含瓦斯煤体气固耦合渗流机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含瓦斯煤层的动力灾害主要包括煤与瓦斯突出和冲击地压,动力灾害发生后会摧毁巷道等采掘空间,并伴随着瓦斯涌出异常,严重威胁着煤矿安全高效生产和矿山工作人员的生命安全。含瓦斯煤层动力灾害发生时应力场和瓦斯渗流场是相互影响的,因此研究含瓦斯煤层应力场和瓦斯场的气固耦合效应对进一步揭示动力灾害机理及预防动力灾害发生有着十分重要的作用。本文利用理论建模和数值模拟手段系统研究了煤层应力与瓦斯渗流的耦合规律,主要得到以下结论:
     (1)根据煤体结构特点,采用双重孔隙结构模型描述煤体的多孔基质和裂隙结构特征。分析了煤体基质在应力作用下的压缩变形规律,得到了基质系统孔隙率、渗透率与应力的变化关系;分析了裂隙受压缩而闭合和受剪切而张开的规律,并采用分形理论建立了裂隙开度与应力的变化模型,在此基础上建立了三维空间裂隙系统的孔隙率、渗透率与复杂应力场的关系。
     (2)分析了受裂隙作用形成的煤体部分分割和部分连接的特殊结构,得到了瓦斯吸附膨胀或解吸收缩应变对煤体连接部分的有效应力的影响,并在此基础上建立了在瓦斯吸附膨胀或解吸收缩应力作用下的含瓦斯煤体有效应力方程。采用体积应变量衡量裂隙煤体的损伤程度,建立了煤体的损伤演化方程;采用Mohr-Coulomb屈服准则作为判断破坏的依据,并分别对剪切破坏和拉伸破坏后的应变量进行塑性修正;同时分析了煤体粘聚力随应变增加而降低的特征,采用煤体粘聚力应变软化模型表征煤体的应变软化特征。
     (3)根据瓦斯气体的渗流规律和状态方程,分别建立了基质系统和裂隙系统内瓦斯气体的质量守恒方程。基于TOUGH2多相流模拟软件开发了TOUGH2(CH4)瓦斯渗流模拟软件,模拟分析了煤样内瓦斯渗流过程,验证了本软件的合理性;采用C++语言编写了煤体损伤本构模型的dll库文件,通过FLAC3D软件对煤体单轴压缩过程进行了模拟,其结果准确的反映了煤体的损伤破坏过程。应力场对渗流参数产生影响,同时瓦斯渗流场对煤体有效应力产生影响,结合渗流参数与应力关系和煤体有效应力方程即构成了气固耦合模型。根据建立的气固耦合模型,开发了TOUGH2(CH4)-FLAC气固耦合数值模拟软件,并模拟分析了有围压加载时煤体内瓦斯渗流规律,模拟结果与理论结果相符。根据模拟结果可以证明本文提出的气固耦合模型和数值计算方法具有一定的可靠性。
     (4)以鹤岗南山矿为工程背景,将开发的TOUGH2(CH4)-FLAC软件应用于现场,对巷道围岩损伤演化和瓦斯渗流情况进行了模拟研究,得到了围岩受冲击扰动前后的损伤特征和瓦斯渗流规律,揭示了冲击扰动造成瓦斯涌出异常的机理。研究成果对深入认识含瓦斯煤层动力灾害机理、制定预防措施等具有重要的意义,同时煤层气固耦合程序的应用为进行煤层瓦斯渗流规律分析提供了一种研究方法。
Rockburst in coal seam containing methane is a kind of complex and dynamicdisaster, and it hinders the mine safely that is a big problem for coalmine. The stressfield and the seepage field of methane react upon one another in the process ofrockburst, thus it is important to research the coupling effect between stress field andseepage field to reveal the mechanism of rockburst in coal seam containing methane.This dissertation focuses on the law of failure and deformation of coal and seepage ofmethane. According to the seepage theory for methane and damage mechanics theoryfor coal, the coupling mechanism is investigated by using theoretical modeling andnumerical simulation. The main results are listed as following.
     (1) The dual-porosity model is applied to describe the characteristic of porousmatrix and fracture structure in coal based on the feature of coal structure. On thebasis of deformation characteristics of coal matrix under stress, the couplingrelationships for both porosity and permeability with stress are built. The law ofclosure of fracture under compression and dilation under shearing are analyzed basedon the structure characteristics of single fracture in fracture system. In addition, thedeformation model of fracture is built, and then the coupling relationships for bothporosity and permeability with stress in fracture system are obtained based on thecubic law.
     (2) The swelling and shrinkage strain induced by methane adsorption anddesorption are obtained according to the theory of physical chemistry of coal surfaces.The swelling and shrinkage strain have a strong effect on the effective stress due tothe particular structure of coal matrix separated by fracture. Effective stress equationfor coal containing methane is built which considering the influence of swelling andshrinkage stress. Since volumetric strain describes the development of fracture,damage evolution equation for coal is built by accounting volumetric strain as aninternal factor. Mohr-Coulomb failure criterion is adopted as criterion of criticaldamage. Then the strain is corrected through plastic corrections after shear failure ortensile failure occurs. Meanwhile, strain-softening model for cohesion of coal is builtby analysis of the characteristic of cohesion decreasing with the increase of strain.
     (3) Equations of mass conservation for methane in both matrix system andfracture system are built based on the seepage pattern and equations of states.Numerical simulation software named TOUGH2(CH4) for methane seepage is developed by rewriting the code of TOUGH2. Then the rationality of this software isverified by a small simulation of methane seepage in coal sample. The damage modelfor coal is written in C++, and compiled as a DLL file that can be loaded by FLAC3Dwhen it runs. The process of coal sample under compression is simulated based onFLAC3D with loading the new defined model. The simulated result reflects reality ofdamage process of coal accurately. In order to run a coupled simulation for theanalysis of gas-solid coupling, TOUGH2(CH4) and FLAC3D simulation arecollaborated as TOUGH2(CH4)-FLAC with TOUGH-FLAC code which is a coupledcode linking two existing simulators (TOUGH2and FLAC3D). The accuracy of newcoupling simulator is proved by a numerical model for calculation of methane seepagein coal sample under confining pressure.
