路桥损伤及破坏中若干力学问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥混凝土路面具有强度高、耐久性好、使用寿命长、能适应多种车辆通过的优点,多年来得到了广泛应用。但是,在长期的使用过程中,水泥混凝土路面也出现了各种问题,如路面脱空问题、路面层间接触问题以及路面嵌缝处理问题等,这些问题若不能很好解决,将严重影响水泥混凝土路面的使用性能乃至其使用寿命。本论文首先即是针对水泥混凝土路面的几个问题进行深入研究,得到一系列重要结论,对工程实际有重要的指导意义。
     另一方面,船和桥墩相撞的事故不断发生,造成严重的人员生命、财产损失和环境污染,而桥墩由于遭受船舶撞击而发生坍塌的损失是非常巨大的。本论文最后对船和桥墩相撞的问题进行了深入研究,通过对实船与大桥主桥墩及其防护装置的碰撞过程进行仿真分析,为工程设计人员提供了有价值的数据。
     本文主要完成了以下几方面的工作:
     1.采用水泥、石灰,石膏、早强剂、高效减水剂以及膨胀剂等材料,得到了水泥混凝土路面脱空板灌浆浆体新材料。浆体材料具有和易性好,流动度高,凝结后具有早期强度高,后期弹性模量低,且有微膨胀等等优良性能,基本满足了路面脱空板灌浆材料的一系列要求,实验表明,采用这种低弹性模量材料作为脱空灌浆材料将可以有效地提高水泥混凝土路面的使用寿命。
     2.利用大型动力非线性有限元程序LS-DYNA3D对混凝土路面板脱空、灌浆后承受冲击载荷作用下的弯沉问题进行了计算分析,结果表明:混凝土路面板脱空后,灌浆材料的弹性模量对混凝土路面板有较大的影响;使用中应尽量使灌浆材料的弹性模量和原来的水泥稳定砂砾层的弹性模量所匹配,否则会造成板内应力分布不均匀或者偏高;当灌浆材料的弹性模量低于无脱空时的水泥稳定砂砾层的弹性模量时,同样造成混凝土路面板内的应力增大。同时建立了具有普遍意义的弹性地基上的混凝土路面板变形的基本方程,推导了路基不均匀沉降时路面板弯沉的解析解。
     3.采用有限元程序ANSYS对考虑了层间接触的普通水泥混凝土路面进行了数值模拟,得到以下结论:层间摩阻系数对面层和基层的力学响应值均有较大影响,层间粘结作用的加强有利于荷载传递和扩散;层间摩阻系数对水泥混凝土路面早期收缩时的力学响应有很大影响,若层间连续,板底在未开放交通前就有大量微裂纹,这将大大降低路面使用性能,导致混凝土路面在低应力水平下的断裂破坏;将有限元分析结果和线弹性断裂力学相结合分析水泥混凝土路面断裂力学性能,分析结果表明:基层对面层收缩的限制是水泥混凝土路面早期裂纹产生的主要原因。
     4.通过有限元计算方法,分析了HX型嵌段共聚物改性沥青砼接缝路面板在各种行车载荷作用下的动态力学响应、沥青路面接缝受力变形特性、路面接缝的挠度传递能力以及最大挠度变形等。得出如下结论:HX型嵌段共聚物改性沥青砼具有较大的弹性承载范围,能够满足路面接缝设计要求;计算发现,车辆紧急制动容易造成路面发生永久破坏;超载车辆容易使路面产生较大的竖向弯沉和永久车辙。因此,车辆在路面行驶时,应尽量避免紧急制动,同时应尽量避免超载车辆在路面上的行驶。进一步,提出了材料的“模量”和“位移能力”的概念,通过材料性能设计,保证接缝密封无论从粘接界面还是密封胶本体都不发生破坏,同时开发了新型路用密封嵌缝材料及配套施工机具,将路面使用寿命提高了三倍。
     5.利用大型非线性动态响应分析程序LSDYNA3D,通过对一艘50000DWT的散装货轮在4m/s的航速下以不同风流压偏角撞击桥墩进行数值模拟,并与桥墩无防护装置时的结果进行分析比较,发现设置防撞结构能有效地降低对桥墩的直接破坏。结果表明,在碰撞过程中,防撞结构能有效降低碰撞力峰值,同时通过合理设计防撞结构的结构形式及刚度,可以限制桥梁在碰撞中受到的最大碰撞力载荷和最大变形;防撞装置可以延长“低撞击力”作用下的历时,从而让船头有足够时间转变方向,使船的总动能中以尽可能少的部分参与撞击能量交换;系统变形所吸收的撞击能中,防撞装置的变形起了主要作用,从而尽可能降低了船的变形破坏。
Taking the advantage of high strength, good durability, long service life and being suitable for various of vehicles to pass, cement concrete road surface was widely used. Meanwhile, problems emerged, such as surface breaking-away, contact of surface layers, management of surface gaps and so on. The service properties and the working-life would be seriously influenced if these problems were not well settled. The first part of this study is to investigate some of those problems deeply and a series of important conclusions are obtained which have the benefit for actual engineering.
