用户名: 密码: 验证码:
混凝土路面碎石化过程及加铺结构的有限元模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多锤头碎石化是一种旧水泥混凝土路面处治技术,具有工期短、环保、节能、性价比高等优势,在旧混凝土路面改建中应用十分广泛。采用碎石化技术处理混凝土路面,加铺沥青混凝土面层,是目前水泥混凝土路面改造技术研究和发展的一个重要方向。
     但是,目前国内外对碎石化技术的研究多局限于施工经验,理论研究尚显不足。对碎石化过程的有限元模拟一般都采用拟动力弹性模型分析,即将冲击荷载用动量定理反算冲击力,再将该力作为静止荷载作用在路面结构上,或者定义一个函数曲线,假定荷载按该曲线随时间变化。本文将模拟锤头在自重作用下,以一定速度冲击混凝土板,进行三维动力有限元模拟,考虑到混凝土板破碎时,内部应力已经超过弹性范围,因此结构层材料采用非线性模型模拟更接近真实情况。对于路面加铺结构的受力分析,以前的研究也多采用静止荷载,因移动荷载更符合实际情况,故本文采用移动均布荷载来模拟行车荷载。混凝土路面碎石化后试坑开挖及施工控制不当等因素会使碎石化后顶面回弹模量变异较大,对加铺后路面受力不利,本文将分析碎石化后顶面回弹模量突变对沥青加铺层的影响,并提出改善措施。
     本文采用有限元模型进行分析,主要取得了如下研究成果:
     (1)建立了三维非线性动力有限元模型,混凝土材料采用损伤塑性本构模型模拟、基层和土基采用Drucker-Prager/Cap修正塑性本构模型模拟,荷载为重锤做自由落体运动,以一定速度冲击混凝土板,分析了四种典型工况下,混凝土板的变形、受力及破坏特征,以及冲击过程对基层和土基的影响。
     (2)用三维非线性动力有限元模型分析了下落锤头的个数、锤头落点间距、锤头下落高度、基层模量、土基模量、层间接触、混凝土板和基层厚度等因素对冲击破碎过程的影响;拟合了锤头下落高度与板底横向弯拉应力的关系式。
     (3)用三维弹性动力有限元模型分析了移动荷载下,碎石化层顶面模量突变对沥青加铺层受力的影响。
     (4)用三维弹性动力有限元模型分析了移动荷载下,碎石化层模量突变对沥青加铺层反射裂缝及从上往下裂缝应力强度因子的影响。
Multiple-Head-Break Rubblization is one of treatment methods of existing PCC pavements. This technology has many advantages which includes short construction period, protecting the environment, energy saving, high performance-to-price ratio and so on. So it is widely applied. The technology which treats the existing concrete pavements and overlays the layer of asphalt concrete is an important direction of research and development in our country at present.
     But the research on rubblization limits much to the construction experience and the theoretic research are still obviously insufficient. The previous researchers have used static loads to simulate dynamic loads. Some researchers use Momentum theorem to deduce the impact force and then put the impact force as a static load on the pavement. Another researchers define a function curve and add the load to the pavements according to the function curve. The hammer which has a definite velocity impact the concrete slabs was simulated in thesis. It is a three-dimensional dynamic nonlinear Finite Element Model. Because the stress of concrete slab is beyond the linearity range when the slab is fragmentized, nonlinear material model was used in this thesis. Many researchers also use linearity Finite Element Model about the static load to study the stress of pavement structure, but the moving load is more tally with the actual load. The influence about modulus variation to the overlays'stress was analyzed in this thesis and then some methods which could decrease the influence were proposed.
     In this thesis these research findings were obtained:
     (1) A three-dimensional nonlinear Dynamic Finite Element Model was established. Concrete damaged plasticity model was used to analyze the concrete material. Drucker-Prager/Cap plasticity model was used to analyze the base and the subgrade. The hammer with a definite velocity impacted the concrete slabs. The displacement, stress and damage of concrete under the impact loads was analyzed in thesis. The influence of base and subgrade was also analyzed.
     (2) The FEM model was used to analyze the causes which influences the impact effect. The causes including the number of hammers, the distance between hammer drop site, the height of hammers, the base modulus and subgrade modulus, the contact between the layers, the thickness of concrete slab and base, et al. At last, we obtain a formula about the drop height of hammer and the lateral tension stress which at the bottom of the concrete slab.
     (3) The influences about modulus variation to the overlays'stress was analyzed in this thesis.
     (4) The influences about modulus variation to the stress intensity factor of overlays'reflection cracks and Top-Down cracks was analyzed in this thesis.