     (4) TOUGH2(CH4)-FLAC is implemented into a field case in Hegang-Nanshancoal mine. The simulations focus on the damage evolution of surrounding rock andmethane seepage. The simulation results reveal the mechanism of extreme gasemission after disturbance induced by rockburst.
引文
[1]"BP Statistical review of world energy2012"[R]. British Petroleum. Retrieved,2011.
    [2]赵本钧.冲击矿压及防治[M].北京:煤炭工业出版社,1995.
    [3]夏农.论如何实现我国矿业可持续发展[J].中国矿业,2003,12(1):1-3.
    [4] Hua A Z, You M Q. Rock failure due to energy release during unloading and application tounderground rock burst control[J]. Tunnelling and Underground Space Technology,2001,16(3):241-246.
    [5] Takeo Y, Hikaru S. The experimental results on the actual measurement of energy transmissionloss of magnetic field component across the tunnel[J]. Physics of the Earth and Planetary Interiors,1998,105(3-4):287-295.
    [6]煤炭工业发展“十二五”规划.国家发展和改革委员会,2012.
    [7]杨晓东.与冲击地压的正面较量[N].中国煤炭报,2011.
    [8]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [9]齐庆新,窦林名.冲击地压理论与技术[M].徐州:中国矿业大学出版社,2008.
    [10]李玉生.冲击地压机理及其初步应用[J].中国矿业学院学报,1985,3:37-43.
    [11]闵长江,卜凡启,周廷振等.煤矿冲击地压防治[M].徐州:中国矿业大学出版社,1998.
    [12]潘立友,张立俊,刘先贵.冲击地压预测与防治实用技术[M].徐州:中国矿业大学出版社,2006.
    [13]潘一山,李忠华,唐鑫.阜新矿区深部高瓦斯矿井冲击地压研究[J].岩石力学与工程学报,2005,24(51):5202-5205.
    [14]章梦涛,徐曾和,潘一山.冲击地压与突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53.
    [15]王振.煤岩瓦斯动力灾害新的分类及诱发转化条件研究[D].重庆大学,2010.
    [16]李忠华.高瓦斯煤层冲击地压发生理论研究及应用[D].辽宁工程技术大学,2007.
    [17]李铁,蔡美峰,王金安等.深部开采冲击地压与瓦斯的相关性探讨[J].煤炭学报,2005,30(5):562-567.
    [18] Clarkson C R, Bustin R M. Coalbed methane: current field-based evaluation methods[C].SPE Reservoir Evaluation and Engineering,2011,14(1),60–75.
    [19] Engler T W. A new approach to gas material balance in tight gas reservoirs[C]. SPE AnnualTechnical Conference and Exhibition, Dallas, Texas,2000,1–4.
    [20] Liu J, Wang J G, Chen Z, Wang S, et al.. Impact of transition from local swelling to macroswelling on the evolution of coal permeability[J]. International Journal of Coal Geology,2011,88(1),31–40.
    [21] Thararoop P. Development of a multi-mechanistic, dual-porosity, dual-permeability numericalflow model for coalbed methane reservoirs accounting for coal shrinkage and swelling effects[D].The Pennsylvania State University,2010.
    [22] Gray I. Reservoir engineering in coal seams: Part1-the physical process of gas storage andmovement in coal seams[C]. SPE Reservoir Engineering,1987,2(1):28–34.
    [23] Harpalani S, Chen G. Influence of gas production induced volumetric strain on permeabilityof coal[J]. Geotechnical and Geological Engineering,1997,15(4):303–325.
    [24] Pillalamarry M, Harpalani S, Liu S. Gas diffusion behavior of coal and its impact onproduction from coalbed methane reservoirs[J]. International Journal of Coal Geology,2011,86(4):342–348.
    [25]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报,2001,20(3):161-167.
    [26]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    [27]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报,1984,2(2):19-28.
    [28]谭学术.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报,1986,(1):106-112.
    [29] Sun P D. Coal gas dynamics and its applications[J]. Scientia Geologica Sinica,1994,3(1):66-72.
    [30] Dupuit J. Etudes Théoriques et Pratiques sur le Mouvement des Eaux[M], Dunod, Paris,1863.
    [31] Forchheimer P. Wasserbewegung durch Boden[J]. Zeitz Ver Deutsch Ing,1901,48:1731-1788.
    [32] Bordier C, Zimmer D. Drainage equations and non-Darcian modelling in coarse porousmedia or geosynthetic materials[J]. Journal of Hydrology,2000,228(3-4):174-187
    [33] Trussell R R, Chang M. Review of flow through porous media as applied to head loss inwater filters[J]. Journal of Environmental Engineering,1999,125(11):998-1006.
    [34]抚顺煤研所编.日本北海道大学通口澄志教授部分论文及报告汇编,1984.
    [35] David A. Stephenson. Rockfill in hydraulic engineering[M],New York,1979.
    [36]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [37] Cheng N S, Hao Z Y, Tan S K. Comparison of quadratic and power law for nonlinear flowthrough porous media[J]. Experimental Thermal Fluid Science,2008,32(8):1538-1547.
    [38]刘建军,刘先贵,胡雅衽.低渗透岩石非线性渗流规律研究[J].岩石力学与工程学报,2003,22(4):556-561.
    [39]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5):26-32.
    [40]张代均,鲜学福.煤大分子研究进展[J].重庆大学学报,1993,16(16):6-12.
    [41]余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究[1].重庆大学学报,1989,12(5):1-9.
    [42]张广祥,谭学术,鲜学福等.煤层瓦斯运移数学模型[J].重庆大学学报,1994,17(4):53-64.
    [43] Klinkenberg L J. The permeability of porous media to liquids and Gases[C]. Drilling andProduction Practice, Publisher: American Petroleum Institute,1941:200-213.
    [44] Krutter H. Day R J. Modification of permeability measurements[J]. Oil Weekly,1941,104(4):24-32.
    [45] Calhoun J C, Yuster S T. A study of the flow of homogeneous fluids through ideal porousmedia[C]. API Drilling and Production Practice,1946,335-355.
