太湖风生波流及泥沙运动三维数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来浅水湖泊的水质污染形势日趋严峻。浅水湖泊的污染物质中,内源释放量占据了很大比例,故内源释放一直受到广泛关注。然而,内源释放是由底部沉积物的再悬浮引起的,在研究湖泊内源释放之前,首先应了解湖泊中沉积物的空间分布状况,才能准确地计算出在风生波流扰动下的内源释放总量。
     本文查阅了近年来国内外有关湖泊水动力数值模拟及沉积物分布情况的相关文献,利用三维MOHID风生流模型对太湖风生流进行了数值模拟。在此基础之上,引入SWAN风浪模块,通过三维MOHID泥沙模型,模拟了风生流及波—流共同作用下,梅梁湾东部沿岸的底部泥沙运动情况。三维模型平面离散采用有限体积法,垂向应用σ坐标变换,保证了浅水区域的良好分辨率。
     太湖风生环流的模拟结果与前人的研究成果相符。在此基础上建立的三维泥沙模型反映了梅梁湾地区的泥沙运动规律,为今后内污染源释放问题的研究提供了进一步的帮助。
In recent years, the water quality of shallow lakes is becoming worse and worse. In shallow lakes, the dynamic release plays an important role in water pollution, so presently it is widely concerned. What’s more, dynamic release is caused by the re-suspending sediment which is at the bottom of the lake. So the spatial distribution of sediments in lakes must be realized firstly and then the dynamic release which is caused by the disturbance of wind-driven flow-wave can be accurately calculated.
     After consulting plenty of literatures about numerical simulation of shallow lakes, MOHID model is selected to simulate the wind-driven flow of Taihu Lake. On this basis, SWAN model is coupled into MOHID. With this coupled model, the sediment transport of Meiliang Bay is simulated with the wind-driven flow and with the wind-driven flow-wave. In 3D model, the horizontal momentum equations are discretized by the finite volume method, and the sigma coordinate is applied for vertical direction, so shallow water regions are well described.
     In this paper, the results about wind-driven flow simulation of Taihu Lake agree well with the previous researches. The principle of the sediment transport of Meiliang Bay is well described by the sediment simulation. The computational results can be helpful for further studying of dynamic release.
引文
[1]秦伯强,胡维平等.太湖梅粱湾水动力及相关过程的研究[J].湖泊科学.2000,l2(4):327-334
    [2]Havens. K.E. and Schelske C.L. The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in lakes and reservoirs[J]. Environmental Pollution. 2001, l13: l-9
    [3]Havens. K.E., Fukushima T., Xie P., lwakuma T. et a1. Nutrient dynamics and the eutrophication of shallow lakes[J]. Environmental Pollution. 2001, l1l: 263-272
    [4]陈玉田.偏微分方程数值解法(上)[M].河海大学数理系教学教研室.1995
    [5]Thompson J.F. Numerical Solution of flow Problems Using Body-fited Coordinate System[J]. Computation of Fluid Dynamics. 1978, 1105: 19-34
    [6]L.谢利曼.一般任意网格有限差分法[J].华水科技情报.1985(4):3-12
    [7]华祖林,卞华.曲线网格生成调节因子选取研究[J].河海大学学报.1999,27(2):40-44
    [8]马法三.计算流体动力学(上、下)[M].河海大学环境工程教材.1989
    [9]王晓建,张廷芳.非正交网格下的有限体积法在三维潮流场计算中的应用[J].水动力学研究与进展.1997,12(1):56-62
    [10]谭维炎.计算浅水动力学[M].清华大学出版社.1998
    [11]董文军,李世森,白玉川.三维潮流和潮流输沙问题的一种混合数值模拟[J].海洋学报.1999,21(2):108-114
    [12]夏华永,殷忠斌,郭芝兰等.北部湾三维潮流数值模拟[J].海洋学报.1997,19(2):21-31
    [13]韩国其,汪德爟.宽浅水域风生流及床面冲淤数值模型[J].河海大学学报.1992,20(5):15-20
