水环境多相体系中固相物质对铅和镉吸附行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了模拟水环境多相体系,研究不同固相物质对重金属的吸附规律,研制了模拟研究装置,利用装置研究了南湖和松花江多相共存体系中各固相物质对Pb和Cd的吸附热力学和动力学规律,考察不同pH下各固相物质对Pb和Cd吸附量的变化。结果发现,三种固相物质吸附Pb或Cd的能力各不同,且与单一体系中的规律不同,不同水体也表现出不同的规律。对于两个不同水体,pH对固相物质吸附Pb或Cd的影响相似。不同固相物质吸附Cd的量随pH的变化趋势相似,但吸附Pb的量随pH的变化趋势各不相同。各固相物质吸附Pb时达到吸附平衡的时间长于Cd。在本实验条件下,利用装置模拟多相体系中各固相物质吸附重金属的整个过程分为两种作用部分,即吸附作用部分和扩散作用部分。二者存在于吸附实验过程的始终,整个过程是二者共同作用的结果。
Recently people are paying more attention to the existing configuration, transformation regulation and the environmental effects of the trace metal in the natural aquatic environment. Only few of the trace metals in the waters are in real soluble forms, most of them combine with varieties of organic or inorganic, living or unliving solid materials, especially on the surface of them, achieving correspondingly stable preparative equilibrium. These important solid materials in natural waters exit mostly in three forms: suspended solid, sediment and biofilm. With the water, they make up of the multi-compartment system which decides the trace metal behaviors in natural waters. Most studies select single kind of solid material, however, there are few comprehensive studies on the interaction of the coexisting solid materials themselves and the materials with the trace metals. In some studies, researchers have already made abundant survey on the three different solid materials, but the materials used in these experiments are all separated from each other in the single compartment system. To some extent these experiments can not simulate the multi-compartment system under natural condition, because the suspended solid, sediment and biofilm are existing together in the waters and they have relations and interaction inevitably. The distribution of the trace metals among the different materials in the system can be influenced due to the change of the condition from the mixed solid materials system to the single compartment system.
     In order to simulate the multi-compartment system, study the adsorption thermodynamics and kinetics regulations of all the different solid phases, and compare with the regulations at single compartment system, a new equipment is developed in this study and a series of simulation experiments are carried out. The equilibrium equipment is made of organic glass, and it is obturated and according with my design perfectly. The magnetic force mixer which is under the equilibrium equipment can stir the solution in five rooms with thesame strength simultaneously. The equipment is examined, the results show that the equilibrium of the acid and alkali is quick, but it is slow for the trace metal. We can conclude the equilibrium time of soluble materials is 4 days when the five rooms were continuous stirring and separated with membrane filters. The examining experiments for the solid material show that the solid materials could be mutually separated in their rooms to some extent.
     In this study I use the equipment for simulating the multi-compartment system, to compare the differences between the single compartment system and the multi-compartment system in the adsorption thermodynamics and kinetics regulations. Examine the influence of the pH on the trace metal distribution in the multi-compartment system. Compare the adsorption regulations between Pb and Cd. Simulate two multi-compartment systems in Nanhu Lake and Songhua River respectively and distinguish the similarities and differences in the trace metal distribution regulations.
     The results showed that adsorptions of Pb and Cd by the solid materials in two different waters are all fit to the Langmuir adsorption isotherm. For Pb adsorption capacities of each solid component in the Nanhu Lake multi-system, at lower equilibrium concentration they are in turns: sediment> suspended solid> biofilm. And adsorption capacities of suspended solid exceed that of the sediment with the equilibrium concentration ascending. For Cd adsorption capacities of each solid component in the Nanhu Lake multi-system, they are in turns: suspended solid> sediment> biofilm. The distribution regulation of Pb in Songhua River multi-system is different from that in Nanhu Lake: suspended solid > biofilm> sediment. And it is same for Cd between the two waters. The adsorptions capabilities for Pb are always higher than Cd.
