长江口南岸滨岸带底泥中重金属的生物有效性及其再悬浮
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选取长江口南岸吴淞-浏河滨岸段作为典型区域,以有毒重金属Pb、Cd、Cr为主要研究对象,借助SEM与AVS的差值和比值方法对长江口吴淞-浏河带沉积物中的重金属进行生物有效性评价,进而来判断沉积物中的有效态重金属对底栖生物的危害程度;进行潮周期的定点现场观测,研究潮周期过程中物理再悬浮及动力、pH、盐度等环境条件耦合影响下底泥中重金属(Pb、Cr、Cd)的潮周期变化特征;同时利用自制的再悬浮装置(PES)进行室内模拟再悬浮试验,研究重金属(Pb、Cr、Cd)在沉积物-上覆水之间的迁移转化过程。主要得到以下几条结论:
     1)长江口吴淞-浏河滨岸带Pb、Cr、Cd、Hg、As的平均含量分别为33.1μg·g~(-1)、56.6μg·g~(-1)、0.4μg·g~(-1)、0.38μg·g~(-1)、40.0μg·g~(-1),其含量均超过上海市潮滩背景值;除Cr外,其它重金属含量均超过上海市土壤背景值。浏河口上游到江苏白茆附近沉积物和水体中Cd平均含量分别为0.189μg·g~(-1)、0.234μg·L~(-1),分别超过上海市潮滩背景值和2008年6月所采陈行水库水体Cd含量。长江口南岸存在重金属的岸边污染带。
     2)由于上海腹地工业废水、生活污水的大量排放,使得长江口吴淞-浏河滨岸带沉积物中具有较高的SEM(Simultaneously Extracted Metals)和AVS(AcidVolatile Sulfides)含量,分别为0.20-1.37μmol·g~(-1)、0.20-0.80μmol·g~(-1),不同重金属的总量、SEM含量都超过了上海市土壤、潮滩重金属背景值,且该研究区域沉积物中以HCl淋滤相存在的重金属占主要形式;浏河口上游长江口南岸沿岸带主要以Cd污染为主,Cr、Pb含量均低于上海市土壤背景值,污染程度较小。
     3)吴淞-浏河滨岸带沉积物中有机碳、含水率以及沉积物粒径本身是本研究区域中SEM与AVS含量的控制性环境因子;SEM/AVS比值及(SEM-AVS)差值的生物有效性评价结果表明,长江口吴淞-浏河滨岸带沉积物中重金属对水生生物均处于中等毒性水平,底泥的再悬浮作用会加强硫化物结合态重金属的释放,从而引起环境毒性。
     4)潮周期现场观测过程中,水体流速的变化是控制底泥中重金属向水体释放的主要环境因子。另外,水体中各形态重金属的浓度变化还受其它外在环境因子的影响,如水温、pH、NO_3~-、DOC、DIC、NH_4~+、TN等是控制水体底层溶解态Cd的重要环境指标,DO、Eh是控制表层溶解态Cd和Pb环境因子;Cl~-是控制底层水体溶解态Pb的重要环境因子;Eh是控制表层水体溶解态Cr的重要环境因子,DO、NO_3~-是控制表层水体颗粒态Cr的重要环境因子,DOC是控制底层水体可溶性Cr的环境因子,电导率是控制底层颗粒态Cr的重要环境因子。
     5)相关性分析发现,潮周期现场观测过程中溶解态Cd、Pb、Cr两两之间分别存在显著正相关关系;颗粒态Cd、Pb、Cr两两之间也存在显著正相关,且颗粒态重金属(Pb、Cr、Cd)与全量的Pb、Cr、Cd之间也存在显著相关性。这说明颗粒态的Pb、Cr、Cd具有相似的理化性质及物质来源。流速分别与颗粒态及总量重金属(Pb、Cr、Cd)均呈显著正相关关系。潮水动力对于水体颗粒态重金属的贡献具有不可忽视的作用。
     6)通过对潮周期现场观测前后底泥柱状沉积物中重金属及其理化参数的含量对比发现,潮周期过程中底泥对Pb、Cr有富集效应;Cd、Fe、Mn的变化可能受孔隙水的影响较大;底泥中Cu、Ni向水体发生了释放;初步判断潮周期过程中动力扰动所影响到的底泥深度大约为0-5cm。
     7)在受水体生物膜保护的作用下,水体中溶解态和颗粒态重金属含量呈波浪状的变化受重金属吸附的“泥沙效应”影响非常显著;在外界环境因子变化相对稳定的情况下,溶解态和颗粒态重金属在两相之间也会在短时间内达到浓度平衡;同现场潮周期观测结果相似,另外在个别时间点水体中两相态的重金属含量也受DOC、DO等环境因子的控制。
     8)与潮周期现场观测结果有所不同的是,通过对比室内模拟再悬浮试验前后柱状沉积物中各重金属(Pb、Cr、Cd)及主要理化参数(硫化物、含水率、有机质)的变化,大部分试验结果证实沉积物确实向水体释放了重金属,但途径略有不同:或来源于沉积物经孔隙水向上覆水体的释放(pH模拟);或来源于水体生物膜上铁锰氧化物结合态重金属的释放(盐度模拟);或来源于两者的综合作用(pH、盐度耦合模拟,动力、盐度耦合模拟)。
     9)与潮周期现场观测结果相似,室内模拟长江口底泥重金属再悬浮试验发现,在有水体生物膜存在的条件下,重金属吸附的“泥沙效应”对水体中重金属的迁移转化影响显著。硫化物的前后含量变化可以作为判断动力扰动到底泥深度的一个有力证据。
The intertidal flat in Wusong-Liuhe coastal zone in the Yangtze Estuary is a complex ecosystem influenced both by natural fators and strong human activities.In order to evaluate biological availability of heavy metals in sediments,acid volatile sulfides(AVS) and simultaneously extracted metals(SEM) of 37 surface sediments colleted from Wusong-Liuhe coastal zone in the Yangtze