冲击地压的非线性岩梁混沌动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发生在许多煤矿井下开采中的冲击地压问题是岩石力学面对的长期悬而未决的最困难的难题之一。国内外学者对此进行了长期研究,取得了大量的成果。由于该问题的复杂性,目前对于冲击地压的发生机理和条件仍不是十分清楚,距离彻底解决冲击地压问题仍有相当的距离。本文利用混沌动力学的方法对顶板系统的失稳规律进行了定量分析,为冲击地压的研究提供新的思路和方法,为冲击地压的预测与防治提供一定的理论基础。本文的主要研究方法和成果如下:
     (1)通过建立夹支、固支和悬臂梁体力学模型,并应用三次非线弹性本构关系近似模拟峰后软化效应,建立了模型的非线性控制方程。采用Galerkin法对控制方程进行离散,得到微分动力系统,利用Melnikov函数法求得了无扰动系统非稳定平衡态的条件,包围中心的闭周期轨道和扰动系统进入Smale马蹄混沌的条件,并计算得系统通过次谐分岔进入混沌状态;
     (2)基于混沌理论求得了夹支梁、固支梁和悬臂梁型顶板煤层型或顶板型冲击地压发生的失稳判据及失稳的扰动条件,认为顶板型冲击地压的发生都具有随机性和初值敏感性的特点;
     (3)顶板系统非稳定平衡态的条件就可以成为顶板煤层型或顶板型冲击地压发生的判据。与顶板破断的极限跨距做对比,建立了动结合的判断顶板稳定性的双重判据;
     (4)顶板稳定性主要受拉应力控制,通过对固支梁与悬臂梁判断顶板稳定性双重判据的分析发现顶板的冲击危险性与其抗拉强度密切相关,抗拉强度越小,其冲击危险性越小;
     (5)冲击地压多发生在地质构造带,本文通过对轴向力的分析发现,当存在轴向力时,岩梁的失稳跨距明显减小,且轴向力越大,失稳跨距越小;
     (6)认为应用强度理论计算的顶板破断的极限跨距失效的原因主要有两个:一是煤岩材料简化为线弹性模型,只考虑峰值强度,未考虑峰后的软化效应;二是计算中只考虑横向载荷下的纯弯曲,未考虑轴向力下的复合弯曲;
     (7)根据失稳理论思想,利用Hamilton表述方法,求得了系统的势能函数,是对失稳理论的进一步认识和发展。因此应用混沌动力学方法研究冲击地压问题是可行的。
Rock burst is one of the most common and difficult hazard in mining engineering. Domestic and foreign experts have studied it for a long time, until now, the essential reasons of this hazard have not been thoroughly understood due to the complexity of the hazard. This paper quantitatively analysis instability criterion of the burst hazard in chaos dynamics theory, presents the new research thinking and method, and provides the theory foundation for rock bust prevention and cure. The research methods and achievements of this paper are as follows:
     (1) The mechanical model of folder-type, clamped-clamped and cantilever rock beam was established to analyze the roof with disturbance. The cubic nonlinear elastic constitutive law was used to describe the strain-softening characteristics of rock. By using of Galerkin method, differential dynamic system was obtained and the condition of dynamic instability critical state and disturbance criterion for the instability were determined by Melnikov method, and calculated the system through sub-harmonic bifurcation into chaos;
     (2) The mechanical instability criterion and disturbance criterion which used to judge the roof rock burst occurred were obtained by the chaos theory. This paper thought the roof rock beam has the characteristics of chaotic system, namely randomness and sensitivity to initial conditions;
     (3) The condition estimated unstable equilibrium station of roof system could as the criterion of roof rock burst. The dual criterion is established for the stability control of roof with burst hazard through the comparison between instable span and limited span;
     (4) Rock burst hazard for roof and tensile strength is closely related through the analysis of dual criterion, the smaller the tensile strength, the less the rock burst hazard;
     (5) Rock burst occurred geological structure belt more, this paper analyzed the horizontal tectonic load, and the instability criterion is influenced distinctly by horizontal tectonic load, the larger horizontal tectonic load, the smaller the instable span;
     (6) There were two reasons that the limit span calculated in strength theory was failure: first, coal simplified linear elastic material model, considering only the peak intensity, did not consider the post-peak softening effect; second calculation considered only the pure bending under transverse load, does not consider the composite bending under axial force;
     (7) This paper, according to the instability theory, got the potential energy function of system through Hamilton method; obtained the mechanical condition and disturbance criterion which quantitatively judged the roof instability. This paper thought roof could be dynamic buckling when it failed to reach the strength and it is a further understands and development for instability theory.
引文
[1]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    [2]姜福兴.矿山压力与岩层控制[M].北京:煤炭工业出版社,2004
    [3]赵本均,腾学军.冲击地压及其防治[M].北京:煤炭工业出版社,1995
    [4]谭云亮.矿山压力与岩层控制[M].北京:煤炭工业出版社,2008
    [5]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [6]郑颖人,刘兴华.近代非线性科学与岩石力学问题[J].岩土工程学报,1996,18(1)98-100.