引文
[1]胡昌斌.冲击压路机破碎改建旧水泥混凝土路面技术.北京:人民交通出版社,2007,1-2,95-104
    [2]梁晓程.旧水泥混凝土路面碎石化技术应用.交通世界,2008,4(3):91-93
    [3]张玉宏.水泥混凝土路面碎石化综合技术研究:[东南大学博士学位论文].南京:东南大学,2006,4-57
    [4]山东省地方标准.旧水泥混凝土路面碎石化技术规程(DB 32/T 1160-2000).北京:人民交通出版社,2009,1-44
    [5]Wolters A S, Smith K D. Evaluation of rubblized pavement sections in Michigan. Journal of the Transportation Research Board,2007,2005(2007):1-18
    [6]Horvath A. Life-Cycle Environmental and Economic Asessment of Using Recycled Materisal for Asphalt Pavement. Technical Report, Department of Civil and Environmental Engineering in University of California, September 12,2003, 2-15
    [7]Svasdistant T. Analyses of Top-Down Cracking in Rubblized and Flexible Pavement:[dissertation]. Michigan State University,2003,65-155
    [8]Illinois Department of Transpotation. Rubblizing with Bituminous Concrete Overlay-10 Years'Experience in Illinois. Physical Research Report No.137, Illinois Department of Transpotation,2002,2-3
    [9]Thompson M R. Hot-Mix Asphalt Overlay Design Concepts for Rubblized Portland Cement Concrete Pavements. Journal of the Transportation Research Board,2007,1684(1999):147-155
    [10]Donahue J P. Missouri Guidde for Pavement Rehabillitation. Research Investigation Ri00-008. Research Report No. RDT 02-013, Missouri Department of Transportation Research, Development, and Technology, November 2002, 9-51
    [11]Boyer R, Buncher M. Rubblizing Concepts-Heavy Load Concrete Airfield Pavements. Journal of Transpotation Enginnering-ASCE,2007,24(2001): 289-298
    [12]Sebesta S, Scullion T. Selecting Rubblization for Rehabilitation of Concrete Pavements:Case Studies in Texas. Journal of the Transportation Research Board, 2007,1684(1999):1-14
    [13]Bemanian S, Sebaaly P. Cost-Effective Rehabilitation of Portland Cement Concrete Pavement in Nevada. Journal of the Transportation Research Board, 2007,1684(1999):156-164
    [14]Lee S W, Bae J M, Han S H, et al. Evaluation of Optimum Rubblized Depth to Prevent Reflection Cracks. Journal of the Transportation Research Board,2006, 06(2270):355-361
    [15]Ksaibati K, Miley W, Armaghani J. Rubblization of Concrete Pavements. Journal of the Transportation Research Board,2007,1684(1999):165-171
    [16]Freeman T E. Evaluation of Concrete Slab Fracturing Techniques In Mitigating Reflective Cracking Throug Asphalt Overlays.Virginia Transportation research Council, Charlmttesville, Virginia, VTRC03-R3,2002,3-10
    [17]潘建军,谢军,兰光欣.旧水泥混凝土路面多锤头碎石化施工技术.公路与汽运,2007,123(6):75-78
    [18]马建青,郭义飞,陆新民等.混凝土路面碎石化沥青罩面改造技术的应用.养护机械与施工技术,2005,(4):37-39
    [19]王松根,张玉宏,曹茂坤等.水泥混凝土路面碎石化改造技术应用与探讨.公路,2004,(5):31-34
    [20]林少锐.碎石化技术在国道206线揭东县穿城路段大修工程中的应用.科技创新导报,2008,(11),98-99
    [21]熊帆.旧水泥混凝土路面的碎石化技术研究:[东南大学硕士学位论文].南京:东南大学,2005,7-27
    [22]邓松.高等级公路大修改建的部分关键技术研究:[东南大学硕士学位论文].南京:东南大学,2005,52-53
    [23]花艳丽.沥青碎石封层技术的施工工艺与施工装备运用:[重庆交通大学硕士学位论文].重庆:重庆交通大学,2009,77
    [24]张娜.基于MHB碎石化技术的沥青碎石封层试验研究:[重庆交通大学硕士学位论文].重庆:重庆交通大学,2009,60-61
    [25]李刚.农村水泥路面改造的沥青碎石封层技术应用研究:[重庆交通大学硕士学位论文].重庆:重庆交通大学,2009,74-75