    [46] Reda D C. Slip-flow experiments in welded tuff: The Knudson diffusion problem[M].In:Chin-Fu Tsang (ed.), Coupled Processes Associated with Nuclear Waste Repositories,1987,485–493.
    [47] Persoff P. Hulen J B. Hydrologic characterization of four cores from the Geysers coringproject[C]. Proc. Twenty-First Workshop on Geothermal Engineering, Stanford University, CA,1996.
    [48] Jones S C. A rapid accurate unsteady-state Klinkenberg parameter[J], SPE Journal,1972,383–397.
    [49] Jones,FO, Owens WW. A Laboratory study of low permeability gas sands[J]. Journal ofPetroleum Technology,1980,32(9):1631-1640.
    [50] Sampath K, Keighin C W. Factors affecting gas slippage in tight sandstones[J]. Journal ofPetroleum Technology,1982,34(11):2715-2720.
    [51] Wu Y S, Pruess K, Persoff P. Gas flow in porous media with klinkenberg effects[J]. Transportin Porous Media,1998,32:117-137.
    [52] Bravo M C. Effect of transition from slip to free molecular flow on gas transport in porousmedia[J]. Journal of Applied Physics,2007,102,074905.
    [53]罗新荣.煤层瓦斯运移物理模拟与理论分析[J].中国矿业大学学报,1991,20(3):55-61.
    [54]王勇杰,王昌杰,高家碧.低渗透多孔介质中气体滑脱行为研究[J].石油学报,1995,16(3):101-105.
    [55]李铁军,吴小庆.一个低渗透气藏数学模型数值求解法[J].西南石油学院学报,1999,21(l):25-28.
    [56]陈代珣.渗流气体滑脱现象与渗透率变化的关系[J].力学学报,2002,34(1):96–100.
    [57]肖晓春,潘一山.考虑滑脱效应的煤层气渗流数学模型及数值模拟[J].岩石力学与工程学报,2005,16:2966-2970.
    [58]王慧芸,刘勇,梁冰.煤层气在低渗透储层中传输非线性规律研究[J].辽宁工程技术大学,2005,24(4):469-472.
    [59] Fick A. Ann. Der[M]. Physik,1855,94,59.(in German)
    [60] Krishna R, Wesselingh J A. The Maxwell-Stefan approach to mass transfer[J]. Chem Eng Sci,1997,52(6):861–911.
    [61] Fick A, Phil[M]. Mag,1855,10,30.
    [62] Kuznetsov S V, Bobin V A. Desorption kinetics during phenomena in collieries[J], SovietMining Science,1987,23(2):159-168.
    [63] Vasyuchkov Y F. A study of porosity, permeability, and gas release of coal as it is saturatedwith water and acid solution[J], Soviet Mining Science,1985,21(1):81-88.
    [64] Levy J H, Day S J, Killngley J S. Methane capacities of Bowen Basin coals related to coalproperties[J]. Fuel,1997,76(9):813-819.
    [65] Ayala H L F, Ertekin T, Adewumi M. Compositional modeling of retrograde gas-condensatereservoirs in multi-mechanistic flow domains[C], SPEJ,2006,11(4),480–487.
    [66] Ayala H L F, Ertekin T, Adewumi M. Numerical analysis of multi-mechanistic flow effects innaturally fractured gas-condensate systems[J]. Journal of Petroleum Science and Engineering.2007,58(1-2):13–29.
    [67] Ertekin T, King G, Schwerer F. Dynamic gas slippage: a unique dual mechanism approach tothe flow of gas in tight formations[C]. SPE Form. Eval.,1986,1(1):43–52.
    [68] Mavor M J, Owen L B, Pratt T J. Measurement and evaluation of coal sorption isothermdata[C]. SPE paper20728presented at the65th Annual Technical Conference and Exhibition,Society of Petroleum Engineers, New Orleans, LA,1990,09:157170.
    [69]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,8(3):87-93.
    [70]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):1-4.
    [71]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保,2000,27(5):14-16.
    [72]吴世跃.煤层气与煤层耦合运动理论及其应用的研究[D].东北大学,2006.
    [73] Gan H, Walker P L, Nandi S P. Nature of porosity in American coals[J]. Fuel,1972,51,272.
    [74] Thimons E D, Kissel F N. Diffusion of methane through coal[J]. Fuel,1973,52:274–280.
    [75] Larsen J W. The effects of dissolved CO2on coal structure and properties[J]. InternationalJournal of Coal Geology,2004,57:63–70.
    [76] Ruppel T C, Grein C T, Bienstock D. Adsorption of methane on dry coal at elevatedpressure[J]. Fuel,1974,53:152–162.
    [77]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1994.
    [78]王佑安,朴春杰.用煤解吸瓦斯速度法井下测定煤层瓦斯含量的初步研究[J].煤矿安全,1981(11):46-49.
    [79]王佑安,朴春杰.井下煤的解吸指标及其与煤层区域突出危险性关系[J].煤矿安全,1982(7):16-21.
    [80] Pan Z J, Connell L D, Camilleri M, Connelly L. Effects of matrix moisture on gas diffusionand flow in coal[J]. Fuel,2010,89:3207-3217.
    [81] Yang R T. Gas separation by adsorption processes[M]. Boston:Butterworths,1987.
    [82] Stevenson M D, Pinczewski W V, Somers M L, Bagio S E. Adsorption/desorption ofmulticomponent gas mixtures at in-seam conditions[C]. Society of Petroleum EngineersAsia-Pacific Conference, Perth, Western Australia, SPE Paper No.23026,1991,741–755.
    [83] Hall F E, Zhou C, Gasem K A M, Robinson R L, Yee D. Adsorption of pure methane,nitrogen, and carbon dioxide and their binary mixtures on wet Fruitland coal[C]. Society ofPetroleum Engineers, SPE Eastern Regional Meeting, Charleston, West Virginia,1994.
    [84] Langmuir I. The Constitution and Fundamental Properties of Solids and Liquids[J]. Journalof the American Chemical Society,1916,38(1916):221-229.
