压缩空气/燃油混合动力发动机工作过程的数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于石油资源的日益短缺以及内燃机汽车造成的环境污染问题日益严重,世界各国汽车生产厂商和相关科研机构在致力于提高汽车内燃机性能以满足越来越严格的环保标准要求的同时,也把更多的目光投向新一代不使用石油等矿物质燃料、超低排放、清洁节能型汽车发动机的研发。
     本文设计了一种新型压缩空气/燃油混合动力发动机,其结构与现有的压缩空气/燃油混合动力发动机显著不同,这种新型混合动力发动机能够在同一台发动机上实现两种工作模式的运行:压缩空气动力模式和内燃机模式。压缩空气动力模式是将压缩空气的压力能转化为曲轴旋转的机械能,没有污染排放。内燃机模式的工作原理与普通四冲程内燃机相同,因此不可避免的也会产生有害排放物。尽管这种混合动力发动机不是零污染排放,但有害排放大大降低,属于低排放发动机。
     论文主要研究内容如下:
     第一章:根据压缩空气动力发动机的研究现状及存在的问题,引出了压缩空气/燃油混合动力发动机这一新型混合动力发动机的概念。在综述了压缩空气/燃油混合动力发动机的国内外研究现状和存在的问题之后,提出了本论文所要进行的主要研究工作。
     第二章:对压缩空气/燃油混合动力发动机进行了概念设计,设计了串联式和并联式两种结构形式的压缩空气/燃油混合动力发动机,并分别阐述了各自的工作原理和特点。根据热力学理想循环,对串联和并联式四冲程压缩空气/燃油混合动力发动机的可行性进行了分析研究,分析表明其两种工作模式的动力性能指标与非增压四冲程内燃机相近,能够满足小型汽车发动机的动力性要求。
     第三章:运用热力学第一定律和第二定律分别建立了四冲程压缩空气/燃油混合动力发动机两种工作模式的工作过程数学模型和工作过程可用能分析模型。根据建立的数值分析数学模型,设计了仿真计算方法,并确定应用定步长四阶龙格-库塔法求解数学模型的数值解。
     第四章:运用仿真计算方法对四冲程压缩空气/燃油混合动力发动机压缩空气动力模式的工作特性和工作过程可用能分布状况进行了研究。工作特性主要研究了速度特性以及配气相位、压缩空气进气压力、气缸容积、程径比等参数对工作特性的影响。工作过程可用能分布主要研究了气源压力、压缩空气进气压力以及进气温度等对系统能效的影响。
     第五章:运用仿真计算方法对四冲程压缩空气/燃油混合动力发动机内燃机模式的工作特性和工作过程可用能分布状况进行了研究,并对混合动力发动机两种工作模式的切换转速范围进行了分析。工作特性主要研究了速度特性和负荷特性。工作过程可用能分布主要研究了负荷和转速对系统能效的影响。
     第六章:设计了两种结构形式的并联式压缩空气/燃油混合动力发动机系统,搭建了混合动力发动机试验台架。根据二冲程气动发动机和四冲程内燃机的台架试验对四冲程压缩空气/燃油混合动力发动机两种工作模式的仿真结果进行了试验评估。制造了并联式二冲程压缩空气/燃油混合动力发动机并完成了台架试验,根据试验结果分析了两种工作模式的切换转速范围,验证了串/并联式压缩空气/燃油混合动力发动机结构原理的可行性。
     第七章:对全文进行总结并对后续研究工作进行了展望。
Due to the increasing shortage of oil resources and increasingly serious environmental pollution problems caused by the internal combustion engine vehicles, automobile manufacturers and related research institutions not only strive to improve the performance of internal combustion engine to meet the increasingly stringent environmental protection standards, but also pay more attention to research and development of the new generation of alternative-fuel, ultra-low emission, fuel-saving automotive engines.
     In this paper, a new hybrid compressed-air and fuel engine concept is proposed, which can work by compressed-air powered engine mode and internal-combustion engine mode. The compressed-air powered engine mode is to change the pressure of compressed air into mechanical energy, and there are no pollutant emissions. The operating principle of internal-combustion engine mode is similar to the four-stroke internal combustion engine, so it will inevitably produce harmful emissions. Although the hybrid engine is not zero pollution emissions, fuel consumption and harmful emissions greatly reduce, belongs to low-emission and fuel-saving engine.