    [7]王思敬.作为现代科学的岩石力学研究与实践[A].中国岩石力学与工程学会第五次学术大会论文集,上海:中国科学出版社,1998,17-21.
    [8]Lorenz E N. Deterministic nonperiodic flow [J]. J.Atoms Sci.1963,20.
    [9]Ruelle D, Takens K. On the nature of turbulence [J].Math.Phys.,1971,20:167-192.
    [10]Li T Y, Yorke J A. Period three implies chaos [J].Amer.Math.Monthly,1975,82.
    [11]Feigenbaum M J. Quantitative universality for a class of nonlinear transformations [J]. J.Stat. Phys,1978,19(1).
    [12]Feigenbaum M J. The universal metric properties of nonlinear transformations [J]. J.Stat.Phys,1979,21(6).
    [13]Takens F. Detecting strange attractors in fluid turbulence[J].Lecture Notes in Mathematics,1981,366-381.
    [14]Pakard N H, Crutchfield J P, Farmer J D, Shaw R S. Geometry from a time series [J].Phys RevLett,1980,45(9):712-716.
    [15]Grassberger P, Procaccia I. Measuring the strangeness of strange attractors [J]. Physica D,1983,9:189-208.
    [16]Grassberger P. Generalized dimension of strange attractors [J]. Phs. Lett A,1987,97.
    [17]郝柏林.分叉、混沌、奇怪吸引子、湍流及其他[J].物理学进展,1983,3:54-59.
    [18]郑伟谋,郝柏林.实用符号动力学[J].物理学进展,1990,10:316-322.
    [19]刘适达.地球系统模拟和混沌时间序列[J].地球物理学报,1990,2:34-39.
    [20]陈子林.蕴震系统前兆混沌吸引子及分维[J].地震学报,1993,4:102-107.
    [21]Wolf A, Swift J B, Swinney H, Vastano J. Determining Lyapunov exponents from a time series[J]. Physica D,1985,16:285-317.
    [22]韩强,张善元.大挠度梁混沌运动的双模态分析[J].太原理工大学学报,1998,29(4):333-336.
    [23]树学峰,王京,杨桂通.非线性粘弹性梁混沌运动的多模态分析[J].太原理工大学学报,1998,29(1):20-23.
    [24]张年梅,韩强,杨桂通.材料特性对非线性结构动力行为的影响[J].太原理工大学学报,2000,31(5):511-515.
    [25]张年梅,杨桂通.非线性弹性梁中的混沌带现象[J].应用数学与力学,2003,24(5):450-454.
    [26]陈立群,程昌钧.关于基于Gaierkin截断的粘弹性结构动力学行为研究[J].自然杂志,1999,21(1):1-4.
    [27]陈立群,程昌钧,张能辉.非线性粘弹性大挠度梁的动力学模型及其简化[J].上海力学,1999,20(3):302-305.
    [28]陈立群,程昌钧,张能辉.具有几何和物理非线性粘弹性梁的混沌运动[J].工程力学,2001,18(1):1-6.
    [29]王春妮.热-机载荷作用下大挠度梁的动力稳定性分析[D].兰州:兰州理工大学,2008,15-70.
    [30]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987.
    [31]Biot M A. Surface instability of rubber in compression[J].Applied Sci.Res.A,1963,12:168-182.
    [32]Biot M A. Surface instability in finite anisotropic elasticity under initial stress [J]. Pro.Royal Society, A,1963,273:329-339.
    [33]普里高津.探索复杂性[M].成都:四川教育出版社,1986.
    [34]H哈肯.信息与自组织[M].成都:四川教育出版社,1988.
    [35]Mandelbrot B B. The fractal geometry of nature[M].San Francisco,1983.
    [36]黄滚.岩石断裂失稳破坏与冲击地压的分叉和混沌特征研究[D].重庆大学博士论文,2007
    [37]佩图霍夫.H.M.等著.段克信译.冲击地压和突出的力学计算方法[M].北京:煤炭工业出版社,1994.
    [38]布霍依诺.G.著.李玉生译.矿山压力和冲击地压[M].北京:煤炭工业出版社,1985.
    [39]李玉生.冲击地压机理及其初步应用[J].中国矿业学院院报,1985,3:37-43.
    [40]李玉生.冲击地压机理探讨[J].煤炭学报,1984,9(3):1-10.
    [41]章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987,6(3):197-204.
    [42]Salamon M D G, Wagner H. Role of stability pillars in the alleviation of rock burst hazard in deep mines[A].Proc.4th Int. Rock Mech.,Montreal,1979,2:561-566.
    [43]Zubelewica O C, Mroz Z. Numerical simulation of rock burst processes treated as problems of dynamic instability [J].Rock Mech. Rock Eng.,1983,16:253-274.
    [44]Lippmann H. Mechanics of bumps in coal mines:A discussion of violent deformations in the sides of roadways in coal seams[J].Appl.Mech.Rev.,1987,40(8):1033-1043.
    [45]王来贵,潘一山.矿井不连续面冲击地压发生过程分析[J].中国矿业,1996,5(3):61-65.
