泵控马达闭式回路调速控制系统特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工程机械朝着大型化、重型化的方向发展及使用工况的日趋复杂化,对行走驱动系统的要求也越来越高,采用泵控马达闭式回路作为工程机械行走驱动系统已成为一种趋势。国外相关的技术研究已经很成熟且得到广泛应用,但国内在这方面的研究仍比较落后,与国际水平存在一定差距。因此对工程机械行走驱动泵控马达闭式回路系统及关键液压元件开展研究将有重大意义。
     本论文以工程机械行走驱动泵控马达闭式回路调速系统为研究对象,运用力平衡方程和流量连续性方程建立系统的静态数学模型;在仿真软件中建立相应的动态仿真模型,且对影响系统动态性能的因素进行了仿真分析;针对上述因素设计了常规PID和基于干扰观测器的自整定模糊PID控制器并进行仿真计算,仿真结果表明后者控制效果优于前者;在理论分析基础上,研制了泵控马达闭式回路综合试验台,对影响系统动态性能的因素进行了试验,测试结果与仿真计算结果在趋势上基本吻合,最后对系统中的变量泵进行了动静态性能测试研究。
     本论文主要包括以下几个方面的内容:
     (1)简要论述了泵控马达闭式回路调速系统,介绍了工程机械行走驱动泵控马达闭式回路调速系统的研究现状和发展趋势,然后提出了课题的研究意义、研究方法及主要研究内容。
     (2)对泵控马达闭式回路调速系统进行数学建模,得到系统的传递函数;设计了常规PID和基于干扰观测器的自整定模糊PID控制器。
     (3)在AMESim仿真软件中建立泵控马达闭式回路调速系统的计算模型,且对影响系统动态性能的因素进行了仿真分析;在MATLAB仿真软件中分别使用两种控制器对上述影响因素进行了仿真计算,并对仿真结果进行了比较分析。
     (4)研制了泵控马达闭式回路综合试验台,并对影响调速系统动态性能的因素作了试验研究;最后对系统中的变量泵进行了动静态性能试验。
With the mobile hydraulics towards the development of large scale and heavy duty, and the complex working conditions, the requirements of driving system have been highly increased. Most of the driving systems for mobile hydraulics have been adopted pump-control-motor closed-circuit system. Related technical research in foreign countries has been very mature and extensively, but the domestic research on the issue is relatively backward and also far behind the international level. Therefore the research of pump-control-motor closed-circuit for mobile hydraulics driving system and key hydraulic components will have great significance.
     The pump-control-motor closed-circuit for mobile hydraulics driving system is the research object of the scientific dissertation. The static mathematic model was set up by using force equilibrium equation and flow continuity equation. The dynamic simulation model was built up in simulation software. The influence factors to the dynamic performance of the system had been analyzed in simulation environment. Towards the above factors, the conventional PID controller and self-tuning fuzzy PID controller based on disturbance observer were designed and analyzed in simulation software. The simulation results proved that the latter control effect was better than the former. On the basis of theoretical analysis, the comprehensive test bed of pump-control-motor closed-circuit system had been manufactured. The influence factors to the dynamic performance of the system had been tested. The test results and simulation results were in the same trend. Finally, the test and research to the static and dynamic performance of the variable pump had been taken.
     This scientific dissertation mainly include the following aspects of content:
     In chapter 1, the pump-control-motor closed-circuit speed system was discussed. The research status and development trend of the system for mobile hydraulics driving system were briefly introduced. Then the subject significance, the research methods and research content were put forwards.
     In chapter 2 and 3, the mathematical model of the pump-control-motor closed-circuit speed system and the system transfer function had been set up. The conventional PID controller and the self-tuning fuzzy PID controller based on disturbance observer had been built up.
     In chapter 4, the simulation model of the pump-control-motor closed-circuit speed system had been built in AMESim simulation software. The influence factors to the dynamic performance of the system had been analyzed in simulation environment. The simulation analysis of the influence factors to the dynamic performance of the system had been made in MATLAB simulation software using the above two controller. The simulation results had been compared.
     In chapter 5, the comprehensive test bed of pump-control-motor closed-circuit system had been manufactured. The influence factors to the dynamic performance of the speed system had been research in the test environment. Finally, the static and dynamic test of the variable pump had been taken.
