极端风情下湖泊沉积物—上覆水之间的物质交换
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在内源动态问题越来越成为国内外研究热点中,国内外学者对极端风情(台风)过程下湖泊水体营养盐的变化机制却研究较少。本论文选择太湖沉积物-水界面为主要研究对象,利用沉积物再悬浮发生装置,室内模拟2004年卡努台风对太湖典型湖区水土界面的影响,旨在揭示极端风情(台风)过程下水体中营养盐的变化情况,为湖泊内源负荷研究提供科学依据,为水动力模拟装置提供精细操控参数。本文研究取得的主要研究结果如下:
     1、在极端风情(台风)过程中,风浪扰动的平均侵蚀深度在毫米量级,SS负荷量13.3×10~6吨,约为静态负荷量的23倍。
     2、梅梁湾湖区和大浦口湖区水体NH_4~+—N浓度随着台风历时的增加而减少,而DTN浓度略有增加,表明了台风过程下水体中NH_4~+—N向NO_2~-—N转化,从而降低了水体中的NH_4~+—N浓度。
     3、在台风过程中,梅梁湾湖区和大浦口湖区水体PO_4~(3-)—P浓度随着台风历时的增加而升高,DTP浓度略有增加。表现为沉积物向水体释放磷。
     4、台风过程后沉积物表层总磷含量较台风前有所下降,而弱吸附态磷、铁结合态磷、铝结合态磷、有机磷含量均有增加。
     5、太湖全湖静、台风风情下营养盐负荷量计算结果表明:在台风风情下,湖泊水体中PO_4~(3-)含量增加,PO_4~(3-)含量由静态负荷量57.6吨增加到66.8吨;湖泊水体中NH_4~+含量由静风风情的741.9吨下降到438.5吨。
When the release of sediment became a more and more important internationalproblem, the research of nutrients transform mechanism in lakes in ultra-wind(typhoon) is few. This paper selected sediment-water interface in lake Taihu as themain research object, simulating the effects induced by Kanu typhoon tosediment-water interface in typical area of Lake Taihu indoors by sedimentresuspension equipment, is mainly to uncover the change state of nutrients in thewater body in ultra-wind (typhoon), provides scientific basis for the research ofsediment burdens in lakes and precise manipulate parameters for hydraulicsimulation equipments. The main research results of this paper are below:
     1.During the ultra-wind (typhoon), average wind disturb depth of the sedimentis in millimeter, the loading of SS is 13.3×10~9 kilogram, which is 23 times of staticloading.
     2.The concentration of NH_4~+-N in Meiliangwan area and Dapukou areadecreased during the typhoon, but the concentration of DTN increased, whichindicates the NH_4~+-N transfer to NO_2~--N, thus the concentration of NH_4~+-N inthe water body decreased.
     3.During the typhoon, the concentration of PO_4~(3-)-P increased, theconcentration of DTP increased little, which indicates the release of phosphorus fromthe sediment.
     4.After the typhoon, TP in the surface layer of the sediment decreased, butlabile phosphorus, iron bounded phosphorus, aluminum bounded phosphorus,organic phosphorus increased.
     5.The numerical results of nutrients under static state and typhoon state inTaihu Lake indicate: during the typhoon, PO_4~(3-) in the water body increases from57.6×10~3 kilogram (static loadind) to 66.8×10~3 kilogram, NH_4~+in the water bodydecreases from 741.9×10~3 kilogram (static loadind) to 438.5×10~3 kilogram.
引文
[1] Blcm C, Winkels H J. Modeling sediment accumulation and dispersion of contaminants in lake Lisselmeer (the Netherlands).Water Science and Technology, 1998, 37(6-7): 17~24.
    [2] 钱嫦萍,陈振楼,刘杰.长江三角洲河流污染现状及变化趋势.环境科学研究,2002,15(6):24~27.
    [3] 柳洪.大运河常州段水质变化及其影响因素.环境科学,1994,13(8):30~46.
    [4] 诸敏.太湖水质变化趋势及其保护对策.湖泊科学,1996,8(2):133~138.
    [5] 曾向东,胡慧谦,周永武等.苏州河底质中有机污染物对河水影响的估价和预测.中国环境科学,1991,13(2):48~50.