     The main research content of this paper is as follows:
     ChapterⅠ: After the introduction of the research situation and existing problems of the compressed air powered engine, a new hybrid compressed-air and fuel engine concept is put forward. Then give an overview of the domestic and foreign research situation and existing problems of hybrid compressed-air and fuel engine. Finally, the main research objects of this dissertation are proposed.
     ChapterⅡ: The series structure and the parallel structure of hybrid compressed-air and fuel engine are designed, and their operating principles and characteristic are respectively elaborated. According to the ideal thermodynamic cycle, the feasibilities of the series and parallel structure of hybrid four-stroke compressed-air and fuel engine are analyzed. The feasibility analysis shows that the performance indicators of the two working modes of hybrid four-stroke compressed-air and fuel engine are similar to those of non-supercharged four-stroke internal combustion engine, and can meet the small automobile engine's needs.
     ChapterⅢ: By the first law of thermodynamics and the second law of thermodynamics, the working process mathematical model and the exergy analysis mathematical model of the two working modes of hybrid four-stroke compressed-air and fuel engine are respectively established. According to the established mathematical model, simulation and calculation method is designed and the fourth-order Runge-Kutta method is selected to solve the mathematical models.
     ChapterⅣ: The working characteristics and the exergy distribution of four-stroke compressed-air powered engine mode are researched using simulation computational method. Mainly study the speed characteristic and the influence of several key parameters such as valve timing, inlet air pressure of compressed air, cylinder volume, and stroke-bore ratio on the working characteristics. The influence of several key parameters such as pneumatic- source pressure, inlet-air pressure of compressed-air, and inlet-air temperature of compressed-air on the energy efficiency of the system is also analyzed.
     ChapterⅤ: The working characteristics and the exergy distribution of internal-combustion engine mode are researched using simulation computational method, and the speed scope to switch the two operating mode of the hybrid four-stroke compressed-air and fuel engine is also analyzed. Research of the working characteristics mainly includes the speed characteristics and load characteristics. Research of the exergy distribution mainly involves influence of speed and load on the energy efficiency of the system.
     ChapterⅥ: Two kinds of parallel hybrid compressed-air and fuel prototype engine are designed, and the test bench is also set up. According to the test results of two-stroke compressed-air powered engine and four-stroke internal-combustion engine, the simulation results of the two working mode of four-stroke hybrid compressed-air and fuel prototype engine are assessed. The bench test of parallel two-stroke hybrid compressed-air and fuel prototype engine is finished, and the switching rotation speed of the two working mode is analyzed.
     ChapterⅦ: The research work is summarized and perspectives on the future are presented.
引文
[1]余志生.汽车理论[M].北京:机械工业出版社.2000:10-112.
    [2]金国栋.关于未来车用动力的若干思考[J].车用发动机.2001,4:20-22.
    [3]陈清泉,21世纪汽车革命的方向—谈新能源汽车最新进展和挑战[J].国家电网.2007,7:45-46.
    [4]刘联国.21世纪汽车的研究与发展[J].汽车研究与开发.2001,1:8-10.
    [5]宋延光.未来的汽车[J].中国机械工程.2000,11(1):231-234.
    [6]杨殿阁,李克强,郑四发等.智能交通系统中的汽车技术[J].汽车工程.2003,25(3):223-226.
    [7]周龙保.内燃机学[M].北京:机械工业出版社.1998:13-259.
    [8]杜愎刚,朱会田,许力.车用柴油机排放控制现状与技术发展[J].内燃机工程.2004,25(3):71-74.
    [9]刘元鹏.代用燃料汽车的研究与发展[J].汽车研究与开发.2000,4:15-19.
    [10]冯幸福,吴同起编.燃气汽车及加气站技术[M].北京:电子工业出版社 2001:1-360.
    [11]高为民,王宏雁,周毅.压缩天燃气汽车与液化石油气汽车[J].汽车研究与开发.2000,5:12-18.
    [12]石宝衍,陈义和,于至谦等.天然气汽车在国际上的发展现状[J].中国天然气汽车.2003,70(1):1-4.
    [13]仇延生,罗格梅,江茂修.汽车代用燃料的应用和发展[J].石油炼制与华工.2003,34(1):1-5.
    [14]刘生全,马志义,王贺武等.一种汽车用二甲醚混合燃料的开发研究[J].汽车工程.2003,25(2):131-135.