     There are some differences in the adsorption capabilities between the single compartment system and multi-compartment system: The adsorption capability of the suspended solid for Pb or Cd in multi-system is higher than that in single compartment system, but the sediment and the biofilm act contrary. When in the multi-system, the adsorption predominance of thesediment and bioflim is replaced by the suspended solid. The suspended solid has the ability to obtain more metals in the competition with the biofilm. The reason and mechanism deserve further study.
     The influences of pH to the adsorption amounts of Pb or Cd in two different waters are similar. In the same water, the trends of adsorption amounts of Cd by the different solids influenced by pH are similar (the adsorption amounts go up with pH), it is probably caused by the weak influence to the relative competitive adsorption capabilities of each material. The trends of adsorption amounts of Pb by the three solids are different, and probably because the influences of pH to adsorptions of Pb by these materials are different: adsorption capability of suspended solid goes up with pH, but the sediment and the biofilm act contrary.
     For the adsorption of Pb, the adsorption equilibrium time for the sediment is about 30h, and for suspended solid and biofilm are 40h and 70h. For the adsorption of Cd, the equilibrium time are all about 20h. The simulated distribution process of the trace metals in the multi-compartment system is analyzed using the developed equipment under this experiment conditions: the whole process can be divided into two parts, quick reaction and slow reaction.
     The former one, taking place in each small room which contains solid materials, is a quick adsorption effect. The latter one is the diffusion and re-distribution process which takes place among the different rooms, and it is much slower because the blank equilibrium time of the soluble material among the rooms is long. The two effects exist all through this simulating process, and they are principal and subordinate by turns. The whole process is the result of the two effects together.
引文
[1] 陈静生. 水环境化学. 高等教育出版社, 1987
    [2] W. Nelson Beyer, Daniel Day. Role of manganese oxides in the exposure of mute swans (Cygnus olor) to Pb and other elements in the Chesapeake Bay, USA. Environmental Pollution, 2004, 129: 229-235
    [3] 徐珑. 城市河流淤泥中重金属生物可利用性的研究(学位论文). 吉林大学, 2002
    [4] 陈宗团, 徐立, 洪华生. 河口沉积物-水界面重金属生物地球化学研究进展. 地球科学进展, 1997, 12(5): 434-439
    [5] 何江, 李朝生, 王新伟等. 多离子体系中黄河沉积物对重金属的竞争吸附研究. 沉积学报, 2003, 21(3): 500-505
    [6] 孙卫玲, 倪晋仁. 泥沙吸附重金属研究中的若干关键问题. 泥沙研究, 2002, 12(6): 53-59
    [7] 庄云龙, 石秀春, 张荣亮. 重金属在沉积物系统中吸附行为的研究进展. 四川环境, 2002, 21(2): 13-16