    [14]Hutter K. Hydrodynamics of Lake. International Center for Mechanical Sciences[R]. CISM Courses Lectures No. 286. Springer-Verlag. NewYork. 1983, 102-223
    [15]李炜.环境水力学进展[M].武汉:武汉水利电力大学出版社.1999,311-346
    [16]吴坚.太湖水动力学数值模拟[D].中科院地理与湖泊研究所硕士论文.1986
    [17]王谦谦.太湖风生流的数值模拟[J].河海大学学报.Vol 15.1987,增刊(2):11-18
    [18]王谦谦,姜加虎,濮伟民.太湖和大浦河口风成流、风涌水的数值模拟及单站验证[J].湖泊科学.1992,4(4):1-7
    [19]刘启峻.太湖梅梁湾风生流数值模拟[D].中科院南京地理与湖泊研究所硕士论文.1993
    [20]吴炳方等.东洞庭湖湖流及风力影响分析[J].地理学报.1996,51(1):51-57
    [21]Leendertse J.J., R.C. Alexander, S.K. Liu. A three-dimensional model for Estuaries and Coastal seas, Vol.1, Principles of Computations[S]. Santa Monica California. 1973:
    [22]Simons T.J. Development of three-dimensional numerical model of the Great Lakes[J]. Water Branch Science. 1973, 12-269
    [23]姜加虎.云南抚仙湖、滇池内波与环流数值模型[D].中科院地理与湖泊研究所硕士论文.1991
    [24]卢启苗,Onyx,Wai.W.H..海岸河口三维潮流数学模型[J].海洋工程.1995,13(4):47-60
    [25]白玉川,于天一.分步分层拟三维水流数学模型及其在廉州湾潮流计算中的应用[J].海洋学报.1998,20(5):126-135
    [26]杨具瑞,方泽.滇池二维分层水质模拟研究[J].环境科学学报.2000,20(5):533-535
    [27]焦春萌.太湖水动力学和悬移质输移的三维模型[D].中科院地理与湖泊研究所硕士论文.1988
    [28]逄勇,濮培民.太湖风生流三维数值模拟试验[J].地理学报.1996,51(4):328-332
    [29]王惠中,宋志尧,薛鸿超.考虑垂直涡粘系数非均匀分布的太湖风生流准三维数值模型[J].湖泊科学.2001,13(3):233-239
    [30]Darance J.A., Hughes D.G. North Sea dynamics[J]. Berlin: Sunday and Lenz, Springer-Verlag. 1983, 120-133
    [31]窦振兴,杨连武,J.Ozer.渤海三维潮流数值模拟[J].海洋学报.1993,15(5)1-16
    [32]Simons T.J. Verification of numerical models of Lake Ontario, Part I: Circulation in Spring and early Summer[J]. J. Phys. Oceanogr. 1974(4): 507-523
    [33]Simons T.J. Verification of Numerical Models of Lake Ontario, II: Stratified Circulations and Temperature Changes[J]. J. Phys. Oceanogr. 1975(5): 98-110
    [34]朱耀华,方国洪.陆架和浅海环流的一个三维正压模式及其在渤、黄、东海的应用[J].海洋学报.1994,16(6):11-26
    [35]梁瑞驹,仲金华.太湖风生流三维数值模拟[J].湖泊科学.1994,6(4):289-297
    [36]胡维平,濮伟民,秦伯强.太湖水动力学三维数值试验研究—1.风生流和风涌流增减水的三维数值模拟[J].湖泊科学.1998a,10(4):17-25
    [37]胡维平,濮伟民,秦伯强.太湖水动力学三维数值试验研究—2.典型风场风生流的数值计算[J].湖泊科学.1998b,10(4):26-34
    [38]徐福敏,张长宽,茅丽华等.一种浅水波浪数值模型的应用研究[J].水动力学研究与进展.2000,A,5(4):429-434
    [39]Berkoff J.C.W. Computation of combined refraction-diffraction[R]. Pro. of the 13th Confo. Coastal Eng. 1972, 1: 471-490
    [40]Radder. A.C. On the parabolic equation method for water-wave propagation[J]. J. F. M. 1979, 95: 159-176
    [41]Kirby J.T. A general wave equation for waves over rippled beds[J]. J. F. M. 1986, 162: 171-186
    [42]Dalrymple R.A., Kirby J.T. Model for very wide angle water waves and wave diffraction[J]. J. F. M. 1988, 192: 33-50
    [43]Peregrine D.H. Long waves on beach[J]. J. F. M. 1967, 27, 815-827
    [44]Abbot M.B. et al. Accuracy of short wave numerical model[J]. J. Hydraul. Eng. 1984, 110: 10-23
    [45]SWANP Group. The WAM model—A third generation ocean wave prediction model[J]. J. Phys. Oceanogr. 1988, 18(12): 1775-1810