    [85]艾鲁尼(Айруни Арсен Тигранович).煤矿瓦斯动力现象的预测和预防[M].唐修义等译.北京:煤炭工业出版社,1992,67-69.
    [86] Crosdale P J, Beamish B B, Valix M. Coalbed methane sorption related to coalcomposition[J]. International Journal of Coal geology,1998,35:147-158.
    [87] Ahmadpour A, Wang K, Do D D. Comparison of models on the prediction of binaryequilibrium data of activated carbons[J]. AIChE. Journal,1998,44(3):740-752.
    [88]周世宁.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [89] Neimark A V, Ravikovitch P I. Calibration of pore volume in adsorption experiments andtheoretical models[J]. Langmuir,1997,13(19):5148-5160.
    [90] Dutta P, Bhowmik S, Das S. Methane and carbon dioxide sorption on a set of coals fromIndia[J]. International Journal of Coal Geology,2011,86(3-4):289-299.
    [91]马东民.煤层气吸附解吸机理研究[D].西安科技大学,2008.
    [92] Kim A G. Estimating Methane Content of Bituminous Coals from Adsorption Data[M]. US:Bureclu of Mines,1977.
    [93] Robertson E P, Christiansen R L. Measurement of sorption induced strain[C]. The2005International Coalbed Methane Symposium, Tuscaloosa, Alabama,2005.
    [94] Cui X, Bustin R M, Chikatamarla L. Adsorption-induced coal swelling and stress:implications for methane production and acid gas sequestration into coal seams[C]. J Geophys Res,2007,112:B10202.
    [95] Yi J, Akkutlu I Y, Deutsch C V. Gas transport in bidisperse coal particles: investigation for aneffective diffusion coefficient in coalbeds[J]. Journal of Canadian Petroleum Technology,2008,47(10):1–7.
    [96] Harpalani S, Schraufnagel R A. Shrinkage of coal matrix with release of gas and its impact onpermeability of coal[J]. Fuel,1990,69:551–556.
    [97] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coalbed reservoirs[M]. In Coalbed Methane and Coal Geology, ed. R. Gayer and I. Harris, London:Geological Society Special Publication,1996,197-212.
    [98] Chikatamarla L, Cui X, Bustin M R. Implications of volumetric swelling/shrinkage of coal insequestration of acid gases[C]. The2004International Coalbed Methane Symposium, Universityof Alabama, Tuscaloosa, Alabama,2004.
    [99] Robertson E P. Measurement and modeling of sorption-induced strain and permeabilitychanges in coal[D]. Colorado School of Mines,2005.
    [100] Shi J Q, Durucan S. Changes in permeability in coalbeds during primary recovery—Part1:Model Formulation and Analysis[C]. The2003International Coalbed Methane Symposium,University of Alabama, Tuscaloosa, Alabama,2003.
    [101] Seidle J P, Huitt L G. Experimental measurement of coal matrix shrinkage due to gasdesorption and implications for cleat permeability increases[C]. Proceedings of SPE internationalmeeting on petroleum engineering, Beijing, China,1995.
    [102] Pan Z, Connell L D. A theoretical model for gas adsorption-induced coal swelling[J] Int. J.Coal Geol.,2007,69:243–252.
    [103] Beygi M E, Rashidi F. Analytical Solutions to Gas Flow Problems in Low PermeabilityPorous Media[J] Transport in Porous Media,2011,87(2):421-436.
    [104] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.1. Isotherms and pore volume distributions[J].Fuel,1999,78:1333-1344.
    [105] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.2. Adsorption rate modeling[J]. Fuel,1999,78:1345-1362.
    [106] Fathi E, Akkutlu I Y. Macrokinetics of matrix gas release and its influence on coalbedmethane flow and production[C]. The2009SPE Latin American and Caribbean PetroleumEngineering Conference, Cartagena, Colombian,2009.
    [107]何学秋.交变电磁场对煤吸附瓦斯特性的影响[J].煤炭学报,1996,21(1):63-67.
    [108]聂百胜,何学秋,王恩元等.电磁场影响煤层甲烷吸附的机理研究[J].天然气工业,2004,24(10):32-34.
    [109] Terzaghi K. Theoretical Soil Mechanics[M]. John Wiley and Sons, New York,1943.
    [110] Biot M A. General theory of three dimensional consolidation[J] Journal of Applied Physics,1941,12:155-164.
    [111] Biot M A. General solution of the equation of elasticity and consolidation for a porousmaterial[J]. Journal of Applied Physics,1956,27(3):91-96.
    [112] Barenblatt G I, Zheltov I P, Kochina I N. Basic concepts in the theory of seepage ofhomogenous liquids in fissured rocks strata[J]. J. Appl. Math. Mech.,1960,24,1286–1303.
    [113] Warren J E, Root P J. The behavior of naturally fractured reservoirs[C]. SPE J.,1963,3:245-255.
    [114] Wu Y, Liu J, Elsworth D, Chen Z, et al.. Dual poroelastic response of a coal seam to CO2injection[J]. International Journal of Greenhouse Gas Control,2010,4(4):668–678.
    [115] Manik J, Ertekin T, Kohler T E. Development and validation of a compositional coalbedsimulator[J]. Journal of Canadian Petroleum Technology,2002,41:39-45.
    [116]罗新荣.双重孔隙可压密煤层瓦斯运移的数值模拟[J],重庆大学学报,1998,21(6):29-34.
    [117] Choi E S, Cheema T, Islam M R. A new dual-porosity/dual-permeability model withnon-Darcian flow through fractures[J]. Journal of Petroleum Science and Engineering,1997,17(3–4):331–344.
    [118] Reeves S, Pekot L. Advanced reservoir modeling in desorption-controlled reservoirs[C]. TheSPE Rocky Mountain Petroleum Technology Conference, Keystone, Colorado, U.S.A.,2001.
    [119] Cicek O. Compositional and non-isothermal simulation of CO2sequestration in naturallyfractured reservoirs/coalbeds: development and verification of the model[C]. The SPE AnnualTechnical Conference and Exhibition, Denver, Colorado, U.S.A.,2003.