     Furthermore, ship-bridge-impact accidents took place frequently, causing serious pollution and grievous loss of people and possessions. The damage would be much worse while the abutment collapses due to a ship impact. The other part of this study is to investigate the ship-bridge-impact problem and provide some useful data for the designers, through simulating the impact of a real ship to the main abutment and the protecting device.
     The main contents of this study includes the following,
     1. Obtain a new slurry material for surface breaking-away grouting, made of cement, calcareousness, plaster, early strength admixture, high efficiency water reducing agent and swelling agent etc.. It possesses many outstanding properties, such as good workability and fluidity, high early strength and low elastic modulus after coagulation, minimum inflation, etc., which almost satisfies all the requirement to be kind of surface breaking-away grouting material. It was revealed in the experiment that this new material could effectively prolong the service life of the road surface.
     2. Investigate the deflection of the breaking-away and grouted road surface under impact load with LS-DYNA3D, a powerful dynamics nonlinear FEA program. Results indicated that the elastic modulus of the grouting material had a great effect on the breaking-away road surface, and it should be similar to the modulus of the original stabilized gravel layer to avoid an irregularly distributed stress field or a higher stress point, and this would take place even if the grouting modulus is lower. A universal basic equation was established for the deformation of the cement concrete road surface on an elastic foundation. The analytic solution of the deflection of the road surface was obtained while the differential settlement occurred on the foundation.
     3. Simulated the cement concrete road surface with the ANSYS program, with the contact of the inner layers taken in account. The following results were available. The coefficient of friction resistance between layers greatly influenced the mechanical response of the surface layer and the foundation layer. The enhanced adhesive effect between layers would be good for the transfer and diffusion of the loads. The coefficient of friction resistance between layers also greatly influenced the mechanical response of the surface layer during the early shrinking period. If the layers of the road were continuous, a great amount of micro-cracks would appear at the bottom of the foundation layer before the road was put into traffic. That would greatly decrease the service performance of the road surface, like inducing fracture at low stress level. The fracture mechanics properties of the cement concrete road surface were studied, through combining the FEA results and the linear elastic fracture mechanics analysis. Results indicated that the main reason of the appearance of the early cracks on the road surface was due to the restriction of the foundation layer against the shrinking of the surface layer.
     4. Employ the FEA method to study the dynamic respons of HX type sandwich copolymer modified asphalt concrete road seam under various vehicle loads, the mechanical properties of the asphalt road surface seam, the deflection transfer capability and the maximum deformation of the seam, etc.. The following results were available. HX type sandwich copolymer modified asphalt concrete had a wide elastic load-supporting range, which means it could satisfy the requirement of the road seam design. Calculation also indicated that emergent braking of vehicles could easily cause permanent damage of the road surface, and overloaded vehicles often result in greater vertical deflection and permanent tracks. Thus, those conditions should be avoided or restricted. Furthermore, the conception of‘material modulus’and‘deflection capability’were brought forward. The seam could be well sealed through proper design of the material properties, and no damage would occur on the adhesive surfaces or in the sealant itself. And a new road surface seam-sealing material and the corresponding construction tools were invented, with which the service life of the road could be 3 times increased.
     5. Simulate impact of a 5000DWT bulk carrier against the abutment from different angles at 4m/s speed with LS-DYNA3D. The results of impact with and without abutment protection devices were compared, which showed that the protection devices effectively weakened the direct damage against the abutment and decreased the peak value of the impact force. The maximum impact force and deformation of the abutment could be restricted through proper design of protective structures and the stiffness. The protection structures could prolong the interactional time so that the ship had enough time to turn around and the impact part of the whole kinetic energy could be as low as possible. The deformation of the protection devices played the leading role in absorbing the impact energy. Thus the damage of the bulk carrier could be reduced to the lowest level.