    [6] B. Garban, D. Ollivon, M. Poulin. Exchanges at the sediment-water interface in the river seine, downstream from Paris. Water Reseach, 1995, 29(2):473-481.
    [7] Vicente Clavero, jose A. Fernandez & F. Xavier Niell, Bioturbation by Nereissp .And its effects on the phosphate flux across these sediment-water interface in the palmones River estuary, Hydrobiologia, 1992, 235/236:387~392.
    [8] Reddy, K. R. & W. H. Patrick. Nitrogen transformation and loss in flooded soils and sediments. Crit. Revir. Control, 1984, 13:273~309.
    [9] Salmons, W., Sediments and water quality. Envir. Technol. Lett. 6:95~99.
    [10] Barica, J., Hypereutropy. The ultimate stage of eutrophication. Wat.Qual.Bull, 1981, 6:95~99.
    [11] 尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响.湖泊科学,1994,6(3):240~244.
    [12] 范成新.滆湖沉积物理化特征及磷释放模拟.湖泊科学,1995,7(4):341-350.
    [13] 梁涛,陶澍,林健枝等.沉积物中酸挥发硫对上覆水中重金属含量的影响.环境化学,1998,17(3):212-217.
    [14] 吴根福,吴雪昌,金承涛.杭州西湖底泥释磷的初步研究.中国环境科学,1998,18(2):107~110.
    [15] 张路,范成新,秦伯强等.模拟扰动条件下太湖表层沉积物磷行为的研究.湖泊科学,2001,13(1):35~42.
    [16] 徐洪斌、吕锡武、俞燕等.玄武湖底泥营养物释放的模拟试验研究.环境化学,2004,23(2):152-156.
    [17] 李玉娜,邵秘华,邱春霞.锦州港疏浚沉积物中重金属的吸附和解吸.大连海事大学学报,2005,31(2):64—67.
    [18] 范成新,张路,秦伯强,胡维平,高光,王建军.太湖沉积物—水界面生源要素迁移机制及其定量化1.铵态氮释放速率的空间差异及源-汇通量.湖泊科学,2004,16(1):8-16.
    [19] 范成新,张路,包先明,尤本胜,钟继承,王建军,丁士明.太湖沉积物—水界面生源要素迁移机制及定量化,2.磷释放的热力学机制及源—汇转换.湖泊科学,2006,18(3):207-217.
    [20] Carrick H J, Aldridge F J, Schelske C L. Wind influences phytoplankton biomass and composition in a shallow productive lake. Limnology and Oceanogaphy, 1993, 38: 1179-1192.
    [21] Lijklima L, Aalderink R H, Blom G, et al. Sediment transport in shallow lakes—two case studies related to eutrophication. In: "Transport and transformation of contaminants near the sediment-water interface".London: Lewis Publishers, 1994, 253-279.
    [22] Sondergaard M, Kristensen P, Jeppesen E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia. 1992, 228:91-99.
    [23] Krone, R. B. Flume studies of the transport of sediment in estuarial shoaling. Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley, 1962, 120.
    [24] Mehta, A. J., and Partheniades, E. An investigation of the depositional properties of flocculated fine sediments, ASCE J. Hydraulics Res., 1975, 13: 361-376.
    [25] Partheniades, E. Unified view of wash load and bed material, ASCE J. Hydraulics Div., 1977, 103:1037-1050.
    [26] Sheng, Y. P., Lick, W. The transport and resuspension of sediments in a shallow lake. Journal of Geophysical Research, 1979, 84(C4): 1809-1826.
    [27] Luettich R A Jr, Harleman D R F & Somlyody L. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnol Oceanogr, 1990, 35(5): 1050-1067.
    [28] Sondergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 2003, 506-509:135-145.
    [29] Mark G. Cantwell, Robert M. Burgess. Variability of parameters measured during the resuspension of sediments with a particle entrainment simulator, Chemosphere 2004, 56(2004)51-58.
    [30] 李勇,王超.城市浅水型湖泊底泥磷释放特性实验研究.环境科学与技术.2003,26(1):26-28.
    [31] 王轲道,王建,何加武.茅家港滩面沉积物粒度变化及其与水动力的关系.海洋科学.2005,29(5):73-79.