    [8] Spark, K. M., Johnson, B. B., Wells, J. D. Characterizing heavy metal adsorption on oxides and oxyhydroxides. European Journal of Soil Science, 1995, 146(4): 621-631
    [9] Lutzenkirchen J, Ionic Strength. Effects on Cation Sorption to Oxides: Macroscopic Observations and Their Significance in Microscopic Interpretation. J. Colloid Interface Sci., 1997, 195: 149-155
    [10] Schiewer S, Volesky B. Ionic Strength and Electrostatic Effects in Biosorption of Divalent Metal Ions and Protons. Environ. Sci. Technol. , 1997, 31: 2478-2485
    [11] 蔡金娟, 史衍玺. 不同腐殖酸组分对湖泊沉积物中重金属释放的影响. 水土保持学报, 2006, 20(1): 108-110
    [12] 王静雅, 李泽琴, 程文莹, 罗丽. 湖相沉积物中重金属环境污染研究进展. 地球科学进展, 2004, 19(suppl): 434-438
    [13] 戴树桂. 环境化学, 高等教育出版社, 1997
    [14] 汪福顺, 刘丛强, 梁小兵等. 湖泊沉积物中微量金属二次迁移过程中微生物作用的实验研究. 湖泊科学, 2006, 18(1): 49-56
    [15] 董德明, 李鱼, 花修艺等. pH 对湿地水环境中生物膜吸附铅和镉的影响. 吉林大学学报(理学版), 2002, 40(3): 303-307
    [16] 金相灿, 王圣瑞, 姜霞. 湖泊水-沉积物界面三相结构模式的初步研究. 环境科学研究, 17(suppl): 1-5
    [17] 万国江. 沉积物环境界面地球化学研究进展. 重庆科学文献出版社重庆分社, 1990
    [18] 吴丰昌, 万国江, 蔡玉蓉. 沉积物-水界面的生物地球化学作用. 地球科学进展, 1996, 11(2): 191-197
    [19] 胡家骏, 周群英. 环境工程微生物学. 上海高等教育出版社, 1988, 132
    [20] Peter T. Interactions between sediment and freshwater. WDC: W. Junk Publ, 1977, 216-226
    [21] Fu, G., Allen, H. E1. Cadmium adsorption by oxic sediment. Water Res., 1992, 26(1): 225-233
    [22] Warren , L. A., and Zimmerman, A. P1 The influence of temperature and NaCl on cadmium, copper and zinc partitioning among suspended particulate and dissolved phases in an urban river. Wat. Res., 1994, 28(9): 1921-1931
    [23] 董德明, 杨帆, 李鱼等. 水温对自然水体生物膜上铁、锰氧化物形成过程的影响. 科学技术与工程, 2003, 3(2):182-184
    [24] 金湘灿. 沉积物污染化学. 中国环境科学出版, 1992
    [25] 钱嫦萍, 陈振楼, 毕春娟, 许世远. 潮滩沉积物重金属生物地球化学研究进展. 环境科学研究, 2002, 15(5): 49-51
    [26] 李改枝, 郭博书, 李景峰. 黄河水体表层沉积物与重金属交换吸附作用的研究. 水处理技术, 2001, 27(5): 264-266
    [27] 汤鸿霄. 用水废水化学原理. 化学工业出版社, 1987
    [28] Hart B.T. Water quality management—the role of particulate matter in the transport and fate of pollutants. Water studies centre. Chisholm institute of technology melbourne, 1986
    [29] 刘文, 王学军. 中国水体颗粒物数据库的研制. 环境化学, 1995, 14(6):513-517
    [30] 中国标准出版社第二编辑室. 水质分析方法. 国家标准中国标准出版社, 1996
    [31] 国家环保局. 《水和废水监测分析方法》第三版. 中国环境科学出版社,:21-25
    [32] 张恩仁, 张经, 长江河口悬浮物对几种金属吸附的 pH 效应. 海洋与湖沼, 2003, 34 (3): 267-273
    [33] 李道季, 李军, 陈吉余. 长江河口悬浮颗粒物研究. 海洋与湖沼, 2000, 31(3): 295-301
    [34] 李军, 陈吉余. 长江口拦门沙河段悬浮颗粒物表面的生化特性研究. 环境科学学报, 2002, 24 (4): 439-442
    [35] 陈静生, 王越飞, 陈江麟. 论小于 63μm 粒级作为水体颗粒物重金属研究介质的合理性及有关粒级转换模型研究. 环境科学学报, 1994, 14(4): 419-424
    [36] 张波涛, 董德明, 杨帆等. 自然水体悬浮颗粒物吸附铅和镉的特性. 吉林大学学报(理学版), 2005, 43(6): 867-872
    [37] 陈静生, 周家义. 中国水环境重金属研究. 中国环境科学出版社, 1992
    [38] 王晓蓉. 环境化学. 南京大学出版社, 1993
    [39] Achterberg E. P. Herzldmine drainage: the role of particulate matter. Environmental Pollution, 2003, 121: 283-292
