混合动力商用车动力系统设计及性能分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国外纷纷开发混合动力汽车以实现节能减排的大背景下,本文依托国家863项目,基于轻型商用车平台进行混合动力技术的研究,文章主要进行了以下研究工作:
     (1)首先介绍国内外混合动力汽车的发展现状和分类,对混合动力汽车的各种动力系统方案的优缺点进行了详细的分析,阐述了本课题研究的背景和必要性,为本文混合动力系统方案的确定奠定了基础。
     (2)在综合考虑项目所开发车型的需求、各种动力系统方案的优缺点、企业现有技术积累等因素的基础上确定了动力系统技术方案。对动力耦合机构进行了分析和选型,并进行了动力系统的概念设计。根据样车的各项设计指标,对动力系统关键部件进行了选型和参数设计。
     (3)对动力系统的关键部件——耦合器的行星轮耦合机构及电液控制系统的特性进行了分析,并在此基础上建立了行星轮耦合机构和电液控制系统的数学模型,借助该模型进行仿真分析,为整车模型的建立和控制策略的设计做了准备。
     (4)在理论分析和试验数据的基础上建立混合动力系统的各部件模型。根据行星轮耦合机构的特性和动力系统的特点设计了混合动力系统的基于车速、油门开度和电池SOC值的AMT三参数换挡规律及整车控制策略。依据在Matlab/Simulink环境下建立的样车的前向仿真模型,对控制策略进行了仿真研究。仿真结果表明所设计的整车控制策略具有较好的控制和节能效果。
     (5)根据项目的研发进度,建立了耦合器特性试验台,对动力系统的关键部件——行星轮耦合机构的稳态特性和动态特性进行了试验研究。试验结果表明文章中对行星轮耦合机构的理论分析和模型仿真的结果与试验结果能够较好地吻合,故该模型可以用于行星轮耦合并联型动力系统的匹配和仿真分析。
Energy-saving and environmental protection is the focus of the current development of automotive technology. Electric vehicles and hybrid electric vehicles become to the mainstream of the energy-saving and environmental protection vehicles. This paper presented my research on the drive train of the hybrid electric light commercial vehicle which relied on the national 863 project. The main contents of this paper are as follows:
     (1) The history, research status and categories of the hybrid vehicles were described in this paper. Based on a detailed analysis of the advantages and disadvantages of different hybrid power systems, this paper explained the background of this research project.
     (2) By studying on the market needs, advantages and disadvantages of different drive-train structures and existing technology accumulation in the company which undertaken the project, the power-train system for the 863 project was designed in this paper. The key components were analysised and designed to match the vehicle design target.
     (3) The characteristic of coupling device and its electro-hydraulic control unit were discussed in the article. The simulation models of the two compents were established and simulated. Through the analysis and simulation was provided the academic base for the research of the forward vehicle model and the design of vehicle control unit.
     (4) On the basis of sufficiently research on theoretical and experimental data, models of the key components and driver model were advanced in this paper. The three parameter shift schedule of AMT, which is based on speed, throttle and SOC, was introduced. The control strategy was designed, and the vehicle’s forward model was built in Matlab/Simulink to access the performance of control strategy. The test results show that the performance of designed control system meets the design requirements, and the vehicle has a substantial increase in economic performance.
     (5) According to the plans of the project, the test-bed of the coupling device was designed and the tests of static characteristics and dynamic characteristics of the coupling device were carried out. The test results indicated that the established model in this paper is reasonable and it can be used in the model of hybrid electric vehicle.
引文
[1]谢绍东,张远航,唐孝炎.我国城市地区机动车污染现状与趋势[J].环境科学与研究, 2000, 13(4): 22~25.
    [2] Harding G G. Electric Vehicles in the next millennium[J]. Journal of Power Sources, 1999, (78): 193~198.
    [3] Antonio Sciarretta,Jean-Charles Dabadie and Antoine Albrecht. Control-Oriented Modeling of Power Split Devices in Combined Hybrid-Electric Vehicles[C]. SAE2008-01-1313, 2008.
    [4] Karin Jonasson etal. Comarative Study of Generic Hybrid Topologies.Techical[C]. Paper of EVS18, Berlin, 2001.
    [5] Michael Duoba, Henry Ng and Robert Larsen. Characterization and Comparison of Two Hybrid Electric Vehicles(HEVs)– Honda Insight and Toyota Prius[C]. SAE, 2001-01-1235, 2001.
    [6]广濑久士,丹下昭二.电动车及混合动力车的现状与展望[J].汽车工程, 2003, 25(2): 204~209.
    [7]殷德双,陈潼.丰田Prius混合动力电动汽车技术特征分析[J].上海汽车, 2004, 12: 24~27.
    [8] Koichi Fukuo etal. Development of the ultra-low-fuel-consumption hybrid car-INSIGHT[C]. JSAE Review 22, 2001, 95-103.
    [9] Koichiro Muta, Makoto Yamazaki and Junji Tokieda. Development of New-Generation Hybrid System THSⅡ- Drastic Improvement of Power Performance and Fuel Economy[C]. SAE, 2004-01-0064, 2004.
    [10] C.C.CHAN. The State of the Art of Electric and Hybrid Vehicles[C]. In:Proceedings of the IEEE , 2002, 2(2): Vol.90.
    [11]王军,冉金升.国内外混合动力电动汽车开发动态及发展趋势[J].公路交通科技, 2000, 17(1) : 71~74.
    [12]张卫青.混合动力汽车的发展现状及其关键技术[J].重庆工学院学报, 2006, 20(5): 19~22.
    [13]何华强.通用型并联式混合动力城市公交客车系统设计及仿真, [硕士学位论文].南京:南京航空航天大学车辆工程专业, 2009.