    [46]梁冰,章梦涛.采区冲击地压的数值预测[J].矿山压力与顶板管理,1995,2:12-15.
    [47]齐庆新,史元伟,刘天泉.冲击地压粘滑失稳机理的实验研究[J].煤炭学报,1997,22(2):143-148.
    [48]潘立友,蒋宇,李兴伟,杜广纯.煤层冲击地压的扩容理论[J].岩石力学与工程学报,2002,21(增2):2301-2303.
    [49]秦昊,茅献彪.应力波扰动诱发冲击矿压数值模拟研究[J].采矿与安全工程学报,2008,25(2):20-31
    [50]高明仕,窦林名等.冲击矿压巷道围岩控制的强弱强力学模型及其应用分析[J].岩土力学,2008,29(2):359-364
    [51]Brown S R, Scholz C H. Broad band width study of the topography of natural rock surface [J]. J.Geophys.Res.,1985,90:12575-12582.
    [52]Scholz C H, Aviles C A. The fractal geometry of faults and faulting, in earthquake source mechanics [A]. Geophys, Monogr.Ser.,1986,37,edited by S Das, J Boatwright and C H Scholz, AGU, Washington D.C.,1986,147-155.
    [53]Avile C A, Scholz C H. Fractal analysis applied to characteristic segments of the San Andreas fault[J].J.Geophys.Res.,1987,92:331-334.
    [54]Okubo P G, Aki K. Fractal geometry in the San Andreas fault system [J]. J Geophys. Res., 1987,92:345-355.
    [55]马谨,马胜利,雷兴林.鲜水河断裂断层几何与地震活动性[A].“第二届构造物理学术讨论会文集”,马谨,王绳祖,地震出版社,1990,58-67.
    [56]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [57]徐曾和,徐小荷.坚硬顶板下煤柱岩爆的尖点突变理论模型[J].煤炭学报,1995,20(5):23-28.
    [58]尹光志,李贺,鲜学福,冯涛.煤岩体失稳的突变理论模型[J].重庆大学学报,1994,17(1):23-28.
    [59]尹光志,王登科,黄滚.突变理论在开采沉陷中应用[J].矿山压力与顶板管理,2005(4):94-96.
    [60]潘岳,耿厚才.折断式顶板大面积冒落尖点突变模型[A].现代采矿技术国际学术会议讨论会论文集,1988.
    [61]秦四清,王思敬.煤柱-顶板系统协同作用的脆性失稳与非线性演化机制[J].工程地质学报,2005,13(4):437-446.
    [62]姜永东,鲜学福,尹光志.采掘工作面发生冲击地压的尖点突变模型研究[J].中国矿业,2007,16(12):65-71.
    [63]谭云亮,宋扬.顶板运动过程中混沌性分析[J].矿山压力与顶板管理,1997,4(3):227-229.
    [64]谭云亮,孙中辉.矿区岩层运动非线性动力学特征及预测研究的基本框架[J].中国地质灾害与防治学报,2000,11(2):51-54.
    [65]周辉.矿震孕育过程的混沌性及非线性预测理论研究[J].岩石力学与工程学报,2000,19(6): 813.
    [66]宋维源等.冲击地压的非线性动力模型及预报问题[J].辽宁工程技术大学学报,1999,5:500-503.
    [67]宋维源,潘一山,苏荣华,王洪英.冲击地压的混沌学模型及预测预报[J].煤炭学报,2001,26(1):26-30.
    [68]朱清安,史蒙.冲击地压的混沌特性及动力模型研究[J].辽宁工程技术大学学报,2001,20(1):40-42.
    [69]李洪,戴仁竹,蒋金泉.基于最大Lyapunov指数的冲击地压预测模型[J].采矿与安全工程学报,2006,23(2):215-219.
    [70]代高飞,尹光志,皮文丽,李东伟.用滑块模型对冲击地压的研究[J].岩土力学,2004,25(8):1263-1266+1282.
    [71]尹光志,代高飞,皮文丽,李东伟.冲击地压的滑块模型研究[J].岩土力学,2005,26(3):359-364.
    [72]尹光志,谭钦文,魏作安.基于混沌优化神经网络的冲击地压预测模型[J].煤炭学报,2008,33(8):871-875.
    [73]王可钧.岩石力学与工程的几个研究热点[A].第六次全国岩石力学与工程学术大会论文集,2000,6-10.
    [74]侯兰杰,陈廷方.浅述岩体力学研究的前沿问题及热点[J].西南科技大学学报,2004,19(4):54-58.
    [75]谢和平,刘夕才,王金安.关于21世纪岩石力学发展战略的思考[J].岩土工程学报,1996,18(4):98-102.
    [76]J.A.Hudson, C.-F.Tsang, L.Jing,J.C.Andersson. The DECOVALEX Coupled Modelling Project:Past, Present and Future[A].ISRM-Sponsored International Symposium on Rock Mechanics,2009.
    [77]潘一山.冲击地压发生和破坏过程研究[D].北京:清华大学博士论文,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700