    [40] Shao Mihua, Wang Zhengfang. A study on the distributive characteristics of Cu、Pb and Cd in suspended particulate in Changjiang River Estuary. Oceanlogy at Limnologia Sinai, 1992, 23(2): 144-149
    [41] 杜青, 文湘华, 李莉莉, 汤鸿霄. 天然水体沉积物对重金属离子的吸附特性. 环境化学, 1996, 15(3): 199-206
    [42] Ramses van Ryssen, Martine Leermakers, Willy Baeyens. The mobilisation potential of trace metals in aquatic sediments as a tool for sediment quality classification [J]. Environmental Science & Policy, 1999, 2: 75-86
    [43] Tam N F Y, Wong Y S. Spatial Variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution,2000, 110:195-205
    [44] 万国江, 陈振楼, 万曦等. 湖泊沉积物-水界面铁-锰循环研究新进展. 地质地球化学, 1996, 2: 5-8
    [45] 董德明, 路永正, 李鱼等. 吉林省部分河流与湖泊表层沉积物中重金属的分布规律. 吉林大学学报, 2005, 35(1): 91-96
    [46] Balistieril L S, Murry J W, Paul B. The biogeochemical cycling of trace metals in the water column of Lake Sammamish, Washington: response to seasonally anoxic condition. Limnol. Oceanogr, 1992, 37(3): 529-548
    [47] Shaw T J, Gieskes J M, Jahnke R A. Early diagnosis indiffering depositional environments: the response of transition metals in pore water. Geochim. Cosmochim. Acta, 1990, 54(5): 1233-1246
    [48] Singer P C. Influence of dissolved organics on the distribution, transportation, and fate of heavy metals in aquatic system. Fate of Pollutants in the Air and Water Environment, Part 1. New York: 1977: 155-182
    [49] 陈静生, 王飞越, 宋吉杰等. 中国东部河流沉积物中重金属含量与沉积物主要性质的关系. 环境化学, 1996, 15(1): 8-14
    [50] 方圣琼, 胡雪峰, 徐巍等. 长江口潮滩沉积物的性状对重金属累积的影响. 环境化学, 2005, 24(5): 586-589
    [51] 王丕波, 宋金明, 郭占勇等. 海洋表层沉积物再悬浮的诱因及其对生源要素循环的影响. Marine Sciences, 2005, 29(10): 77-80
    [52] Costerton JW, Cheng KJ, Geesey GG, et al. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol, 1987, 41: 43-64
    [53] Fulcher, T.P., Dart, J.K.G., McLaughlin–Borlace, L., Howes, R., Matheson, M., Cree, I. Demonstration of biofilm in infections crystalline keratopathy using ruthenium red and electron microscopy. Ophthalmol., 2001, 108: 1088-1092
    [54] Bakke, R., Kommedal, R., Kalvenes, S. Quantification of biofilm accumulation by an optical approach. J. Microbiol. Meth., 2001, 44: 13-26
    [55] Lawrence, J.R., Neu, T.R., Swerhone, G.D.W. Application of multiple parameter imaging for the quantification of algal bacterial and exponents ofmicrobial biofilms. J. Microbiol. Methods, 1998, 32: 253–261
    [56] Scott, J.A., Karanjkar, A.M. Immobilized biofilms on granular activated carbon for removal and accumulation of heavy metals from contaminated streams. Water Sci. Technol., 1998, 20: 197-204
    [57] White, G.F. Multiple interactions in riverine biofilms– surfactant adsorption, bacterial attachment and biodegradation. Water Sci. Technol., 1995, 31: 61-70