    [120] Pruess K, Narasimhan T N. On fluid reserves and the production of superheated steam fromfractured, vapor-dominated geothermal reservoirs[J]. J. Geophys. Res.,1982,87(B11):9329-9339.
    [121] Pruess K, Narasimhan T N. A practical method for modeling fluid and heat flow in fracturedporous media[J]. Soc. Pet. Eng. J.,1985,25(1):14-26.
    [122] Pruess K, Calore C, Celati R, Wu Y S. An analytical solution for heat transfer at a boilingfront moving through a porous medium[J]. Int. J. of Heat and Mass Transfer,1987,30(12):2595-2602.
    [123] Wu Y S, Pruess K. A multiple-porosity method for simulation of naturally fracturedpetroleum reservoirs[J]. SPE Reservoir Engineering,1988,327-336.
    [124] Sommerton W J,Soylemezoglu I M,Dudley R C. Effect of stress on pemeability of coal[J]. Int. J.Rock Mech.Min. Sci.and Geomech.Abstr.,1975,12(2):129-145.
    [125] Brace W F. A note on permeability changes in geologic material due to stress[J]. Pageoph,1978,116(4/5):627-632.
    [126] McKee C R, Bumb A C, Koenig R A. Stress-dependent permeability and porosity of coaland other geologic formations [J]. SPE Formation Evaluation,1988,3(1):81-91.
    [127] Mordecai M. An investigation into the effect of stress on permeability of rock taken fromcarboniferous strata[D]. Univ. of Nottingham, U.K.,1971.
    [128] Gawuga J K. Flow of gas through stressed carboniferous strata[D]. Univ. of Nottingham,U.K.,1979.
    [129] Somerton W H, Soylemezoglu I M, Dudley R C. Effect of stress on permeability of coal[J].Int. J. Rock Mech. Min. Sci. Geomech.,1975,12(5):129-145.
    [130] Lingard P S, Doig I D, Phillips H R. Laboratory studies of sorption characteristics andpermeability of triaxially stressed coal samples[C]. In: M.J. Howes and M.J. Jones (Eds.), Proc.3rd Int. Congr. on Mine Ventilation, Harrogate, U.K.,1984,143-150.
    [131] Durucan S, Edwards J S. The effects of stress and fracturing on permeability of coal[J]. MinSci Technol,1986,3:205–16.
    [132] Palmer I, Mansoori J. How permeability depends on stress and pore pressure in coalbeds: anew model[C]. SPE Reservoir evaluation&engineering,1998,539-544.
    [133] Robertson E P, Christiansen R L. A permeability model for coal and other fractured,sorptive-elastic media[J]. SPE J.,2008,13(3):314-324.
    [134] Shi J Q. Durucan S. A bidisperse pore diffusion model for methane displacement desorptionin coal by CO2injection[J]. Fuel,2003,82:1219-1229.
    [135] Pini R, Ottiger S, Burlini L, Storti G, et al.. Role of adsorption and swelling on the dynamicsof gas injection in coal[J]. Journal of Geophysical Research,2009,114, B04203.
    [136] Jasinge D, Ranjith P G, Choi S K. Effects of effective stress changes on permeability ofLatrobe valley brown coal[J]. Fuel,2011,90(3):1292-1300.
    [137] Liu H H, Rutqvist J, Berryman J G. On the relationship between stress and elastic strain forporous and fractured rock[J]. Int. J. Rock Mech. Min. Sci.,2009,46(2):289–296.
    [138] Liu H H, Rutqvist J. A new coal-permeability model: Internal swelling stress and fracturematrix interaction[J]. Transport in Porous Media,2010,82(1):157-171.
    [139] Zhao Y S,Qing H Z,Bai Q Z. Mathematical model for solid-gas coupled problems on themethane flowing in coal scam[J]. Acta Mechanica Solida Sinica,1993,6(4):459–466.
    [140]赵阳升.煤体—瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229–239.
    [141]曹树刚,鲜学福.煤岩的广义弹粘塑性模型分析[J].煤炭学报,2001,26(4):364-369.
    [142]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135–142.
    [143]许广明,武强,张燕君.非平衡吸附模型在煤层气数值模拟中的应用[J].煤炭学报,2003,28(4):380–384.
    [144]汪有刚,刘建军,杨景贺等.煤层瓦斯流固耦合渗流的数值模拟[J].煤炭学报,2001,26(3):286–289.
    [145]徐剑良,刘全稳,李志军等.煤层气渗流流固耦合数学建模及求解[J].天然气工业,2005,25(5):81–83.
    [146]孙培德.煤层气越流固气耦合数学模型的SIP分析[J].煤炭学报,2002,27(5):494-498.
    [147]赵国景,步道远.煤与瓦斯突出的固—流两相介质力学理论及数值分析[J].工程力学,1995,12(2):1–7.
    [148]杨天鸿,徐涛,刘建新等.应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与工程学报,2005,24(16):2900–2905.
    [149]徐涛,唐春安,宋力.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667–1673.
    [150] Tang C A, Yang T H, Tham L G, et al.. Coupled analysis of flow, stress and damage (FSD)in rock failure[J]. Int. J. Rock Mech. Min. Sci.,2002,39(4):477-489.
    [151]李树刚.综放开采围岩活动影响下瓦斯运移规律及其控制[D].徐州:中国矿业大学,1998.
    [152]宋文健,刘宏鼎,史景民.矿山压力对瓦斯涌出的影响[J].矿山压力与顶板管理,1999,16(l-2):22-25.
    [153]李化敏,王文,熊祖强.采动围岩活动与工作面瓦斯涌出关系[J].采矿与安全工程学报,2008,25(3):11-16.
    [154]王岩森,马立强,顾永功.矿压显现对工作面瓦斯涌出规律影响分析[J].煤矿安全,2004,35(11):l-4.
    [155]黄伟.基于流固耦合动力学的矿压显现与瓦斯涌出相关性分析[D].中国矿业大学,2011.
    [156] Wang E Y, Liu X F, Zhao E L et al.. Study of electromagnetic characteristics of stressdistribution and sudden changes in the mining of gob-surrounded coal face[J]. Journal of ChinaUniversity of Mining&Technology,2008,18(1):1-5.