    [32] 李为华,李九发,戴志军等.黄河三角洲飞雁滩表层沉积物对水动力的响应.海洋地质与第四纪地质,2006,26(1):17-21.
    [33] 秦伯强,胡维平,高光等.太湖沉积物悬浮的动力机制及内源释放的概念性模式.科学通报,2003,48(17):1822-1831.
    [34] 胡春华,胡维平,张发兵等.太湖沉积物再悬浮观测.科学通报,2005,50(22):2541—2545.
    [35] 张运林,秦伯强,陈伟民.太湖水体中悬浮物研究.长江流域资源与环境,2004,13(3):266-271.
    [36] 李一平,逄勇,陈克森等.水动力作用下太湖底泥起动规律研究.水科学进展,2004,15(6):770-774.
    [37] 范成新,张路,秦伯强等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算.中国科学(D辑),2003,33(8):760-768.
    [38] 罗潋葱,秦伯强,胡维平等.不同水动力扰动下太湖沉积物的悬浮特征.湖泊科学,2004,16(3):273-276.
    [39] 朱广伟,秦伯强,高光.风浪扰动引起大型浅水湖泊内源磷暴发性释放的直接证据.科学通报,2005,50(1):66-71.
    [40] Robert A Morton, James C Gbeaut, Jeffrey G Paine, et al. Meso-scale transfer of sand during and after storms: implications for predication of shoreline movement. Marine Geology, 1995, 126:161-179.
    [41] Robarts D R, Waiser M J, Hadas Ora, et al. Relaxation of phosphorus limitation due to typhoon-induced mixing in two morphologically distinct basins of Lake Biwa, Japan, Limnol & Oceanogr, 1998, 43(6): 1023-1036.
    [42] J J Williams, C P Rose. Measured and predicted rates of sediment transport in storm conditions. Marine Geology, 2001, 179:121-133.
    [43] 陈春华,李巧香.海口湾的台风及其对海水水质的影响机制分析.海洋学报,2002,24(2):59-65.
    [44] 闻余华,秦伯强.9711号台风对太湖水位影响分析.湖泊科学,1998,10(4):91-94.
    [45] 吴国琳,杨逸萍.9810号台风期间厦门近岸海域磷的分布特征.台湾海峡,2001,20(1):84-90.
    [46] 杨逸萍,郭卫东,方志山.台风暴雨对厦门港湾海水溶解无机氮、磷含量的影响.海洋科学,2003,27(7):52-58.
    [47] 郭卫东,杨逸萍,弓振斌.台风暴雨影响期间厦门湾海水盐度、PH、溶解氧和COD变化特征.海洋科学,2001,25(7):1-5.
    [48] 何文社,曹叔龙,刘兴年等.泥沙起动临界切应力研究.力学学报,2003,35(3):326-331.
    [49] 何文社,方铎,杨具瑞等.泥沙起动流速研究.水利学报,2002,10:51-56.
    [50] 罗潋葱,秦伯强.太湖波浪与湖流对沉积物再悬浮不同影响的研究.水文.2003.23(3):1-4.
    [51] Reizes JA. Numerical study of continuous saltation. Proc ASCE, J Hydr Div, 1978, 104(9):1305-1321.
    [52] Migniot C. A study of the physical properties of various forms of very fine sediment and their behaviour under hydrodynamic Action. LA-Houille Blanche, 1968, No.7.
    [53] 杨美卿,王桂玲.粘性细泥沙的临界起动公式.应用基础与工程科学学报,1995,3(1):99-109.
    [54] 罗潋葱,秦伯强,朱广伟.太湖沉积物的分布和动力扰动下最大侵蚀深度的确定.泥沙,2004,1:9-14.
    [55] Li M Z, Amos C L, SEDTRANS96: the upgraded and better calibrated sediment-transport model for continental shelves. Computers & Geosciences, 2001, 27:619-645.
    [56] Mitchener H, Torfs H, Erosion of mud/sand mixtures. Coast Eng, 1996, 29:1-25.
    [57] Amos C L, Daborn G R, Christian H A et al, In situ erosion measurement on fine-grained sediments from the Bay of Fundy. Marine Geology, 1992, 108:175-196.
    [58] 张金善等.波浪作用下太湖沉积物启动特性的初步试验研究.南京水利科学研究院,2002.