Estuary were determined. This is favourable for evaluating the toxicity level to human;a tidal cycle was observed nearby Chenghang reservoir to study resuspended release process of heavy metals(Pb,Cr and Cd) in sediments under the condition of different tidal dynamics and physical and chemical factors(such as pH and salinity).In addition,combined with results of spot observation,the effects of sediment resuspension for Pb,Cr and Cd at the sediment-water interface exchange at the sediment through different techniques of experimental simulation were discussed.
     The main results gotten in the article are as follows:
     1)The average content of Pb,Cr,Cd,Hg and As was 33.1μg·g~(-1),56.6μg·g~(-1), 0.4μg·g~(-1),0.38μg·g~(-1) and 40.0μg·g~(-1) of sediments in Wusong-Liuhe coastal zone. All heavy metals are above background values of heavy metals of mad flat in Shanghai.The content of all heavy metals exceed background value of heavy metals of soils in Shanghai except Cr.The average of Cd were 0.189μg·g~(-1), 0.234μg·L~(-1) in sediments and water from upwards Liu river estuary.The content of Cd in sedimens and water exceed the background value of heavy metals and the water of Chenhang reservoir in June,2008,respectively.There probably exists a polluted strip in Yangtze River south estuary.
     2)The SEM contents of the surface sediments ranged from 0.20μmol·g~(-1) to 1.37μmol·g~(-1)(dry weight),with an average value of 0.74μmol·g~(-1);The AVS contents varied between 0.20-0.80μmol·g~(-1)(dry weight),with an average being 0.23μmol·g~(-1) of sediment in Wusong-Liuhe coastal zone.Both total contents of different heavy metal(Pb,Cr,Cd,Hg and As) and SEM are over background value of intertidal flat and soil in Shanghai.This is mainly contributed by waste from industry and daily life.The heavy metals combined with HCl is dominating form existed in study area.In upriver of Liuhe estuary,Cd is major contaminant, Pb and Cr are minor contaminant.
     3)TOC,water level and medium particle size of the sediment are the main controlling environmental factors in study area.The ratio of SEM to AVS and the difference between SEM and AVS are used to assess the biological availability of sediment SEM content.The result shows that the SEM of the surface sediments at Wusong-Liuhe riparian zone in Yangtze Estuary had moderate toxicity to the aquatic life.Resuspended process of sediment will enhance the release of heavy metals which combined with sulfide and then arouse environmental toxicity.