    [15]张武高,杨剑光,李书泽等.柴油酒精混合燃料发动机的性能研究[J].汽车工程.2003,25(4):334-337.
    [16]陈清泉,孙逢春,祝嘉光等编著.现代电动汽车技术[M].北京:北京理工大学出版社,2004:1-340.
    [17]杨毅夫.从EVS-17看国际电动车及动力电池发展趋势[J].电池.2001,31(4):192-194.
    [18]汤双清,廖道训,吴正佳.电动汽车的核心技术及发展展望[J].机械科学与技术.2003,22(2):189-192.
    [19]电动汽车重大专项总体组.“十五”国家高技术研究发展计划(863计划)电动汽车重大专项进展[J].汽车工程.2003,25(6):533-536.
    [20]曹秉刚,张传伟,白志峰等.电动汽车技术进展和发展趋势[J].西安交通大学学报.2003,38(1):1-5.
    [21]Panik F.Fuel cells for vehicle applications in cars bringing the future closer[J].Journal of power sources.1998,(7):36-38.
    [22]何仁.燃料电池汽车研究现状与发展前景[J].汽车工业研究.2001,2:29-34.
    [23]陈全世,仇斌,谢起成等编著.燃料电池电动汽车[M].北京:清华大学出版社.2005:1-197.
    [24]气动汽车研究综合网站:http://www.aircaraccess.com.
    [25]法国MDI公司网站:http://www.theaircar.com.
    [26]华盛顿大学气动汽车研究课题组网站:http://www.aa.washington.edu/aerp/CRYOCAR/PicturePage/index.htm.
    [27]美国北德克萨斯州立大学气动汽车研究课题组网站:http://www.mtsc.unt.edu/CooLN2Car.html.
    [28]英国气动汽车研究介绍网页:http://freeenergy.co.za/1think/Air%20or%20Gas/TRANSPORT%20FOR%20THE%20FU TURE%20THE%20COMPRESSED%20AIR%20CAR!_files/TRANSPORT%20FOR%20THE%20FUTURE%20THE%20COMPRESSED%20AIR%20CAR!.htm.
    [29]韩国气动汽车研发公司网站:http://www.energine.com.
    [30]Dooley J,Hammond R P.The cryogenic nitrogen automotive engine[J].Mechanical engineering.1984,10:66-73.
    [31]Ordonez C A,Plummer M C.Cold thermal storage and cryogenic heat engines for energy storage applications[J].Engine sources.1997,19:389-396.
    [32]C Knowlen,A T Mattick,A Hertzberg,et al.Ultra low emission liquid nitrogen automobile[C].Future transportation technology conference & exposition,August 1999,Costa Mesa,CA,USA.SAE technical paper series 1999-01-2932.
    [33]Williams J,Knowlen C,Mattick A.T,et al.Quqsi isothermal expansion engines for liquid nitrogen automotive propulsion[C].SAE 972649,1997.
    [34]许宏.压缩空气动力汽车的可行性研究.中国机械工程.2002,13(17):1512-1515.
    [35]陈鹰,许宏,陶国良等.压缩空气动力汽车的研究与发展[J].机械工程学报.2002,38(11):7-11.
    [36]Yu Xiaoli,Yuan Guangjie,Su Shichuan,et al.The theoretical study on ideal open cycle of the liquid nitrogen engine[J].浙江大学学报英文版.2002,3(3) 258- 262.
    [37]Chen Ying,Liu Hao,Tao Guoliang.Simulation on the port timing of an air-powered engine[J].International journal of vehicle design,2005,38:259-273.
    [38]元广杰.液氮发动机理论与试验研究[D].杭州:浙江大学,2004.
    [39]贾光政.高压气动减压理论及其在气动汽车上应用的关键技术研究[D].杭州:浙江大学,2003.
    [40]刘昊.空气动力发动机的探索性研究[D].杭州:浙江大学,2004.
    [41]左承基,钱叶剑,欧阳明高等.气动发动机能量转移系统分析[J].中国机械工程.2007,18(7):870-873.
    [42]左承基,钱叶剑,安达等.气动发动机的试验研究[J].机械工程学报.2007,43(4):93-97.
    [43]T Tomita,N Ikeya,D Ishlhara,et al.Hybrid charging system for heavy duty diesel engines[C].SAE Paper 910419.1991:561-569.