    [157]王振,尹光志,胡千庭等.高瓦斯煤层冲击地压与突出的诱发转化条件研究[J]采矿与安全工程学报,2010,27(04):572-575.
    [158]袁瑞甫.含瓦斯煤动态破坏机理及模拟实验研究[D].河南理工大学,2011.
    [159]李世愚,和雪松,潘科.矿山地震、瓦斯突出、煤岩体破裂—煤矿安全中的科学问题[J].中国学术期刊文摘,2007,13(16):136-145.
    [160]胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用机理[J].煤炭学院,2008,33(12):1367-1372.
    [161]孟贤正,汪长明,唐兵.具有突出和冲击地压双重危险煤层工作面的动力灾害预测理论与实践[J].矿业安全与环保,2007,34(3):1-5.
    [162]张慧,李小彦,刘玉霞.中国煤的扫描电子显微镜研究[M].北京:地质出版社,2003.
    [163] Liu Y, Aboud S, Kovscek A R, Wilcox J. Fundamentals of gas adsorption in coalbeds[C].26th International Pittsburgh Coal Conference, Pittsburgh, Pennsylvania, USA,2009.
    [164] Cengel Y A, Boles M A. Thermodynamics: An Engineering Approach (Fourth ed.)[M].2001.
    [165] Zucker R D, Biblarz O. Fundamentals of Gas Dynamics (2nd ed.)[M]. Wiley Books,2002.
    [166] Savidge J L. Compressibility of Natural Gas[C].78th International School for HydrocarbonMeasurement (Class1040), From the website of the Colorado Engineering Experiment Station,Inc.(CEESI),2003,
    [167] Perkins J H, Cervik J. United States. Bureau of Mines. Sorption investigations of methaneon coal[R]. Bureau of Mines Technical Progress Report-14. Methane Control Program. U.S. Dept.of the Interior,1969.
    [168] Hildenbrand A, Krooss B M, Busch A, Gaschnitz R. Evolution of methane sorption capacityof coal seams as a function of burial history: A case study from the Campine Basin[J]. Int. J. CoalGeol.,2006,66:179–203.
    [169] Crosdale P J, Moore T A, Mares T E. Influence of moisture content and temperature onmethane adsorption isotherm analysis for coals from a low-rank, biogenically sourced gasreservoir[J]. Int. J. Coal Geol.,2008,76:166–174.
    [170] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transportproperties of coal: A laboratory and modeling study.1. Isotherms and pore volume distributions[J].Fuel,1999,78:1333–1344.
    [171] Laxminarayana C, Crosdale P J. Role of coal type and rank on methane sorptioncharacteristics of Bowen Basin, Australia coals[J]. Int. J. Coal Geol.,1999,40:309–325.
    [172] Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids. Principles,methodology and application[M]. Published Academic Press, London.1999.
    [173] Brunauer S, Deming L S, Deming E W, Teller E.. On a theory of the van der waalsadsorption of gases[J] Journal the American Chemical Society,1940,62(7):1723-1732.
    [174]陶云奇.含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[D].重庆大学,2009.
    [175] Ruppel T C, Grein C T, Bienstock D. Adsorption of methane on dry coal at elevatedpressure[J]. Fuel,1974,53:152–162.
    [176] King G R, Ertekin T M. A survey of mathematical models related to methane productionfrom coal seams, Part1. Empirical and equilibrium sorption models[C]. Coalbed Methane Symp.The Univ. of Alabama, Tuscaloosa,1989,125–138.
    [177] King G R, Ertekin T M. A survey of mathematical models related to methane productionfrom coal seams, Part II: Nonequilibrium sorption models[C]. Coalbed Methane Symp. The Univ.of Alabama, Tuscaloosa,1989,139–155.
    [178] Osborne R. An experimental investigation of the circumstances which determine whetherthe motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[J].Philosophical Transactions of the Royal Society,1883,174(0):935–982.
    [179]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [180] Fancher G H, Lewis J A. Flow of simple fluids through porous materials[J]. Ind. Engng.Chem,1933,25(19):1139-1147.
    [181] Todd D K. Ground Water Hydrology[M]. Wiley, N.Y.,1959.
    [182] van der Gulik P S, Mostert R, van den Berg HR. The viscosity of methane at273K up to1GPa[J]. Fluid Phase Equilibria,1992,79:301-311.
    [183] Wang J G, Kabir A, Liu J S, Chen Z W. Effects of non-Darcy flow on the performance ofcoalseamgaswells[J]. International Journal of Coal Geology,2012,93:62-74.
    [184] Jacob B. Hydraulics of Groundwater[M]. McGraw-Hill, N.Y.,1979.
    [185]王恩志,韩小妹,黄远智.低渗岩石非线性渗流机理讨论[J].岩土力学,2003(24):120-124.
    [186] Firdaouss M, Guermond J L, Quéré P Le, Nonlinear corrections to Darcy's law at lowReynolds numbers[J]. J. Fluid Mech.,1997,343,331.
    [187]贺伟,冯曦,钟孚勋.低渗储层特殊渗流机理和低渗透气井动态特征探讨[J].天然气工业,2002,22(S1):91-94.
    [188]彭晓华.辽宁矿区煤层气开采渗流规律研究[D].辽宁工程技术大学,2010.
    [189]郭红玉.基于水力压裂的煤矿井下瓦斯抽采理论与技术[D].河南理工大学,2011.
    [190]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁工程技术大学,2004.
    [191]胡国忠,王宏图,范晓刚等.低渗透突出煤的瓦斯渗流规律研究[J].岩石力学与工程学报,2009,28(12):2527-2534.
    [192] Bear J. Dynamics of Fluids in Porous Media[M]. American Elsevier Publishing Company,N.Y.,1972re-Edited by Dover Publications Inc,1988.
    [193]盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述[J].岩土力学,1998,19(2):92-98.
    [194] Barenblatt G I, Zheltov I P, Kochina I N. Basic concepts in the theory of seepage ofhomogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics,1960,24:1286-1303.