     4)During spot observation of tidal cycle,water velocity is the mainly controlled environmental factor for the release of heavy metal(Pb,Cr,Cd) in substrate sludge.In addition,water temperature,NO_3~-,DOC,DIC,NH_4~+,TN are predominate environmental factors which control dissolved Cd in bottom water, DO,Eh are important environmental factors which control dissolved Cd and Pb surface water.Cl~-is an important environmental factor which control dissolved Pb in bottom water.Eh is an important environmental factor which control dissolved Cr in surface water.DO and NO_3~-are predominate environmental factor which control particled Cr in surface water.DOC is an important environmental factor which control dissolved Cr in bottom water.EC is an important environmental factor which control particled Cr in bottom water.
     5)Correlation analysis is an important way to weigh the relation between dissolved and particled heavy metals(Pb,Cr and Cd) during ticle cyc.Dissolved Cd has significant positive correlations with dissolved Pb and Cr.Particled Cd and total Cd also have this relation with particle Pb and Cr.It is a forceful evidence that particled Pb,Cr and Cd have similar physical and chemical properties and sources.Water velocity has significant positive correlations with particled Pb and Cr and total Pb,Cr and Cd.Tidal impetus has important effect to particled heavy metals of water.
     6)In comparision with heavy metals(Pb,Cr,Cd,Cu,Ni,Mn,Fe and Mn) content and physics and chemical parameters of columnar sediments before and after tidal cyc,the bottom mud has concentration effect to Pb and Cr,the change of Cd,Fe and Mn are possibly effected by pore water,the bottom mud has a release of Cu and Ni to water.From the initial assessment,the bottom mud depth caused by perturbation affects probably is(0-5cm) initially during the moist cyclical process.
     7)Under the protection of water biomembrane,the change of dissolved and particled heavy metals' concentration in water is mainly caused by“the silt effect”of heavy metals.When the change of external environmetal factors is relative stable,dissolved and particled heavy metals will be in short-lived balance condition.Moreover,DOC and DO will also controll the change of heavy metals in individual time.
     8)In the process of indoor resuspension simulation,in contrast with heavy metals (Pb,Cr and Cd) content and physiochemical parameters(sulfide,moisture content, organic matter) of columnar sediments before and after resuspension experiment, most experiments mostly proved that sediment release heavy metals to water,but the way of resuspending has slight difference:or originates from the deposit after the pore water upward rehydrate body's release;or originates from the deposit pore water;or originates in the water body biomembrane the ferro manganese oxide compound union condition heavy metal release.
     9)Lab-scale resuspending simulation of heavy metal in Changjiang delta bottom mud discovered that the heavy metals'“the silt effect”has remarkable effect to the heavy metals' migration and transformation activity in water body,under the water body biomembrane existence condition.The change of sulfide content can be a powerful evidence to judge the bottom mud depth disturbed by water momentum.
引文
[1] Allen H E, Fu G, Deng B. Analysis of acid-volatile sulfide(AVS) and simultaneously extracted metals(SEM) for the estimation of potential toxicity in aquatic sediments [J]. Environ Toxicol Chem, 1993, 12(8): 1441-1453.
    [2] Altindag A, Yigit S. Assessment of heavy metal concentrations in the food web of lake Bey(?)ehi(?) Turkey[J]. Chemosphere, 2005,60: 552-556.
    [3] Ankley G T, Di Toro D M, Hansen D J and Berry W J. Technical basis and proposal for deriving sediment quality criteria for metals [J]. Environ. Toxicol Chem, 1996, 15(12): 2056-2066.
    [4] Ankley G T, Manson V R, Leonard E N, West C W and Bennett J L. Predicting the acute toxicity of copper in freshwater sediments: evaluation of the role of acid volatile sulfide [J]. Environ Toxicol Chem,1993, 12(2): 315-320.
    [5] Barbier F., Duc G., Petit-Ramel M. Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface[J]. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2000,16:153-159.
    [6] Berry W J, Hansen D J, Mahony J D, Robson D L, Di Toro D M, Shipley B P, Rogers B, Corbin J M and Boothman W S. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations[J]. Environ Toxicol Chem, 1996, 15(12): 2067-2079.
    [7] Bokuniewicz H, McTiernan L, Davis W. Measurement of sediment resuspension rates in Long Island Sound[J]. Geology-Marine Letters, 1991, 11: 159-161.