    [26]欧国林.基于水泥路面改造的面板就地再生工艺研究及质量管理:[重庆交通大学硕士学位论文].重庆:重庆交通大学,2009,72
    [27]万伟.道路白加黑碎石化技术研究:[华中科技大学硕士学位论文].武汉:华中科技大学,2008,63-64
    [28]黎章文.多锤头破碎机设计开发:[长安大学硕士学位论文].西安:长安大学,2008.63-64
    [29]袁海洋.多锤头破碎机碎石化技术研究:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2009,61
    [30]张景臣.多锤头破碎机碎石化机理研究与工作装置的运动仿真:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2009,50-51
    [31]刘春,翁洋,王汉强.波动理论在强夯加固机理研究中的应用.土工基础,2004,18(1):47-49
    [32]卢明康,顾小安,滕玉明等.浅层面波测试应用于高速公路路基检测.重庆交通学院学报,2004,23(3):37-43
    [33]魏斌,戎建国.强夯加固机理及设计参数的研究.中国水运,2007,5(8):81-83
    [34]郭见杨.夯能的传播和夯实柱体的形成.土工基础,1996,10(4):21-27
    [35]石亦平,周玉蓉.ABAQUS有限元分析实例详解.北京:机械工业出版社,2006,279-333
    [36]曹金凤,石亦平.ABAQUS有限元分析常见问题解答.北京:机械工业出版社,2006,218-298
    [37]刘展,祖景平,钱英莉等.ABAQUS6.6基础教程与实例详解.北京:中国水利水电出版社,2008,289-317
    [38]王金昌,陈页开.ABAQUS在土木工程中的应用.杭州:浙江大学出版社,2006,7-94
    [39]廖公云,黄晓明.ABAQUS有限元软件在道路工程中的应用.南京:东南大学出版社,2008,153-199
    [40]谢和平.岩石、混凝土损伤力学.徐州:中国矿业大学出版社,1990,111-139
    [41]闫东明,林皋.不同初始静态荷载下混凝土动态抗压特性试验研究.水利学报,2006,37(3):360-364
    [42]郑丹,李庆斌.初始静荷载下的混凝土动力强度研究.水利与建筑工程学报,2009,7(3):23-26
    [43]中华人民共和国电力行业标准.水工建筑物抗震设计规范(DL 5073-2000).北京:中国电力出版社,2001,3-20
    [44]Hatano T. Relations between strength of failure, strain ability, elastic modeulus and failure time of concrets. Technical Report C-6001, Technical Laboratory of the Central Research Institute of Electric Power Indusry,1960,2-5
    [45]许东.应变率效应对钢筋混凝土构件力学特性的影响:[大连理工大学硕士学位论文].大连:大连理工大学,2009,38-39
    [46]中华人民共和国国家标准.混凝土结构设计规范(GB 5001 0-2002).北京:中国建筑工业出版社,2002,75-76
    [47]中华人民共和国行业标准.公路水泥混凝土路面设计规范(JTG D40-2002).北京:人民交通出版社,2002,53,81-83
    [48]赵丽红.混凝土弹-粘塑性动力本构模型及其在有限元分析中的应用:[河海大学硕士学位论文].南京:河海大学,2005,33-36
    [49]Hillerborg A, Modeer M, Petersson P E. Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements. Cement and Concrete Research,1976,6(6):773-782
    [50]Lubliner J, Ovliver J, Oller S, et al. A Plastic-Damage Model for Concrete. International Journal of Solids and Structures,1989,25(3):299-329
    [51]Lee J, Femevs G L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics,1998,124(8):892-900
    [52]唐学军,苏卫国.冲击压实旧水泥混凝土路面结构受力三维有限元分析.上海公路,2003,(3):17-21
    [53]唐学军,苏卫国.冲击压实旧混凝土路面路基的力学行为研究.岩土工程学报,2004,26(6):804-808
    [54]阳恩慧.斜坡路基不均匀沉降及其对路面结构的影响分析:[西南交通大学硕士学位论文].成都:西南交通大学,2008,57-58
    [55]敖星.贫混凝土透水基层水泥混凝土路面结构分析:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2004,14
    [56]赵彦华.水泥稳定碎石混合料抗裂性能的研究:[同济大学硕士学位论文].上海:同济大学,2008,32-34
    [57]颜可珍,江毅,黄立葵等.层间接触对沥青加铺层性能的影响.湖南大学学报,2009,36(5):11-15
    [58]肖永亮.玻纤格栅提高沥青路面技术性能的研究:[北京建筑工程学院硕士学位论文].北京:北京建筑工程学院,2008,48-50
    [59]范天佑.断裂理论基础.北京:科技出版社,2003,73-111
    [60]程靳,赵树山.断裂力学.北京:科学出版社,2006,57-174
    [61]黄克智.脆性断裂力学.北京:科学出版社,1990,6-19
    [62]Castell M A, Ingraffea A R, Irwin L H. Fatigue Crack Growth in Pavements. Journal of Transportation Engineering,2000,126(5):283-290
    [63]罗睿.利用权函数理论分析沥青路面裂缝的疲劳扩展:[东南大学博士学位论文].南京:东南大学,2002,1-89
    [64]王永伟,林哲.表面裂纹的三维模拟及应力强度因子计算.中国海洋平台,2005,21(3):23-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700