    [59] 罗潋葱,秦伯强,胡维平等.不同水动力扰动下太湖沉积物的悬浮特征.湖泊科学,2004,16(3):273-276.
    [60] 秦伯强,胡维平,陈伟民等.太湖水环境演化过程与机理.北京:科学出版社,2004.
    [61] 范成新,刘元波,陈荷生.太湖底泥蓄积量估算及分布特征探讨.上海环境科学,2000,19(2):72-75.
    [62] Emil rydin. Potentially mobile phosphorus in lake erken sediment. Water reseach. 2000, 34(7), 2037—2042.
    [63] 罗潋葱,秦伯强,胡维平等.太湖波动特征分析.水动力学研究与进展,2004,19(5):664-670.
    [64] David B Baby, Eric W H Hutton, James P M Syvitsti et al. Exponential approximation to compacted sediment porosity profiles. Computers Geosciences, 2001, 27:691-700.
    [65] Krom M. D. and Bemer R. A. The diffusion coefficients of sulfate, ammonium and phosphate rons in anoxic marine sediments. Limnol. Oceanogr, 1980, 25(2):327-337.
    [66] 张路,范成新,王建军等.太湖草藻型湖区间隙水理化特性比较.中国环境科学,2004,24(5):556-560.
    [67] Hartley A M, House W A, Contribution of phosphate with calcite in the presence of photosynthesizing green algae. Water Research, 1988, 31:2261-2268.
    [68] Hongve D. Cycling of iron, manganese and phosphate in a meromictic lake. Limnology & Oceanography, 1997, 42:635-647.
    [69] Hupher M, Gachter R, Giovanoli R. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquatic Sciences1995, , 57:305-324.
    [70] Boers P C M, Van Raaphorst Wand and Van der Molen T D. Phosphorus retention in sediments. Water Science & Technology, 1998, 37:31-39.
    [71] Ruttenberg K C, Berner R A. Authigenic apatite formation and burial in sediments from nonupwelling continental margin environments[J]. Geochem Cosmochim Acta, 1993, 57(5):997-1007
    [72] Filippelli G M, Delaney M L. Phosphorus geochemistry of equatorial Pacific sediments [J] Geochem Cosmochim Acta, 1996, 60(9): 1971-1980.
    [73] 黄清辉,王东红,王春霞.沉积物中磷形态与湖泊富营养化的关系.中国环境科学,2003,23(6):583-586.
    [74] 王庭健.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响.环境科学研究.1994,7(4):12-19.
    [75] 张路,范成新,池俏俏.太湖及其主要入湖河流沉积磷形态分布研究.地球化学,2004,4:423-434.
    [76] 刘浏,刘晓端,徐清.密云水库沉积物中磷的形态和分布特征.岩矿测试,2003,22(2):31-35.
    [77] 高丽,杨浩,周健民.滇池沉积物磷内负荷及其对水体贡献的研究.环境科学学报, 2004,24(S):776-783.
    [78] 朱广伟.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系.环境科学学报,2004,24(3):381-388.
    [79] 朱广伟,高光,秦伯强.浅水湖泊沉积物中磷的地球化学特征.水科学进展,2003,14(6):14-19.
    [80] 王雨春,马梅,万国江.贵州红枫湖沉积物磷赋存形态及沉积历史.湖泊科学,2004,16(1):22-28.
    [81] 吴丰昌,白占国,万国江.贵州百花湖沉积物中磷的再迁移作用.环境污染治理技术与设备,1996.
    [82] 欧冬妮,刘敏,侯立军.围垦对东海农场沉积物无机氮分布的影响.海洋环境科学,2002,21(3):18-22.
    [83] 张斌亮.潮滩沉积物一水界面营养盐N,P分布及交换特征.上海环境科学,2003,22(10):677-683.
    [84] 吴丰昌.博士论文.云贵高原湖泊沉积物—水界面氮、磷和硫的生物地球化学作用和生态环境效应.
    [85] 孙晓杭,张昱,杨敏等.太湖悬浮物磷的形态分布特征.安全与环境学报,2005,5(4):19-22.
    [86] 刘敏,许世远,侯立军.长江口滨岸潮滩沉积物中磷的存在形态和分布特征.海洋通报,2001,20(5):10-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700