    [8] Casas A M and Crecelius E A. Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments [J]. Environ Toxicol Chem, 1994, 13(3): 529-536.
    [9] Carson A R, PHipps G L, Mattson V R, Kosian P A and Cotter A M. The role of acid volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments [J], Environl Toxicol Chem, 1991, 10(10): 1309-1319.
    [10] Caetano M, Madureira M-J, Vale C. Metal remobilization during resuspension of anoxic contaminated sediment: short-term laboratory study[J]. Water Air and Soil Pollution, 2002, 143(1-4):23-40.
    [11] Calmano W, Forstner, U and Hong J. Mobilization and Scavenging of Heavy Metals Following Resuspension of Anoxic Sediments from the Elbe River, in C. Alpers and D.Blowes (eds), Environmental Geochemistry of Sulfide Oxidation[J]. American Chemical Society, 1994,298-321.
    [12] Caille N, Tiffreau C, Leyval C, et al. Solubility of metals in an anoxic sediment during prolonged aeration[J]. Science of the Total Environment, 2003, 301: 239-250.
    [13] Cantwell MG, Burgess RM. Variability of parameters measured during the resuspension of sediments with a particle entrainment simulator[J]. Chemosphere, 2004, 56:51-58.
    [14] Chapman P M, Wang F Y, Janssen C, Persoone G, Allen H E. Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation [J]. Can J Fish Aquat Sci, 1998, 55(10):2221-2243.
    [15] Christensen ER. Metals, Acid-volatile sulfides,organics, and particles distributions of contaminated sediments[J]. Water Science and Technology, 1998, 37: 149-156.
    [16] Ciffroy P, Gamier J-M, Benyahya L. Kinetic partitioning of Co, Mn, Cs, Fe, Ag, Zn and Cd in fresh water (Loire) mixed with brackish waters (Loire estuary): experimental and modeling approaches[J]. Marine Pollution Bulletin, 2003,46: 626-641.
    [17] Cobelo-Gar(?)ia A, Prego R. Chemical speciation of dissolved copper, lead and zinc in a ria coastal system: the role of resuspended sediments[J]. Analytica Chimica Acta, 2004, 524: 109-114.
    [18] Conarad C F, Chisholm-Brause C J. Spatial survey of trace metal contaminants in the sediments of the Elizabeth River, Virginia[J]. Marine Pollution Bulletin, 2004,49: 319-324.
    [19] Cooper D C and Morse J W. Extractability of metal sulfide minerals in acidic solutions: application to environmental studies of trace metal contamination within anoxic sediments [J]. Environ. Sci. Technol, 1998,32(8): 1076-1078.
    [20] Di Toro D M, Mahony J D, Hansen D J, Scott K J, Hicks M B, Mayr S M and Redmond M S. Toxicity of cadmium in sediments; the role of acid volatile sulfide [J]. Environ Toxicol Chem, 1990,9(12): 11487-14502.
    [21] Di Toro D M, Mahony J D, Hansen D J, Scott K J, Carlson A R and Ankley G T. Acid Volatile Sulfide predicts the acute toxicity of cadmium and nickel in sediments [J]. Environ Sci Technol, 1992, 26(1): 96-101.
    [22] Dittmar T. Hydrochemical processes controllinig arsenic and heavy metal contamination in the Elqui river system(Chile)[J]. Science of the Total Environment, 2004, 325: 193-207.
    [23] Dong D, Li Y, Hua X. Investigation of Fe, Mn oxides and organic material in surface coatings and Pb, Cd adsorption to surface coatings developed in different natural waters[J]. Microchemical Journal, 2001; 70(1): 25-33
    [24] Eggleton J, Thomas K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events[J]. Environment International, 2004, 30: 973-980.
    [25] Fang T, Li X and Zhang G. Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary South China [J]. Ecotoxicol. Environ. Saf, 2005, 61(3):420-31.
    [26] Gordeev V V, Rachold V, Vlasova I E. Geochemical behaviour of major and trace elements in suspended particulate material of the Irtysh river, the main tributary of the Ob river, Siberia[J]. Applied Geochemistry, 2004, 19: 593-610.