引文
1姚祖康,公路设计手册路面,北京,人民交通出版社,1998,54-57
    2黄仰贤,余定选,齐诚,路面分析与设计,北京,人民交通出版社,1998,63-66
    3 Westergaard HM,,Stresses in concrete pavement computed by theoretical analysis,Public Roads,1926,7(2),25-35
    4 Westergaard HM,,Analytical tools for judging results of structural tests of concrete pavement,Public Roads,1933,(10)
    5 Westergaard HM,,Stresses in concrete runways of airports,Highway Research Board,1939,19
    6 Westergaard HM,,New formulas for stresses in concrete pavements of airfields,Proceedings ASCE,1947,113
    7 Pickett G..,Ray G.,Influence charts for rigid pavements,Trans,ASCE,1951,116
    8 Equilibrium of a thin plate,symmetrically loaded,resting on an elastic foundation of infinite depth,Philosophical magazine,1938,25,576-582
    9邓学均,陈荣生,刚性路面设计(第二版),北京,人民交通出版社,2005,(1),14-16
    10郑木莲,王秉纲,胡长顺,多孔混凝土疲劳性能的研究,中国公路学报,2004,17(1),7-11
    11易志坚,吴国雄,周志祥等,基于断裂力学原理的水泥混凝土路面破坏过程分析及路面设计新构想,重庆交通学院学报,2001,21(1),1-5
    12吴国雄,姚令侃,车板耦合作用对水泥混凝土路面疲劳开裂的影响研究,重庆交通学院学报,2001,20(增刊),45-48
    13 Johnson KL.,徐秉业,罗富学等译,接触力学,北京,高等教育出版社,1992
    14俞建荣,陈荣生,金志强,半刚性基层与刚性面层联结状态对刚性路面荷载应力的影响,岩土工程学报,1996,18(4),34-39
    15易志坚,唐伯明,李祖伟等,水泥混凝土路面面层与基层相互作用引起的基本破坏形式及重要影响,重庆交通学院学报,2001,20(增刊),34-38
    16吴国雄,姚令侃,易志坚,水泥混凝土路面早期裂缝的形成机理,西南交通大学学报,2003,38(3),304-308
    17敖星,周志刚,李强,水泥混凝土板与不同基层界面特性对比研究,公路与汽运,2004,102,39-41
    18任伟,胡新民,李世秋,路面基层对水泥混凝土面板约束状况与开裂探析,混凝土,2005,192,91-94
    19谈至明,姚祖康,层间约束引起的双层水泥混凝土路面板的温度应力,交通运输工程学报,2001,1(1),25-28
    20周乾,冯坚,时勇,层间作用对水泥混凝土路面温度应力的影响分析,西部交通科技,2006(9),29-32
    21胡保颂,混凝土路面板与基层的层间处理,甘肃科技,2006,22 (4),153-154
    22李建强,吴永进,张建刚.水泥混凝土路面抗冲击性试验研究.中外公路2007,2(1)65-69
    23刘银生,杨东援,刚性路面有限元分析新见解,中南公路工程,1999,24(4),10-12
    24赵炜诚,许志鸿,黄文,混凝土面层与贫混凝土基层的层间作用对荷载应力和弯沉的影响,中国公路学报,2003,16(4),9-15
    25董开亮,覃峰,基于ANSYS的水泥混凝土路面层间作用分析,黑龙江交通科技,2007,155(1),19-21
    26 [26]余文成,包惠明.基于ANSYS的水泥混凝土路面可靠性分析.中外公路2007,4(2)40-43
    27杨斌,混凝土路面几何因素对应力的影响分析,公路,2002,(3),25-28
    28 [28]谈至明,刘伯莹,唐伯明,水泥混凝土路面断板的原因分析,公路,2005,(12),63-68
    29李德明,水泥路面防裂断方法,河南科技,2006,(2),48
    30曹志良,水泥砼路面横向断裂的探讨,青海交通科技,2006,(5),30-31
    31席晓波,水泥混凝土路面切缝机理研究,西安,西安公路交通大学,2000
    32吴国雄,易志坚,何兆益,水泥混凝土路面开裂过程研究,公路,2001,(10),141-143
