.2
    [43]韩占忠,王敬,兰小平. FLUENT fluent :流体工程仿真计算实例与应用[M].北京:北京理工大学出版社. 2004
    [44]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社. 2006.6
    [45]于勇. FLUENT入门与进阶教程[M].北京理工大学出版社. 2008.9
    [46]邹春.湍流扩散火焰模型[J].数值计算与工程仿真.2005年3月.第1卷第4期, Vol.1 No.4
    [47]熊莉芳,林源,李世武. K-?湍流模型及其在FLUENT软件中的应用[J].热能工程.工业加热第36卷2007.4: 13~15
    [48]龙天渝,苏亚欣,向文英等.计算流体力学[M].重庆:重庆大学出版社. 2007.3
    [49] Sakaki k, Shimizu Y. Effect of the increase in the entrance convergent section length of the gun nozzle on the high-velocity oxygen fuel and cold spray process{J}. Journal of Thermal Spray Technology,2001,10{3}:487~496
    [50]常汝楫译.喷气燃料性能手册[M].北京:宇航工业出版社. 1990: 138~158
    [51]王新月.气体动力学基础[M].西安:西北工业大学出版社. 2006.5
    [52]刘雪峰,刘春和,张仕念等.多功能超音速火焰喷涂粒子特性的数值模拟[J].表明技术.Vol.36, No.3, Jun.2007
    [53]章小锋. HVOF喷涂自润滑复合涂层的形成机理及特性研究[D].武汉:华中科技大学博士论文. 2008.7
    [54]杨,高玲,福本昌宏等.粒子扁平现象研究及发展[J].表面技术.Apr.2008. Vol.37, No.2
    [55]孙成琪.低能等离子喷涂碳化钨特性的研究[D].大连:大连海事大学硕士论文.2005.3:52~53
    [56] Hao Du, Chao Sun, Weigang Hua et al. Structure, mechanical and sliding wear properties of WC–Co/MoS2–Ni coatings by detonation gun spray[J]. Materials Science and Engineering A, 2007, 445-446:122~134
    [57]王志平.超音速火焰喷涂技术特性分析与涂层性能及测试试验方法的研究[J],兵器材料科学与工程,2002,25(3): 73~78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700