    [27] Griethuysen C V, Gillissen F, Koelmans A A. Measuring acid volatile sulphide in floodplain lake sediments: effect of reaction time, sample size and aeration[J]. Chemosphere, 2002, 47: 395-400.
    [28] Haag I, Kern U, Westrich B. Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated aquatic sediments[J]. Science of the Total Environment, 2001,266:249-257.
    [29] Hajime Obata, Takashi Doi, Yayoi Hongo, et al. Manganese, cerium and iron in the Sulu, Celebes and Philippine Seas[J]. Deep-Sea Research Ⅱ ,2007,54:38-49.
    [30] Hirst, J. and Aston, S. Behaviour of copper, zinc, iron and manganese during experimental resuspension and reoxidation of polluted anoxic sediments[J]. Estuary, Coastal and Shelf Sience, 1983,16:549-558.
    [31] Howard D E and Evans R D. Acid-volatile sulfide (AVS) in a seasonally anoxic mesotropHic lake: seasonal and spatial change in sediment AVS[J]. Environmental Toxicology and Chemistry, 1993, 12(6): 1051-1057.
    [32] Jain C K, Sharma M K. Distribution of trace metals in the Hindon River system, lndia[J]. Journal of Hydrology, 2001,253: 81-90.
    [33] Kern U, Li C C, Westrich B. Assessment of sediment contamination from pollutant discharge in surface waters[J]. Water Science and Technology, 1998, 37(6-7): 1-8.
    [34] Lavelle J W, Davis W R, 1987. Measurements of Benthic Sediment Erodibility in Puget Sound, WA. National Oceanic and Atmospheric Administration. ERL PMEL-72.
    [35] Latimer J S, Davis W R, Keith D J. Mobilization of PAHs and PCBs from in-place contaminated marine sediments during simulated resuspension events[J]. Estuary, Coastal and Shelf Science, 1999,49: 577-595.
    [36] Leonard E N, Ankley G T, Hoke R A. Evaluation of metals in marine and freshwater surficial sediments from the environmental monitoring and assessment program relative to proposed sediment quality criteria for metals: Metal bioavailability in sediments [J]. Environ Toxicol Chem, 1996, 15(12):2221-2232.
    [37] Maddock J E L, Carvalho M F, Santelli R E and Machado W. Contaminant Metal Behaviour During Re-suspension of Sulphidic Estuarine Sediments[J]. Water Air Soil Pollut, 2007,181:193-200
    [38] Marc A G T van den Hoop, Henri A den Hollander and Harm N Kerdijk. Spatial and seasonal variations of acid volatile sulfide (AVS) and simultaneously extracted metals(SEM) in Dutch marine and freshwater sediments [J]. Chemosphere, 1997, 35(10):2307-2316.
    [39] Martino M, Turner A, Nimmo M, et al. Resuspension, reactivity and recycling of trace metals in the Mersey Estuary, UK[J]. Marine Chemistry, 2002, 77(2-3): 171-186.
    [40] Millward GE, Liu YP. Modelling metal desorption kinetics in estraries[J]. The Science of The Total Environmental, 2003, 314-316: 613-623.
    [41] Nayar S, Goh BPL, Chou LM. Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms[J]. Ecotoxicology and Environmental Safety, 2004, 59: 349-369.
    [42] Prica M, Dalmacija B, Ron(?)evi(?) S, Kr(?)mar D and Be(?)eli(?) M. A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals(SEM) ratio in Vojvodina(Serbia) sediments[J]. Science of the Total Environment, 2008, 389(2-3): 235-244.
    [43] Price N B, Karageorgis A P, Kaberi H, et al. Temporal and spatial variations in the geochemistry of major and minor particulate and selected dissolved elements of Thermaikos Gulf, Northwestern Aegean Sea[J]. Continental Shelf Research, 2005, 25: 2428-2455.
    [44] Saulnier I. and Mucci A.. Trace metal remobilisation following the resuspension of estuarine sediments: Saguenay Fjord, Canada[J]. Appl. Geochem, 2000, 15: 203-222.