    [44]Hiroaki Yonetani,Itaru Fukutani.Hybrid combustion engine with premixed gasoline homogeneous charge and ignition by injected diesel fuel-effects of pre-combustion chamber parameters[C].SAE Paper 940267.1994:298-306.
    [45]Kozo Yamaguchi,Shuzo Moroto,Koji Kohayashi,et al.Development of a new hybrid system-dual system[C].SAE Paper 960231.1996:304-311.
    [46]Isaya Matsuo,Shinsuke Nakazawa,Hiromasa Maeda,et al.Development of a high performance hybrid propulsion system incorporating a CVT[C].SAE Paper 2000-01-0992,2000:1166-1173.
    [47]陈汉鸣,梁志锋.混合动力汽车的研究与进展[J].机电工程技术.2001,30(5):17-20.
    [48]K David Huang,Sheng-Chung Tzeng.A new parallel-type hybrid electric-vehicle[J].Applied energy.2004,79:51-64.
    [49]Koichi Fukuo,Akira Fujimura,Masaaki Saito.Development of the ultra-low fuel consumption hybrid car-INSIGHT[C].JSAE Review.2001,22:95-103.
    [50]Donald W Corson.High power battery systems for hybrid vehicles[J].Journal of power sources.2002,105:110-113.
    [51]Rajesh K Ahluwalia,X Wang.Direct hydrogen fuel cell systems for hybrid vehicles[J].Journal of power sources.2005,139:152-164.
    [52]Arsie I,marotta M,Pianese C,et al.Optimal design of a hybrid electric car with solar cells[C].Proc.Of lst AUTOCOM workshop on preventive and active safety systems for road vehicles.Istanbul.Sept.19-21,2005.
    [53]M.Schechter.Regenerative compression braking-a low cost alternative to electric hybrids[C].SAE Paper 2000-01-1025,2000:1192-1203.
    [54]Ivan Arsie,Gianfranco Rizzo and Marco Sorrentino.Optimal design and dynamic simulation of a hybrid solar vehicle[C].SAE Paper 2006-01-2997.2006:805-811.
    [55]Magnus Andersson,Bengt Johansson and Anders Hultqvist.An air hybrid for high power absorption and discharge[C].SAE Paper 2005-01-2137.2005:902-913.
    [56]美国加州大学洛杉矶分校混合动力发动机研究课题组网站:http://www.engineer.ucla.edu.
    [57]Higelin P,Charlet A.Thermodynamic cycles for a new hybrid pneumatic-combustion engine concept[C].In 5th international conference on internal combustion engines(ICE 2001),Naples,Italy,2001,HM1-2001-01-033.
    [58]P Higelin,I Vasile,A Charlet,et al.Parametric optimization of a new hybrid pneumatic-combustion engine concept[J].International journal of engine research.2004,5(2):205-217.
    [59]Higelin P,Charlet A and Chamaillard Y.Thermodynamic simulation of a hybrid pneumatic-combustion engine concept[J].International journal of applied thermodynamics.2002,5(1):1-11.
    [60]K David Huang,Sheng-Chung Tzeng.Development of a hybrid pneumatic-power vehicle[J].Applied engery.2005,80:47 - 59.
    [61]K David Huang,Sheng-Chung Tzeng,Wei-Peng Ma,et al.Hybrid pneumatic-power system which recycles exhaust gas of an internal-combustion engine[J].Applied engery.2005,82:117-132.
    [62]K David Huang,Sheng-Chung Tzeng and Wei-Chuan Chang.Energy-saving hybrid vehicle using a pneumatic-power system[J].Applied engery.2005,81:1-18.
    [63]翟新.压缩空气-燃油混合动力的研究[D].杭州:浙江大学,2005.
    [64]徐炳辉主编.气动手册[M].上海:上海科学技术出版社,2005:100-233.
    [65]Almeida A,Fachada H,Dias J,et al.Low-cost high performance servo-pneumatic manipulators with sensor feedback[C].Proceedings of the IEEE international symposium on intelligent control.1989:465-470.
    [66]Russell J D,Kotwicki A J and Mattson K.Time optimal pneumatic valve control system[C].Proceedings of the american control conference.1999,1:227-231.