    [46]Tolman H.L. A third generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents[J]. J. Phys. Oceanogr. 1991, 21(6): 782-797
    [47]Ris R.C., Holthuijsen L.H., Booij N. A spectral model for waves in the near shore zone[J]. Coastal Engineering. 1994, 1: 68-78
    [48]Booij N., Holthuijsen L.H., Ris R.C. The SWAN wave model for shallow water[J]. Coastal Engineering. 1996, 1: 668-672
    [49]窦国仁,董凤舞,Dou Xibing.潮流和波浪的挟沙能力[J].科学通报.1995,40(5):443-446
    [50]刘家驹,张镜潮.淤泥质海岸航道、港池淤积计算方法及其推广应用[J].水利水运科学研究.1993,(4):302-320
    [51]曹祖德,李蓓,孔令双.波流共存时的水体挟沙力[J].水道港口.2001,22(4):151-155
    [52]郗殿纲.粉沙质与淤泥质浅滩在风浪和水流作用下的挟沙能力[J].港工技术.1996,(1):8-14
    [53]林全泓.强风浪过程中近岸泥沙运动的数值模拟[D].天津:天津大学,2003
    [54]McAnally W.H., Mehta A.J. Coastal and Estuarine Fine Sediment Processes[M]. McAnally W.H., Mehta A.J., (Eds). The Netherland: Elsevier Science. 2001
    [55]Maa P.Y., Mehta A.J. Mude rosion by waves: a laboratory study[J]. Cont. Shelf Res. 1987, 7(11/12): 1269-1284
    [56]窦希萍,罗肇森.波浪潮流共同作用下的二维泥沙数学模型[J].水利水运科学研究.1992,4:331-338
    [57]曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟[J].海洋学报.1993,15(1):107-110
    [58]O'Connor B.A., Nicholson l. A three-dimensional model of suspended particulate sediment transport[J]. Coastal Engineering. 1988, 157-174
    [59]Cancino L., Neves R. Hydrodynamic and sediment suspension modeling in estuarine systems: Part1: Description of the numerical models[J]. Journal of Marine Systems. 22(2): 105-116
    [60]陈虹,李大鸣.三维潮流泥沙运动的一种数值模拟[J].天津大学学报.1999,5(33):573-579
    [61]李蓓,唐士芳.河口海区开挖航道后三维潮流盐度泥沙数值模拟[J].水道港口.2000,(4):36-41
    [62]江文胜,孙文心.渤海悬浮颗粒物的三维输运模式I模式[J].海洋与湖沼.2001,引(6):682-688
    [63]江文胜,孙文心.渤海悬浮颗粒物的三维输运模式II模拟结果[J].海洋与湖沼.2001,32(1):94-100
    [64]李瑞杰等.虎门太平水道航道整治工程潮流数模计算[J].水运工程.2003,350(3):38-42
    [65]李瑞杰,严以新等.太平水道悬移质输运数学模型闭泥沙研究[J].2003,(4):46-51
    [66]李瑞杰等.珠江口崖门出海航道回淤分析[J].中国港湾建设.2005,135(2):5-7
    [67]丁平兴等.波、流共同作用下的三维悬沙输运数学模型[J].自然科学进展,2001,11(2):147-152
    [68]Neves. Mohid Description[D]. Technical University of Lisbon, Portugal. 2003
    [69]吴巍,孙文心.渤海局部海域风暴潮漫滩计算模式—ADI干湿网格模式在局部海域风暴潮漫滩计算中的应用[J].青岛海洋学报.1995,25(2):146-152
    [70]孙文心,杨宗严,史峰岩.风暴潮漫滩数值预报模式分析与探讨.青岛海洋大学学报[J].1994,24(3):293-300
    [71]Fletcher C.A.J. Computational techniques for fluid dynamics[M]. Springer Series in Computational Physics. Springer-Verlag, New York. 1991, 2
    [72]Chippada S.C., Dawson M. Wheeler. Agodonov-type finite volume method for the system of shallow water equations[J]. Computer methods in applied mechanics and engineering. 1998, 151(1): 105-130
    [73]Hasselmann K., Barnet T.P., Bouws E., et al. Measurements of wind-wave growth and swell decay during the Joint North Sea[J]. Wave Project (JONSWAP). 1973, 12-33
    [74]Cavaleri L., Malanotte-prizzoli P. Wind wave prediction in shallow water[J]. Theory and applications, J. Geophys. Res. 1981, (C11): 10961-10973