    [58] Dong, D., Nelson, Y.M., Lion, M.L., Shuler, M.L., Ghiorse. W.C. Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: new evidence for the importance of Mn and Fe oxides. Wat. Res., 2000, 34: 427-436
    [59] Dong D., Li Y., Zhang B., Hua X., Yue B. Selective chemical extraction and separation of Mn, Fe oxides and organic material in natural surface coatings: application to the study of trace metal adsorption mechanism in aquatic environments. Microchem. J, 2001 , 69: 89-94
    [60] Dong D., Li Y., Hua X. Investigation of Fe, Mn oxides and organic material in surface coatings and Pb, Cd adsorption to surface coatings developed in different natural waters. Microchem. J. 2001, 70: 25-33
    [61] Dong D., Hua X., Li Y., Li Z. Lead adsorption to metal oxides and organic material of freshwater surface coatings determined using a novel selective extraction method. Environ. Pollut. 2002, 119: 317-321
    [62] 程金平, 刘彩娥, 郑敏等. 天然水体生物膜中汞的蓄积因素及汞的存在形态. 环境科学, 2006, 27(7): 1406-1409
    [63] Lawrence, J.R., Kopf, G., Headley, J.V., Neu, T.R. Sorption and metabolism of selected herbicides in river biofilm communities. Can. J. Microbiol. 2001, 47: 634-641
    [64] McDougald, Lin, W., Rice, S., Kjelleberg, S. The role of quorum sensing and the effect of environmental conditions on biofilm formation. Biofouling. 2006, 3: 133-144
    [65] Farag, A.M., Woodward, D.F., Goldstein, J.N., Brumbaugh, W., Meyer, J.S.. Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’DleneRiver Basin, Idaho. Arch. Environ. Contam. Toxicol.. 1998, 34: 119-127
    [66] Beltman, D.J., Clements, W.H., Lipton, J., Cacaela, D.. Benthic in-vertebrate metals exposure, accumulation and community-level effects downstream from a hard-rock mine site. Environ. Toxicol. Chem.. 1999, 18: 299-307
    [67] 康春莉, 郭晶, 郭平等. 自然水体生物膜有机组分对 Pb2+的吸附特性及其影响因素. 高等学校化学学报, 2005, 26(11): 2043-2045
    [68] 苏春彦, 康春莉, 董德明. 天然水生物膜胞外多糖和胞外蛋白吸附镉的特性. 长春工程学院学报(自然科学版) , 2005, 6(4): 67-69
    [69] 王文军, 王文华, 张学林等. 水环境中生物膜对污染物环境化学行为的影响. 环境科学进展, 1999, 7(6): 58-65
    [70] 王文军, 张学林, 王文华. 天然水体中生物膜及悬浮颗粒物的元素含量研究. 应用生态学报, 2002, 13(8): 1001-1006
    [71] 董德明, 杨帆, 李鱼等. 湖水中颗粒物对水体生物膜吸附铅、镉的影响. 高等学校化学学报, 2004, 25(7): 1240-1244
    [72] Nelson, Y.M., M.L. Lion, M.L. Shuler and W.C. Ghiorse. Lead binding to metal oxide and organic phases of natural aquatic biofilms. Limnology, 1999, 44(7): 1715-1729
    [73] 董德明, 李鱼, 花修艺等. 自然水体中生物膜主要化学组分与水体中相关化学物质的关系. 高等学校化学学报, 2002, 23(8): 1507-1509
    [74] 董德明, 花修艺, 李鱼等. 不同水体生物膜中各化学组分对铅的吸附作用研究. 高等学校化学学报, 2002, 23(2): 294-296
    [75] 李鱼, 郑娜, 董德明等. 镉在自然水体生物膜生长过程中的积累. 应用化学. 2004, 21(1): 28-31
    [76] Dong D., Derry L.A., Lion L.W. Pb scavenging from a freshwater lake by Mn oxides in heterogeneous surface coating materials. Water Res. 2003, 37(7): 1662–1666
    [77] 李鱼, 董德明, 杨帆等. 自然水体生物膜中铁、锰氧化物的形态分析. 吉林大学学报(理学版), 2003, 41(3): 374-377