    [67]Nouri B M Y,Al-Bender F,Swevers J,et al.Modelling a pneumatic servo positioning system with friction[C].Proceedings of the american control conference.2000,2:1067-1071.
    [68]E Kallenbach,H Kube,V Zoppig,et al.New polarized electromagnetic actuators as integrated mechatronic components-design and application[J].Mechatronics.1999,9:769-784.
    [69]陆耀祖.内燃机构造与原理[M].北京:中国建材工业出版社.2004:1-355.
    [70]王绍銧.汽车电子学[M].北京:清华大学出版社.2005:9-203.
    [71]Mark A Theobald,Lequesne B and Henry R.Control of engine load via electromagnetic valve actuators[C].SAE Paper 940816,1994:1323-1334.
    [72]Goldste R J.Variables of electromagnetic valve actuator performance[J].Engine technology international.1997,11:84- 88.
    [73]Y Wang,T Megli and M Haghgooie.Modeling and control of electromechanical valve actuator[C].SAE Paper 2002-01-1106,2002:1780-1789.
    [74]David Cope,Andrew Wright.Electromagnetic fully flexible valve actuator[C].SAE Paper 2006-01-0044,2006:33- 44.
    [75]李红艳,赵雨东.发动机无凸轮轴气门驱动的研究与进展[J].车用发动机.2001,2:1-5.
    [76]李莉,王希珍,严兆大等.电磁驱动气门机构系统模型[J].内燃机工程.2004,25(4):11-19.
    [77]Chihaya Sugimoto,Hosao Sakai,Atsushi Umemoto,et al.Study on variable valve timing system using electromagnetic mechanism[C].SAE Paper 2004-01-1869.2006:1223- 1230.
    [78]Constantin Nitu,Bogdan Gramescu and Smaranda Nitu.Application of electromagnetic actuators to a variable distribution system for automobile engines[J].Journal of materials processing technology.2005,161:253-257.
    [79]Peter Eyabi,Gregory Washington.Modeling and sensorless control of an electromagnetic valve actuator[J].Mechatronics.2006,16:159-175.
    [80]Kosuke Nagaya,Hiroyuki Kobayashi and Kazuya Koike.Valve timing and valve lift control mechanism for engines[J].Mechatronics.2006,16:121-129.
    [81]Hiroshi Tagami,Yuji Yasui,Masahiro Sato,et al.Management system for continuously variable valve lift gasoline engine[C].SAE Paper 2007-01-1200.2007:747-755.
    [82]丁卫华.气动汽车动力系统能效分析[D].杭州:浙江大学,2006.
    [83]柴油机设计手册编辑委员会.柴油机设计手册[M].北京:中国农业机械出版社.1984:98-602.
    [84]M Mostafavi,B Agnew.Thermodynamic analysis of combined diesel engine and absorption unit-turbocharged engine with intercooling[J].Applied thermal engineering.1996,16(8/9):733-740.
    [85]魏春源.高等内燃机学[M].北京:北京理工大学出版社.2001:10-29.
    [86]林杰伦.内燃机工作过程数值计算[M].陕西:西安交通大学出版社.1986:12-118.
    [87]朱访君.内燃机工作过程数值计算及优化[M].北京:国防工业出版社.1997:89-139.
    [88]H D Shroff,D Hodgetts.Simulation and optimization of thermodynamic processes of diesel engine[C].SAE Paper 740194.1974:885-903.
    [89]W W Yuen,H Servati.A mathematical engine model including the effect of engine emissions[C].SAE Paper 840036.1984:225-241.
    [90]Elia C Bedran.General thermodynamic analysis for engine combustion modeling[C].SAE Paper 850205.1985:94-104.
    [91]Timothy P Gardner.Diesel starting:a mathematical model[C].SAE Paper 880426.1988:728-740.
    [92]Francisco Rulz.Thermodynamic modeling of the two-cylinder regenerative internal combustion engine[C].SAE Paper 910346.1991:512-529.
    [93]G Woschni.A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine[C].SAE Paper 670931.1967:3065-3083.
    [94]G Sitkei.A rational approach for calculation of heat transfer in diesel engines[C].SAE Paper 720027.1972:165-174.
    [95]Günter F Hohenberg.Advanced approaches for heat transfer calculations[C].SAE Paper 790825.1979:2788-2806.
    [96]Gerhard Woschni,Karl Huber.The influence of soot deposits on combustion chamber walls on heat losses in diesel engines[C].SAE Paper 910297.1991:337-344.