    [195] Liu H H, Rutqvist J, Berryman J G. On the relationship between stress and elastic strain forporous and fractured rock[J]. International Journal of Rock Mechanicals&Mining Science,2009,46:289-296.
    [196] Freed A D. Natural strain[J]. J Eng Mater Technol,1995,117:379–85.
    [197] Zhao Y, Liu H H. An elastic stress–strain relationship for porous rock under anisotropicstress conditions[J]. Rock Mechanics and Rock Engineering,2012,45(3):389-399.
    [198]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004.
    [199]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [200] Witherspoon P A, Wang J S Y, Iwai K, Gale J E. Validity of cubic law for fluid flow in adeformable rock fracture[J]. Water Resour. Res.,1980,16:1016–1024.
    [201] Jing L, Stephansson O. Fundamentals of Discrete Element Methods for Rock Engineering:Theory and Applications[J]. Elsevier Science Ltd,2007.
    [202] Liu H H, Wei M Y, Rutqvist J. Normal-stress dependence of fracture hydraulic propertiesincluding two-phase flow properties[J]. Hydrogeology Journal,2013,21(2):371-382.
    [203] Kwa niewski M A, Wang J A. Application of laser profilometry and fractal analysis tomeasurement and characterization of morphological feature of rock fracture surfaces[J].Gotechnique et Environnement,4, me Colloque France-Polonais,1993,163-176.
    [204]梁冰,章梦涛.采区冲击地压的数值预测[J].矿山压力与顶板管理,1995,(2):12-15.
    [205]尹光志,代高飞,皮文丽等.冲击地压的滑块模型研究[J].岩土力学,2005,26(3):359-364.
    [206] Rice J R, and Ruina A L. Stability of steady frictional slipping[J]. Journal of AppliedMechanics-Transactions of the. Asme,1983,50(2):343-349.
    [207] Barton N R. Rock mechanics review: the shear strength of rock and rock joints[J]. Int JRock Mech Min Sci&Geomech Abstr,1976,13:255–279.
    [208] Lee H S, Cho T F. Hydraulic characteristics of rough fractures in linear fow under normaland shear load[J]. Rock Mech. Rock Eng.,2002,35,299–318.
    [209] Oh J M. Three dimensional numerical modeling of excavation in rock with dilatant joints[J].Dissertation, University of Illinois at Urbana-Champaign, Urbana,2005.
    [210] Gentier S, Riss J, Archambault G, Flamand R, Hopkins D. Influence of fracture geometry onshear behavior[J]. Int J Rock Mech,2000,37:161-74.
    [211] Bandis S C. Experimental studies of scale effects on shear strength and deformation of rockjoints[D]. University of Leeds,1980.
    [212] Mandelbrot B B. The fractal geometry of nature[M]. WH Freeman and Co., New York,1982.
    [213] Matheron G, Traitéde Géostatistique appliquée. Tome1, éditions Technip, Paris,1962.
    [214] Malinverno A. A simple method to estimate the fractal dimension of a self affine series[J].Geophys Res Lett,1990,17:1953–1956.
    [215] Wang W, Scholz CH. Wear process during frictional sliding of rock: a theoretical andexperimental study[J]. J Geophys Res,1994,99:6789–99.
    [216] Hutson R W, Dowding C H. Joint asperity degradation during cyclic shear[J]. Int J RockMech Min Sci&Geomech Abstr,1990,27:109–119.
    [217] Misra A. Effect of asperity damage on shear behavior of single fracture[J]. EngineeringFracture Mechanics,2002,69:1997-2014.
    [218] Wei M Y, Liu H H, Li L C, Wang E Y. A fractal-based model for fracture deformation undershearing and compression[J]. Rock Mechanics and Rock Engineering,2013,2.
    [219] Li B. Coupled shear-Flow and deformation Properties of Fractured Rock Mass[D]. NagasakiUniversity, Bunkyo,2009.
    [220] Liu J, Elsworth D.Three-dimensional effects of hydraulic conductivity enhancement anddesaturation around mined panels[J]. Int.J.R.Mechs.Min.Sci.and Geomechs.Abstr.,1998,34,(8):1139-1152.
    [221] Rutqvist J, Wu Y S, Tsang C F, et al.. A modeling approach for analysis of coupledmultiphase fluid flow, heat transfer, and deformation in fractured porous rock[J]. Int J Rock MechMin Sci,2002;39:429–42.
    [222] Lomize G M. Flow in Fractured Rocks[M]. Moscow:Gesenergoizdat,1951.
    [223] Romm E S. Flow Characteristics of Fractured Rocks[M]. Moscow:Nedra,1966.
    [224] Singh J G. A mechanism of coal and gas outburst[J]. Mining Science and Technology,1984,1:269-273.
    [225]李晓泉.含瓦斯煤力学特性及煤与瓦斯延期突出机理研究[D].重庆大学,2010.
    [226]高保彬.采动煤岩裂隙演化及其透气性能试验研究[D].北京交通大学,2010.
    [227] Hajiabdolmajid V, Kaiser P. Brittleness of rock and stability assessment in hard rocktunneling[J]. Tunnelling and Underground Space Technology,8(1):35-48,2003.
    [228]王登科.含瓦斯煤岩本构模型与失稳规律研究[D].重庆大学,2009.
    [229]周维垣.高等岩石力学[M].北京:水利水电出版社,1990.
    [230]李俊亭,王愈吉.地下水动力学[M].北京:地质出版社,1987,27-33.
    [231]李连崇.岩石破裂过程THMD耦合数值模型及其应用研究[D].东北大学,2006.
    [232]谈慕华,黄蕴元.表面物理化学[M].北京:中国建筑工业出版社,1985,33–53.
    [233] Adamson W, Gast A P. Physical Chemistry of Surfaces[M]. Wiley-Interscience, Fifth Edition,1997.
    [234] Liu H H, Rutqvist J. A new coal-permeability model: Internal swelling stress and fracturematrix interaction[J]. Transport in Porous Media,2010,82(1):157-171.
    [235] Lemaitre J, Desmorat R. Engineering damage mechanics[M]. Spring,2005.