引文
[1]姚怀新.行走机械液压传动理论.建筑机械,2002
    [2]张春青,王立军,陈赐其.工程机械车辆行驶泵-马达闭式系统分析.建筑机械,2001
    [3]王湘华.工程机械行走系采用液压驱动后的高效性.西部探矿工程,2001,71(4):100-102
    [4]姜继海,宋锦春,高常识.液压与气压传动.北京:高等教育出版社,2001
    [5]王意.行走机械液压驱动技术发展大观.液压气动与密封,2000(2):19-28
    [6]马永辉,徐宝富,刘绍华.工程机械液压系统设计计算.北京:机械工业出版社,1985
    [7]张利平.液压传动系统及设计.北京:化学工业出版社工业装备与信息工程出版中心,2005
    [8]陆敏恂,李万莉.流体力学与液压传动.上海:同济大学,2006
    [9]刘安峰.工程车辆静液压传动系统的计算机辅助设计:[硕士学位论文].北京:北京科技大学,2002
    [10]SANDAK.A Study on A Full-Electric Control System of A Hydro Static Transmission for Construction Machines[C].Proceedings of the 2004 IEEE International Conference on Control Applications,Taipei,2004.1153-1158
    [11]王意.行走机械的液压复合传动技术.液压气动与密封,2004(1):18-22
    [12]Tsutomu Hayashi,Mitsuru Saito,Yoshihiro Yoshida.Advanced Hydro-Mechanical Transmission with High-Durability for Small Utility Vehicles.Society of Automation Engineers,2001(1)
    [13]李翔冕,常思勤.蓄能器与车辆静液压储能传动系统特性及匹配分析.公路交通科技,2003(3)
    [14]韩文,常思勤.液压技术在车辆制动能量回收的研究.机床与液压,2003(6)
    [15]刘豹.现代控制理论.北京:机械工业出版社,2000
    [16]付梦印,钟秋海.现代控制理论与应用.北京:机械工业出版社,1997
    [17]桑勇,王占林,祁晓野.基于广义预测控制的泵控马达调速控制的研究.湖南科技大学学报(自然科学版),2007(22):4
    [18]罗守华,王积伟,颜景平.基于CMAC神经网络的泵控马达调速系统控制性能.东南大学学报(自然科学版),2000(30):3
    [19]曾宗桢.大时滞大惯性变频泵控马达调速系统研究.机床与液压,2007(35):6
    [20]I.T.Hong.E.C.Fitch.Hydraulic System Modeling and Simulation—Compendiums and Prospects[C].Proceeding of the fourth International Symposium On Fluid Power Transmission and Control(ISFP 2003),30-137
    [21]彭天好,徐兵,杨华勇.大惯量变转速泵控马达调速系统模糊控制.机床与液压,2004(10)
    [22]彭天好,徐兵,杨华勇.变频泵控马达调速系统遗传算法PID控制.液压与气动,2003(11)
    [23]彭天好,徐兵,杨华勇.变频泵控马达调速系统单神经元自适应PID控制.中国机械工程,2003(14):20
    [24]刘仕平,毛青春,贾建涛.泵控马达调速系统单神经元PID控制参数优化的改进算法.液压气动与密封,2007(2)
    [25]程安宁.液压仿真技术的应用与发展.机床与液压,2004,5:9-10
    [26]王子才.仿真技术发展及应用.中国工程科学,2003,5(2):40-44
    [27]邓习树,李自光.当前液压系统仿真技术发展现在及趋势.机床与液压,2003,1:20-22
    [28]陈鹰.面向创新的液压仿真技术.液压气动与密封,2003,4:16-20
    [29]罗小梅.电液比例变量泵控马达控制系统的分析研究.长安大学硕士学位论文,2005
    [30]宋海林.泵控马达静液驱动系统分析与研究.吉林大学硕士学位论文,2004
    [31]李婷婷.电液比例变量泵-马达恒速控制系统的研究.长安大学硕士学位论文,2004
    [32]孔晓武.带长管道的负载敏感系统研究.浙江大学博士学位论文,2003
    [33]吴时飞.泵-马达功率回馈式试验台液压及测控系统研究.中南大学硕士学位论文,2006
    [34]熊美华.电液比例阀控马达速度控制系统分析与仿真研究.长安大学硕士学位论文,2004
    [35]彭天好.变频泵控马达调速及补偿特性的研究.浙江大学博士学位论文,2003
    [36]刘世勋.国外液压控制技术发展方向.液压与气动,1994(2)
    [37]李寿刚.液压传动.北京理工大学出版社,1994
    [38]徐霖,于今.液压动力控制系统.重庆大学出版社,1994
    [39]郑成.PID参数整定方法的研究.机械制造,2009(3)
    [40]Wen-hua chen,Donald J.Balance,Peter J.Gawthrop,John O' Reily.A Nonlinear Disturbance Observer for Robotic Manipulators.IEEE Transactions on Industrial Electronics,2000,47(4)::932-938