    [75]Komen G.J., Hassehnann S., Hasselman K. On the existence of a fully developed wind-sea spectrum[J]. J. Phys. Occanogr. 1984, 14: 1271-1285
    [76]Collins J.L. Prediction of shallow water spectra[J]. J. Geophys. Res. 1972, 77(15): 2693-2707
    [77]Madsen O.S., Poon Y.K., Graber H.C. Spectral wave attenuation by bottom friction[R]. Pro. 21th Int. Conf. Coastal Engin., ASCE. 1988: 492-504
    [78]Battjes J.A., Stive M.J.F. Calibration and verification of adissipation model for random breaking waves[J]. J. Geophys. Res. 1985, 90(C5): 9159-9167
    [79]Hasselmann K. On the spectral dissipation of oceanwaves due to whitecapping[J]. Bound-layer Meteor. 1974: 107-127
    [80]Hasselmann S., Hasselmann K. A symmetrical method of computing the non-linear transfer in a gravity-wave spectrum, Hamburger Geophys[J]. Einzelschr., Serie A, 1981, 52: 8-21
    [81]Cancino L., Neves R. 3D-numerical modelling of cohesive suspended sediment in the Western Scheldte stuary(The Netherlands) [J]. Netherlands Journal of Aquatic Ecology. l994b, 28(3-4): 337-345
    [82]Canico L., Neves R. Three-dimensional model system for baroclinic estuarine dynamics and suspended sediment transport in a mesotidal estuary. In: Computer Modelling of Seas and Coastal Regions[J]. Computational Mechanics Publications. 1995, 353-360
    [83]Mulder H.P.J., Udink C. Modelling of cohesive sediment transport. A case study: the Western Scheldt estuary[R]. In: Edge, B. L. (Ed), Pro. 22th Int. Conf. Coastal Engin. American Society of Civil Engineers, NewYork. 1991: 3012-3023
    [84]Stephens J.A., Uncles R.J., Barton M.L. Fitzpatrick F. Bulk properties of intertidal sediments in a muddy mearotidal estuary[J]. Mar. Geol. 1992, 103: 15-37
    [85]朱永春,蔡启铭.太湖梅粱湾三维水动力学模型的研究——(I)模型的建立及结果分析[A].见:蔡启铭.太湖环境生态研究[C].北京:气象出版社.1998,74-79
    [86]朱永春,蔡启铭.太湖梅粱湾三维水动力学模型的研究——(II)营养盐随三维湖流的迁移规律[A].见:蔡启铭.太湖环境生态研究[C].北京:气象出版社.1998,80-87
    [87]秦伯强,胡维平.太湖水环境演化过程与机理[C].北京:科学出版社.2004,107-136
    [88]刘兴盛.太湖风生流及物质输运动三维数值模拟[D].南京:河海大学.2005
    [89]Eadie B.J., Chambers R.J., Gardner W.S. et a1. Sediment trap studies in Lake Michigan: Resuspension and chemical fluxes in the southern basin[J]. J. Great Lakes Res. 1984, 10: 307-321
    [90]胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究.保守物质输移扩散[J].湖泊科学.2002,14(4).3l0-3l5
    [91]范成新,刘元波,陈倚生.太湖沉积物蓄积量估算及分布特征探讨[J].上海环境科学.2000,19(2):72-75
    [92]Sondergaard M., Jensen J.P., Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia. 2003, 506-509
    [93]Brzakova M., Hejzlar J., Nedoma J. Phosphorus uptake by suspended and settling seston in a stratified reservoir[J]. Hydrobiologia. 2003, 504: 39-49
    [94]罗潋葱,秦伯强,胡维平等.不同水动力扰动下太湖沉积物的悬浮特征[J].湖泊科学.2004,16(3):273-276
    [95]罗潋葱,秦伯强.波浪和湖流对太湖底泥悬浮的影响研究[J].水文.2003,23(4):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700