    [45] Simpson, S, Apte, S and Batley, G. Effect of short-term resuspension events on the oxidation of cadmium, lead, and zinc sulfide phases in anoxic estuarine sediments[J]. Environ. Sci. Technol, 2000, 34: 4533-4537
    [46] Slotton DG, Reuter JE. Heavy metals in intact and resuspended sediments of a California reservoir, with emphasis on potential bioavailability of coopper and zinc[J]. Marine Freshwater Research, 1995,46: 257-265.
    [47] Tao F, Li X D, Zhang G. Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary,South China[J]. Ecotoxicology and Environmental Safety, 2005, 61: 420-431.
    [48] Turner A, Millward G E, Le Roux S M.Speciation and partitionging of Cd and Zn in two contrasting estuaries: the role of hydrophobic organic matter[J]. Limnology and Oceanograph, 2004a, 49: 11-19.
    [49]Turner A.Trace metal contamination in sediments from UK estraries:an empirical evaluation of the role of hydrous iron and managanese oxides[J].Estuarine,Coastal and Shelf Science,2000,50:355-371.
    [50]USEPA,823-R-97-006.The Incidence and Severity of Sediment Contamination in Surface of the United States[R].Washington DC:USEPA,1997.
    [51]USEPA(United States Environmental Protection Agency).Methods for collection,storage and manipulation of sediments for chemical and toxicological analyses:technical manual 2001.EPA-823-B-01002.Washington,DC:Office of Science&Technology,Office of Water,2001.
    [52]USEPA(United States Environmental Protection Agency).The incidence and severity of sediment contamination in surface waters of the United States(National Sediment Quality Survey.EPA 823-R-04-007,Second Edition Washington,DC:U.S.Environmental Protection Agency,Office of Water,2004.
    [53]Van den Berg G A,Loch J P G,Van der Heijdt L M,Zwolsman J J G.Vertial distribution of acid-volatile sulfide and simultaneously extracted metals in a recent sedimentation area of the river meuse in the Netherlands[J].Environ Toxicol Chem,1998,17(4):758-763.
    [54]Wang Z L,Liu C Q.Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions along a salinity gradient in the Changjiang Estuary,eastern China[J].Chemical Geology,2003,202:383-396.
    [55]Wilson D J,Chang E.Bioturbation and oxidation of sulfide in sediments[J].J Tenn Dent Assoc,2000,75(3-4):76-85.
    [56]Yu K C,Tsai L J,Chen S H and Ho S T.Chemical binding of heavy metals in anoxic river sediments[J].Water Res,2001,35(17):4086-4094.
    [57]Zhuang Y,Allen H and Fu G.Effect of aeration of sediment on cadmium binding[J].Environ.Toxicol.Chem.,1994,13:717-724.
    [58]毕春娟,陈振楼,许世远,贺宝根,李丽娜,陈晓枫.河口近岸水体中颗粒态重金属的潮周期变化[J].环境科学,2006,27(1):132-136.
    [59]毕春娟,陈振楼,许世远,王军,刘杰,李丽娜.长江口滨岸潮滩重金属源汇通量估算[J].地球化学,2006,35(2):187-193.
    [60]陈建斌.水体中重金属离子的形态及其对生物富集影响.微量元素与健康研究,2003,20(4):46-49.
    [61]陈静生,周家义.中国水环境重金属研究.北京:中国环境科学出版社,1992,305-328
    [62]陈松,廖文市,潘皆再.长江口重金属元素的固液界面过程Ⅰ.沉积相中Pb、Cu和Cd的行为和沉积机理[J].海洋学报,1984,6(2):180-185.
    [63]陈振楼,许世远,柳林,余佳,俞立中.上海滨岸潮滩沉积物重金属元素的空间分布与累积[J].地理学报,2000,55(6):641-651.
    [64]崔慧敏.拒马河悬浮沉积物对重金属的吸附-解吸研究[J].水资源保护,2000,59:25-28
    [65]董德明,李鱼,花修艺,张菁菁.自然水体中生物膜不同化学组分与铅、镉最大吸附量的关系[J].高等学校化学学报,2001,22(8):1379-1381
    [66]方涛,刘剑彤等.河湖沉积物中酸挥发性硫化物对重金属吸附及释放的影响[J].环境科学学报.200222(5):324-328.