    [97]徐兀编著.汽车发动机现代设计[M].北京:人民交通出版社.1995:45-56.
    [98]P F Flynn,K L Hoag,M M Kamel,et al.A new perspective on diesel engine evaluation based on second law analysis[C].SAE Paper 840032.1984:198-211.
    [99]朱明善编著.能量系统的(火用)分析[M].北京:清华大学出版社.1988:27-202.
    [100]李建文,周龙保,潘克煜.用热力学第二定律分析涡流室柴油机的热力过程[J].西安交通大学学报.1994,28(6):50-54.
    [101]夏兴兰,潘秀明,吴志新.柴油机可用能分析[J].南昌大学学报.1997,19(2):1-7.
    [102]毕小平,张更云.直喷式柴油机缸内过程的能量可用性分析[J].内燃机学报.1998,16(1):9-17.
    [103]兰旭光.柴油机工作过程热力学研究[D].昆明:昆明理工大学,2002:10-29.
    [104]吴存真,张诗针,孙志坚.热力过程(火用)分析基础[M].杭州:浙江大学出版社,2000:17-78.
    [105]刘昊,陶国良,陈鹰.顶置凸轮轴式配气机构凸轮轮廓的数值计算[J].内燃机学报.2002,20(3):283-286.
    [106]蔡金雷,俞小莉,元广杰等.气动发动机进气相位对工作过程的影响[J].浙江大学学报.2004,38(1):65-69.
    [107]刘昊,陶国良,陈鹰.压缩空气动力发动机配气机构的研究[J].中国机械工程.2004,15(18):1668-1671.
    [108]刘昊,陶国良,陈鹰.空气动力发动机气缸容积及程径比的研究[J].工程设计学报.2006,13(4):255-259.
    [109]Murray H Edson.The influence of compression ratio and dissociation on ideal otto cycle engine thermal efficiency[C].SAE Prog.In technology.1964,7:65-81.
    [110]Timothy P Gardner,Naeim A Henein.Compression ratio optimization in a direct injection diesel engine:a mathematical model[C].SAE Paper 880427.1988:741-751.
    [111]Bradley Glenn,Gregory Washington and Giorgio Rizzoni.Operation and control strategies for hybrid electric automobiles[C].SAE Paper 2000-01-1537.2000:1662-1666.
    [112]Gino Paganelli,Yann Guezennec and Giorgio Rizzoni.Optimizing control strategy for hybrid fuel cell vehicle[C].SAE Paper 2002-01-0102.2002:398 - 406.
    [113]董正身,邓建交,曹晓燕等.汽车动力性测试系统研究[J].仪器仪表学报.2005,26(8):445-447.
    [114]邱国茂,敖国强,杨林等.混合动力汽车测试系统设计与应用[J].农业机械学报.2005,36(9):153-166.
    [115]李书泽,张武高,黄震等.天然气发动机数据采集系统的研究开发[J].兰州理工大学学报.2004,30(1):79-81.
    [116]高印寒,刘长英,程鹏等.内燃机高速数据采集与分析系统的设计与研究[J].中国机械工程.2004,15(7):617-620.
    [117]石磊,程勇,吴波等.内燃机高速瞬态数据采集分析系统的开发[J].农业机械学报.2005,36(8):1-4.
    [118]Lancaster R,Krieger B and Liensch H.Measurement and analysis of engine pressure data[C].SAE Paper 750026,1975:155-172.
    [119]Nomura M,Suzuki M,Hori M,et al.Decoupling torque control system for automotive engine tester[C].IEEE Transactions on industry applications.2000,36(2):467-474.
    [120]刘卫国,陈家骅.内燃机瞬时转速的测量[J].内燃机学报.1999,18(4):388-390.
    [121]王希波,彭海勇,邓康耀.基于数据采集卡的转速测量方法及实现[J].农业机械学报.2007,38(2):72-75.
    [122]Borman G L.Measurements of instantaneous heat flux to metal and ceramic surface in a diesel engine[C].SAE Paper 870155.1987:66-81.
    [123]刘希民.热电偶线性温度测量装置[J].仪器仪表学报.2007,28(4):53-59.
    [124]孔峻青.DA462汽油机电控喷射系统匹配研究[D].长春:吉林大学.2002:44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700