    [41]Carl J.Kempf,Seiichi Kobayashi.Disturbance Obserber and Feedforward Design for a High-speed Direct-Drive Positioning Table.IEEE Transactions on control system technology,1999,7(5):513-527
    [42]王立新.模糊系统与模糊控制教程.清华大学出版社,2003
    [43]诸静.模糊控制原理与应用.机械工业出版社,1995
    [44]刘伟.关于模糊PID控制器的应用设计.沈阳工业大学学报,2003(25):115-117
    [45]张化光,何希勤.模糊自适应控制理论及其应用.北京航天航空大学出版社,2002
    [46]王立新.自适应模糊控制系统与控制-设计与稳定性分析.国防工业出版社,1995
    [47]李帅,魏建华.自整定模糊PID在改善泵控马达动态特性中的应用.液压气动与密封,2009(3)
    [48]Hayward A Tj.Aeration in Hydraulic system It's assessment and control oil Hydraulic and Power Transmission and Control[J].Inst.of Mech.Engs London,1961
    [49]刘强,冯培恩,潘双夏.基于干扰观测器的非对称液压缸鲁棒运动控制[J].浙江大学学报(工学版),2006(4):594-598
    [50]Young I.Son,Hyungbo Shim,Nam H.Jo.Design of Disturbance Observer for Non-minimum Phase Systems Using PID Controllers[C].SICE Annual Conference,2007(9):17-20
    [51]吴东苏,顾宏斌.基于模糊干扰观测器的电动Stewart平台自适应模糊控制[J].机械科学与技术,2008,27(6):757-763
    [52]Hayward A Tj.Aeration in Hydraulic system It's assessment andcontrol oil Hydraulic and Power Transmission and Control[J].Inst.of Mech.Engs London,1961
    [53]Yeaple F D.Hydraulic and Pneumatic Power Control[J].McGraw Hill,1966
    [54]李帅,魏建华.极限工况下泵控马达自适应模糊控制.工程机械,2009(8)
    [55]余佑官,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005(3)
    [56]李华聪,李吉.机械/液压系统建模仿真软件AMESim[J].计算机仿真23(12),2006.12
    [57]苏东海,于江华.液压仿真新技术AMESim及应用[J].计算机应用技术,2006(11)
    [58]薛晓虎.液压系统缝隙内流体泄漏特性分析.机械工程学报,2004(6)
    [59]Barus C.Isothermals,isopiestics and isometrics relative to viscosity.American Journal of Science,1893,45:87-93
    [60]Cameron A.Principles of Lubrication.Longman Press,1966
    [61]温诗铸,杨沛然.弹性流体动力润滑.北京:清华大学出版社,1992
    [62]Hayward A T J.Aeration in Hydraulic System-Its hs-sessment and Control,Oil Hydraulic and Power Transmission and Control.London:Inst.Of Mech.Engs.1961
    [63]Zanker A.Hydrocarbon Processing,1977,56(5):255
    [64]Shoff P D.Determination of air at high temperature and pressure.Chem.Process.1961,24(6):135-137
    [65]李流远.油液含气量对液压系统的影响.液压与气动,2001(1)
    [66]李永堂,雷步芳,高雨茁.液压系统建模与仿真.冶金工业出版社,2003
    [67]雷顺天.基于MATLAB的系统分析设计-控制系统.西安电子科技大学出版社,2000
    [68]EATON.重型液压传动样本
    [69]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,1999
    [70]赵树忠.虚拟仪器与虚拟仪器开发平台LabVIEW[J].承德石油高等专科学校学报,2000(2):23-27
    [71]丁宇康.基于LabVIEW的测控平台的构建[J].电子测量技术,2007(11):148-151
    [72]美国国家仪器有限公司虚拟仪器(白皮书).www.ni.com/china
    [73]雷振山.LabVIEW7 Express实用技术教程[M].北京:中国铁道出版社,2004
    [74]王同峰.基于虚拟仪器技术的水泵性能参数测试系统的研究[D].[硕士学位论文].上海:华东理工大学,2003
    [75]刘成平.基于虚拟仪器技术的液压系统动态测试仪的研究与开发——软件设计[D].西安:长安大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700