    [78] 郑娜, 邱立民, 董德明等. 自然水体生物膜上铁氧化物含量对生物膜吸附镉特性的影响. 吉林大学学报(理学版), 2004, 42(2): 306-310
    [79] 董德明, 李鱼, 花修艺等. 湿地水环境中采集的生物膜吸附铅、镉的特性. 环境科学, 2003, 24 (1): 131-134
    [80] 董德明, 花修艺, 李鱼等. 不同水体生物膜中各化学组分对铅的吸附作用研究. 高等学校化学学报, 2002, 23(2): 294-296
    [81] 程金平, 刘彩娥, 王文华. 汞等重金属元素在黄浦江中迁移富集研究. 水科学进展, 2005, 16(6): 767-772
    [82] 董德明, 纪亮, 花修艺等. 自然水体生物膜吸附 Co, Ni 和 Cu 的特征研究. 高等学校化学学报, 2004, 25(2): 247-251
    [83] Nelson, Y. M., Lion, L. W., Shuler, M. L., Ghiorse, W.. Modeling Oligotrophic Biofilm Formation and Lead Adsorption to Biofilm Components. Environ. Sci. Technol., 1996, 30(6): 2027-2036
    [84] 董德明, 李鱼, 花修艺等. 淡水中生物膜主要化学组分选择性萃取分离的比较. 吉林大学学报(理学版), 40(2): 209-211
    [85] Dong D., Li Y., Hua X., Zhang J., Yan D. Cd Adsorption Properties of Components in Different Freshwater Surface Coatings: The Important Role of Ferromanganese Oxides. Environ. Sci. Technol, 2004, 37: 4106-4112
    [86] 杨帆. 自然水体生物膜上主要组分生长规律及吸附特性(学位论文). 吉林大学, 2005
    [87] Gueguen, C., Dominik, J. Partitioning of trace metals between particulate, colloidal and truly dissolved fractions in a polluted river: the Upper Vistula River (Poland). Appl. Geochem. 2003, 18, 457-470
    [88] 李鱼, 董德明, 花修艺等. 湿地水环境中生物膜吸附铅、镉能力的研究. 地理科学, 2002, 22(4): 445-448
    [89] 李鱼, 王晓丽, 陈昕等. 湿地水环境中表层沉积物吸附铅、镉能力的研究. 吉林大学学报(地球科学版), 2005, 35(2): 231-235
    [90] 杨晓兰. 长江口悬浮颗粒物的表面特性与重金属的沉降. 环境污染与防治, 1999, 21(3):36-38
    [91] 廖自基. 环境中微量重金属元素的污染危害与迁移转化. 科学出版社, 1989
    [92] Espen Lydersen, Stefan L?fgren. Potential Effects of Metals in Reacidified Limed Water Bodies In Norway And Sweden. EnvironmentalMonitoring and Assessment, 2002, 73(2): 155-178
    [93] Kjell Johansson, Ewa Bringmark, Lena Lindevall, Anders Wilander. Effects of Acidification on the Concentration of Heavy Metals in Running Waters in Sweden. Water Air and Soil Pollution, 1995, 85(2): 779-784
    [94] 罗潋葱, 秦伯强, 胡维平等. 不同水动力扰动下太湖沉积物的悬浮特征. 湖泊科学 2004, 16(3): 273-276
    [95] 吴丰昌, 万国江, 蔡玉蓉. 沉积物-水界面的生物地球化学作用. 地球科学进展, 1996, 11(2): 191-197
    [96] 蒋智勇, 陈和琴, 陈吉余等. 长江口南港底沙再悬浮特征及其浓度预测. 应用基础与工程科学学报, 2002, 10(4): 372-379
    [97] H ü lya karadede. Concentrations of Some Heavy Metals in Water, Sediment and Fish Species from the Ataturk Dam Lake (Euphrates), Turkey. Chemosphere, 2000, 41: 1371-1376
    [98] 吴雨华, 王晓丽, 董德明等. 南湖水体多相介质中重金属元素的分布特征. 吉林大学学报(理学版), 2006, 44(1): 130-136
    [99] 路永正, 董德明, 沈秀娥等. 松花江表层沉积物、悬浮颗粒物与生物膜中各组分萃取分离的研究. 黑龙江大学自然科学学报, 2006, 23(2): 168-172
    [100] M. Ledin, C. Krantz-rulcker and B. Allard. Zn, Cd, and Hg Accumulation by Microorganisms, Organic and Inorganic Soil Components in Multi-compartment Systems. Soil Biol. Biochem., 1996, 28(6), 791-799
    [101] M. Ledin, C. Krantz-rulcker and B. Allard. Microorganisms as Metal Sorbents: Comparison with Other Soil Constituents in Multi-compartment Systems. Soil Biology and Biochemistry, 1999, 31: 1639-1648