    [67]傅瑞标,孙振斌,何青.长江口重金属元素的研究现状[J].上海水利,1998,51:35-38
    [68]郭建青,钱碧华,党爱翠,庄宏儒,陈登辉,孙炯辉,等.厦门九龙江河口区海水中溶解和颗粒态Cu、Pb、Cd的地球化学行为[J].厦门大学学报(自然科学版),2007,46(1):54-61
    [69]韩建波,李丽娟等.缺氧沉积物中硫化物对镉的生物可利用性的影响[J].海洋学报,2005,27(5):173-176.
    [70]何品晶,肖正.垃圾填埋场中酸可挥发性硫与重金属的结合特性[J].同济大学学报(自然科学版).2005,33(11):1479-1483.
    [71]黄清辉,沈焕庭,茅志昌.长江河口溶解态重金属的分布和行为[J].上海环境科学,2001,20(8):372-377
    [72]霍文毅,陈静生.我国部分河流重金属水-固分配系数及在河流质量基准研究中的应用[J].1997,18(4):10-14
    [73]蒋萏芳,郑乐平,孙为民.淀山湖上覆水与沉积物孔隙水中重金属的分布特征[J].环境化学,2003,22(4):318-323
    [74]廖自基,环境中微量重金属元素的污染危害与迁移转化[M].1989.北京:科学出版社.
    [75]李金城,宋进喜,王晓蓉.太湖五里湖区表层沉积物中酸可挥发性硫化物和同步提取金属[J].湖泊科学,2002,16(1):77-80.
    [76]李仁声.重金属在水环境多相共存体系中再分配的研究[D].吉林大学,硕士毕业论文,2008,吉林.
    [77]李鱼,刘亮,董德明等.城市河流淤泥中重金属释放规律的研究[J].水土保持学报,2003,17(1):125-127.
    [78]路月仙,陈振楼,王军,张祎,许世远.上海市排污口环境影响评价[J].环境保护科学,2003,29(120):46-49.
    [79]马英军,万国江.湖泊沉积物-水界面微量重金属扩散作用及其水质影响研究.环境科学,1999,20(2):7-11
    [80]佘海燕.河湖沉积物对重金属吸附-解吸的研究概况[J].化学工程师,2005,118(7):30-33.
    [81]孙卫玲,倪晋仁.泥沙吸附重金属研究中的若干关键问题[J].泥沙研究,2002,12(6): 53-59.
    [82]万国江,陈振楼,万曦,等.湖泊沉积物-水界面铁-锰循环研究新进展[J].地质地球化学.1996,24(2):5-8
    [83]王小庆.水环境条件对重金属迁移转化的影响[J].洛阳工业高等专科学校学报,2006,16(1):3-4
    [84]王晓蓉等.金沙江颗粒物对重金属的吸附[J].环境化学,1983,1:3-32.
    [85]王云,江雅谷,罗海林.上海市土壤环境背景值[M].北京:中国环境科学出版社,1992:37-57.
    [86]文湘华,Herbert E.Allen.乐安江沉积物酸可挥发硫化物含量及溶解氧对重金属释放特性的影响[J].Environmental Science,1997,18(4):32-35.
    [87]武倩倩,马启敏,于继纲,江志华,王修林.黄河口近岸海域沉积物酸可挥发性硫化物(AVS)的研究[J].海洋环境科学,2007,26(2):126-129
    [88]吴新华.长江口南支河段水质污染特性分析[J].水利水电快报,2001,22(15):11-13.
    [89]许世远,陶静,陈振楼,陈中原,吕全荣.上海潮滩沉积物重金属的动力学累积特征[J].海洋与湖沼,1997,28(5):509-515.
    [90]尹希杰,杨群慧,王虎,等.珠江口海岸带沉积物中酸可挥发性硫化物与重金属生物毒效性研究[J].海洋科学进展.2007,25(3):302-310.
    [91]于文金,邹欣庆.灌河口潮滩重金属累积特征及污染评价[J].地球化学,2007,36(4):425-433.
    [92]于雯泉.胶州湾李村河口区沉积物有机碳、酸可挥发性硫化物及重金属的环境响应[D].青岛:中国科学院海洋研究所,2006.
    [93]张向上,张龙军,吴玉科.2003.潮间带沉积物中重金属的AVS归一化研究[J].中国海洋大学学报,33(3):420-424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700