    [236] Krajcinovic D. Constitutive equation for damaging materials[J]. Journal of AppliedMechanics, ASME,1983,50:355-360.
    [237] Murakami S. Effects of cavity distribution in constitutive equations of creep and creepdamage[C]. Euro. Meth. Colloque on Damage Mechanics, Cachan, France,1981.
    [238]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [239]于海祥.基于理想无损状态的混凝土弹塑性损伤本构模型研究及应用[D].重庆大学,2009.
    [240]王登科,尹光志,刘建等.三轴压缩下含瓦斯煤岩弹塑性损伤耦合本构模型[J].岩土工程学报,2010,32(1):55-60.
    [241] CHABOCHE J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J].International Journal of Plasticity,1989,5:247–302.
    [242] Shao J F, Chiarelli A S, Hoteit N. Modeling of coupled elastoplastic damage in rockmaterials[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(4-5):444-444.
    [243] Salari M R, et al.. A coupled elastoplastic damage model for geomaterials[J]. ComputerMethods in Applied Mechanics and Engineering,2004,193(27-29):2625-2643.
    [244] Zhu Q Z, Shao J F, Mainguy M. A micromechanics-based elastoplastic damage model forgranular materials at low confining pressure[J]. International Journal of Plasticity,2010,26(4):586-602.
    [245] Carol I, Rizzi E, Willam K. On the formulation of anisotropic elastic degradation. I. Theorybased on a pseudo-logarithmic damage tensor rate[J]. International Journal of Solids andStructures,2001,38(4):491-518.
    [246] H USSLER-COMBE U, Hartig J. Formulation and numerical implementation of aconstitutive law for concrete with strain-based damage and plasticity[J]. International Journal ofNon-Linear Mechanics,2008,43(5):399-415.
    [247]曹文贵,赵衡,张玲等.考虑损伤阀值影响的岩石损伤统计软化本构模型及其参数确定方法[J].岩石力学与工程学报,2008,27(6):1148-1154.
    [248]赵延林.裂隙岩体渗流—损伤—断裂耦合理论及应用研究[D].中南大学,2009.
    [249] Lade P V, et al.. Nonassociated flow and stability of granular materials[J]. Journal ofEngineering Mechanics,1987,113(9):1302-1318.
    [250] Itasca Consulting Group, Inc. FLAC3D user manuals, Version2.1, Minneapolis, Minnesota,2002,6
    [251] Desai C S, Siriwardane H J. Constitutive Laws for Engineering Materials with Emphasis onGeological Materials [M].Prentice-Hall,NJ,1984.
    [252]王利,高谦,基于强度理论的岩石损伤弹塑性模型[J].北京科技大学学报,2008,30(5):461-467.
    [253] Hajiabdolmajid V. Mobilization of strength in brittle failure of rock[D]. Dep. MiningEngineering, Queen’s University, Kingston, Ont,2001.
    [254] Hill R. The Mathematical Theory of plasticity[M]. Clarendon Press, Oxford,1950
    [255]施小清,张可霓,吴吉春.TOUGH2软件的发展及应用[J].工程勘察,2009,10:29-39.
    [256] Yamamoto H, Zhang K, Karasaki K, et al.. Large-scale numerical simulation of CO2geologic storage and its impact on regional groundwater flow: A hypothetical case study at TokyoBay, Japan[C]. Proceedings of9th International Conference on Greenhouse Gas ControlTechnologies (GHGT9), Washington DC., November16-20,2008.
    [257] Pruess K, Oldenburg C, Moridis G. TOUGH2User’s Guide, Version2.0, LawrenceBerkeley National Laboratory Report, LBNL-43134, Berkeley, CA,1999.
    [258] Narasimhan T N, Witherspoon P A. An integrated finite difference method for analyzingfluid flow in porous media[J]. Water Resour. Res.,1976,12(1):57-64.
    [259] Wu Y, Liu J S, Chen Z, Elsworth D, Pone D. A dual poroelastic model for CO2-enhancedcoalbed methane recovery[J] International Journal of Coal Geology,2011,86,2-3:177-189.
    [260] Shi J Q, Mazumder S, Wolf K H, Durucan S. Competitive methane desorption bysupercritical CO2injection in coal[J]. Trans. Porous Med,2008,75:35-54.
    [261] Mazumder S, Bruining J. Anomalous diffusion behavior of CO2in the macro-molecularnetwork structure of coal and its significance for CO2sequestration[C]. Society of PetroleumEngineers paper SPE109506presented at the2007SPE Asia Pacific Oil&Gas Conference,Jakarta, Indonesia,2007
    [262]刘波,韩彦辉.FLAC原理实例与应用指南[M].人民交通出版社,2005.
    [263] Itasca Consulting Group, Inc. FLAC3D user manuals, Version2.1, Minneapolis, Minnesota,2002.
    [264]陈育民,刘汉龙.邓肯_张本构模型在FLAC_3D_中的开发与实现[J].岩土力学,2007,28(10):2123-2126.
    [265] Rutqvist J, Wu Y S, Tsang C F, Bodvarsson G. A modeling approach for analysis of coupledmultiphase fluid flow, heat transfer, and deformation in fractured porous rock[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2002,39,429-442.
    [266] Lin W J. Gas sorption and the consequent volumetric and permeability change of coal[D].Stanford University,2010.
    [267] Wyss M, Brune J N. Seismic moment, stress and source dimensions for earth-quakes in theCalifornia-Nevada region[J]. J. Geophys. Res.,1968,73,4681-4694.
    [268] Hanks T C, Kanamori H. A moment magnitude scale[J]. J. Geophys. Res.,1979,84,2348-2350
    [269] Gutenberg B, Richter C F. Seismicity of the earth[J]. Geol. Soc. Am. Spec. Pap.,1941,34(1):1-33.
    [270]魏明尧,王恩元,刘晓斐等.动力扰动诱发顶板断裂的数值模拟分析[J].采矿与安全工程学报,2010,27(4):532-536.
    [271]魏明尧,王恩元,刘晓斐等.深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J].岩土力学,2011,32(8):2539-2543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700