    [102] 徐锐贤, 王才, 毕树本等. 长春南湖富营养化与生态治理. 吉林科学技术出版社, 1999
    [103] Nelson, Y.M., Lo, W., Lion, L.W., Shuler, M.L., Ghiorse, W.C.. Lead distribution in a simulated aquatic environment: effects of bacterial biofilms and iron oxide. Water Res. 1995, 29: 1934–1944
    [104] Schmitt, D., Muller, A., Csogor, Z., Frimmel, F.H., Posten, C.. The adsorption kinetics of metal ions onto different microalgae and siliceousearth. Water Res., 2001, 35: 779–785
    [105] Westall, J.C., Zachary, J.L., Morel, F.M.M.. MINEQL, a computer program for the calculation of chemical equilibrium composition of aqueous systems. Technical Note 18. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, 1976.
    [106] Nealson, K.H., Tebo, B.B., Rosson, R.A.. Occurrence and mechanisms of microbial oxidation of manganese. Adv. Appl. Microbiol., 1988, 33: 299–318
    [107] Ferris, F.G., Fyfe, W.S., Beveridge, T.J.. Manganese oxide deposition in a hot spring microbial mat. Geomicrobiol. J., 1987, 5: 33–42
    [108] Gray, B.R., Hill, W.R., Stewart A.J.. Effects of development time, biomass and ferromanganese oxides on nickel sorption by stream periphyton. Environ. Pollut., 2001, 112: 61–71
    [109] Forbes, E. A., A. Posner, J. Quirk. The specific adsorption of divalent Cd, Co, Cu, Pb and Zn on goethite. J. Soil. Sci.,1976, 27: 154-166
    [110] Allen J.S., Brown P.A. Isotherm analyses for single component and multi–component metal sorption onto lignite. J. Chem. Technol. Biotechnol., 1995, 62: 17–24
    [111] 杨守业, 李从先. 长江与黄河现代表层沉积物元素组成及其示踪作用. 自然科学进展, 1999, 10(9): 930-937
    [112] 张朝生, 王立军, 章申. 长江中下游河流沉积物和悬浮物中金属元素的形态特征. 中国环境科学, 1995, 15(5): 342-247
    [113] Krisztina Kropfla, Peter Vladara, Katalin Szabo. et al. Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary). Environmental Pollution, 2006, 144: 626-631
    [114] Papini, M. P., Kahie, Y. D., Troia, B., Majone, M. Adsorption of lead at variable pH onto a natural porous medium: modeling of batch and column experiments. Environ. Sci. Technol. 1999, 33: 4457-4464
    [115] 张增强, 张一平, 朱兆华. 镉在土壤中吸附的动力学特征研究. 环境科学学报. 2000, 20: 370-375
    [116] Hatje V, Payne T E, Hill D M. et al. Kinetics of trace elements uptakeand release by particles in estuarine waters: effects of pH, salinity and particle loading. Environment International, 2003, 29: 619-629
    [117] 花修艺. 自然水体生物膜各组分对铅和镉的吸附特征研究——萃取—吸附—统计分析法的应用(学位论文). 吉林大学, 2003
    [118] Anderson, M.A. and M.M. Morel. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol. Oceanogr. 1982, 27: 789-813
    [119] Alexis S., Alfred M., Gordon E. Speciation of Pb(II) sorbed by Burkholderia cepacia/goethite composites. Environ. Sci. Technol. 2003, 37: 2166-2172
    [120] 张会民, 徐明岗, 吕家珑等. pH 对土壤及其组分吸附和解吸镉的影响研究进展. 农业环境科学学报, 2005, 24: 320-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700