    [14]胡骅,宋慧.电动汽车[M].北京:人民交通出版社, 2003.
    [15]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M] .北京:北京理工大学出版社, 2002.
    [16]周春国,冯莉,刘凯等.并联混合动力汽车动力分配装置的建模与仿真[J].西安理工大学学报(工学版), 2006, 22: 54~57.
    [17]蒲斌.混合动力汽车参数设计及电机控制系统仿真, [硕士学位论文].重庆:重庆大学车辆工程专业, 2003.
    [18] M.Duoba, H.Lohse-Busch, R.Carlson,T.Bohn and S.Gurski. Analysis of Power-Split HEV Control Strategies Using Data from Several Vehicles[C]. SAE2007-01-0291, 2007.
    [19] Schinichi Abe, Toyota Prius:Best Engineered Car of 2001[J]. Automotive Engineering International, 2001(3).
    [20]舒红,秦大同,扬为.混合动力汽车传动系参数设计[J].农业机械学报, 2002, 33(1): 19~22.
    [21] Mehrdad Ehsani Yimin Gao,倪光正.现代电动汽车、混合动力电动汽车和燃料电池车—基本原理、理论和设计[M].北京:机械工业出版社, 2008.
    [22]高建平,何洪文,孙逢春.混合动力电动汽车机电耦合系统归类分析[J].北京理工大学学报, 2008, 28(3): 197~201.
    [23]安东尼.所左曼诺夫斯基,何洪文.混合动力城市公交车系统设计[M].北京:北京理工大学出版社, 2007.
    [24]孙恒,陈作模.机械原理(第六版) [M].北京:高等教育出版社, 2001: 380~386.
    [25]朱正礼.并联式混合动力轿车动力系统性能匹配与优化研究, [博士学位论文].上海:上海交通大学, 2004.
    [26] Stefanski T, Karys S.Loss Minimisation. Control of Induction Motor Drive for Electrical Vehicle[C]. Proceedings of the IEEE International Symosium on ISIE, 1996, 2:952~957.
    [27]张金柱.混合动力汽车结构、原理与维修[M].北京:化学工业出版社, 2009.
    [28]童毅.并联式混合动力系统动态协调控制问题的研究, [博士学位论文].北京:清华大学, 2004.
    [29] Saurabh Mahapatra, Tom Egel,Raahul Hassan, Rohit Shenoy. Model-Based Design for Hybrid Electric Vehicle Systems[C]. SAE2008-01-0085, 2008.
    [30]曾小华.军用混合动力轻型越野汽车动力总成匹配及控制策略研究, [硕士学位论文].长春:吉林大学, 2002.
    [31]姜顺明.混合动力汽车动力匹配的研究, [硕士学位论文].镇江:江苏大学, 2001.
    [32]日本电气学会,电动汽车驱动系统调查专门委员会编,康龙云译.电动汽车最新技术[M].北京:机械工业出版社, 2008.
    [33]李秉宇.混合动力汽车镍氢动力电池管理系统的研究, [硕士学位论文].北京:北京交通大学, 2008.
    [34] Takeshi Miyamoto, Etsuo Ogami, Masato Origuchi. Development of a lithium-ion battery system for HEV[C]. SAE2000-01-1057, 2000.
    [35]吴伟岸.混合动力汽车动力系统参数选择及匹配研究, [硕士学位论文].合肥:合肥工业大学, 2005.
    [36]蒋元广等.依维柯混合动力功能样车设计书[J].南汽研究院, 2007.
    [37]余志生.汽车理论[M] .北京:机械工业出版社, 2000.
    [38]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社, 2005.
    [39]路甬祥,胡大纮.电液比例控制技术[M].北京:机械工业出版社, 1988.
    [40]喻坤.基于模糊控制理论的CVT湿式离合器控制研究, [硕士学位论文].长春:吉林大学, 2005.
    [41]刘宁.混合动力客车换挡规律的研究, [硕士学位论文].长春:吉林大学, 2007.
    [42] Bradley Glenn, Gregory Washington, Giorgio Rizzoni. Operation and control strategies for hybrid electric automobiles [C]. SAE2000-01-1537, 2000.
    [43] Vahid Motevalli, Kartik Venkat Bulusu. Overview of hybrid electric vehicle safety and the potential for hydrogen ignition by static electricity [C]. SAE2000-01-1538, 2000.
    [44] Wu-Qiang Long, Kenji Morita,Nobuo Iwai. Analysis of HEV components efficiency on fuel economy View Document[C]. SAE2000-01-1542, 2000.
    [45] Valerie H.Johnson, Keith B. wipke. HEV control strategy for real-time optimization of fuel economy and emissions[C]. SAE2000-01-1543, 2000.
    [46]邓亚东,高海鸥,王仲范.并联式混合动力电动汽车控制策略研究[J].武汉大学学报(工学版), 2004.3: 139~144.
    [47]陈全世,朱家琏,田光宇.先进电动汽车技术[M].北京:化学工业出版社, 2007.
    [48]王家明,郭晋昇,冒晓建,杨林,卓斌.车辆前向仿真平台的开发设计[J].上海交通大学汽车电子技术研究所, 2008.2: 10~12.
    [49]童毅,欧阳明高.前向式混合动力汽车模型中传动系建模与仿真[J].汽车工程, 2003, 25(5): 419~423.
    [50]李金辉,徐立友.基于MATLAB语言的发动机特性研究[J].汽车科技, 2005, 5(3): 10~12.
    [51]王庆年,刘志茄,王伟华.混合动力正向仿真与建模[J].汽车工程, 2005(4): 392~394.
    [52] Iqbal Husain,Mohammad S.IaIam.Design,Modeling and Simulation of an Electric Vehicle System[C]. SAE1999-01-1149, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700