    33卜华中,水泥混凝土路面开裂探讨,工程技术,2004,(9),54-55
    34石玥茹,水泥混凝土路面早期断裂成因及防治措施,甘肃科技,2006,22(1),136-138
    35谭斌,陈茂海,造成水泥混凝土路面断裂的原因及防治措施,黑龙江交通科技,2006,(2),34-35
    36 Huang YH. , Pavement analysis of rigid pavements with pumping , Purdue University,West Lafayette,Ind,1993
    37 Markow MJ.,Brademeyer BD.,EAROMAR version 2,final Technical report,Report FHWA/RD-82/086,Federal Highway Administeration Washington DC,1984
    38 Hansen BC etc.,Field effects of water pumping beneath concrete pavement slabs,Journal of Transportation Engineer,1991,117(3),34-40
    39周文献,水泥混凝土路面脱空与压浆处治研究综述,公路,2004,12 (12) ,194-198
    40雷丽君,水泥混凝土路面板脱空评定及压浆技术研究[A硕士论文],长安大学,2002
    41潘艳珠,王端宜等,水泥混凝土路面板底脱空的原因及防治措施,广州大学学报,2006,5(1),71-73
    42贾玉,陈星光等,水泥混凝土路面的板底脱空及其影响分析,现代交通科技,2006,3(1),12-14
    43黄建有,水泥硅路面板底脱空的治理方法及质量控制,广西交通科技,2003,1(6),44-46
    44曹才勇,陈湘亮,水泥混凝土路面板的脱空判别方法探讨,湖南交通科技,2006,32(4),60-61
    45韩西,陈上均等,砼路面板脱空检测方法综述,重庆交通学院学报,2006,25(4),74-76
    46潘名伟,水泥混凝土路面脱空识别技术研究[A硕士论文],郑州大学,2007
    47许锋,基于FWD检测的水泥混凝土路面结构性能指标建立综述,湖南交通科技,2004,32(2),25-26
    48邱丽章,王端宜,水泥混凝土路面脱空及其检测方法,中南公路工程,2007,32(3),106-108
    49 Missouri Department of Transportation,Void Detection with the Falling Weight Deflectometer,MoDOT,2004
    50赵军,唐伯明,谈至明,基于弯沉指数的水泥混凝土路面板角脱空识别,同济大学学报,2006,34(3),335-338,
    51赵军,谈至明,水泥混凝土路面板角弯沉的测点偏移影响及修正,公路交通科技,2007,124(18),16-18,
    52赵军,谈至明,刘伯莹,水泥混凝土路面板中弯沉的温度梯度影响修正,同济大学学报,2007,35(5),617-620,
    53赵军,谈至明,唐伯明.水泥混凝土路面板角脱空的检测评定.公路交通科技(应用技术版),2007,(11):19-23.
    54林有贵,凌桂芳,周书林等,水泥混凝土路面板底脱空检测方法研究,公路交通科技,2005,22(4),20-22,
    55彭永恒,刚性路面板振动理论及声振法地基脱空识别研究,哈尔滨,哈尔滨工业大学,2006
    56李修忠,常付生,陈亚莉,地质雷达在高速公路建设中的应用,河南交通科技,1999,19(4),22 - 26
    57郭云开,王礼尧,赵建三等,探地雷达在高等级公路工程质量无损检测中的应用研究,华东公路,2002,(1),55– 57
    58唐伯明,刚性路面板脱空状况的评定与分析-落锤式弯沉仪(FWD)应用研究,中国公路学报,1992,5(1),40-44
    59郑国梁,王端宜,路面雷达在水泥路面脱空检测中的应用探讨,科学技术与工程,2007,7(13),3191-3193
    60陶向华,探地雷达(GPR)在路面工程质量检测中的应用,郑州工业大学学报,2001,22 (4),63-66
    61孙朝云,现代道路交通测试技术原理与应用,北京,人民交通出版社,2000
    62王陶,王钊,弹性层状地基板模量反演的进化方法,武汉大学学报(工学版),2003,36(2),66 - 69
    63张洪华,应用FWD测定土基回弹模量的研究,中国公路学报,1994,(增1),9-13
    64薛忠军,王端宜,张肖宁,水泥混凝土路面不同脱空检测方法识别率的对比验证,公路,2007,1(1),90-93
    65王静,曲肖龙.曲率模态法在水泥混凝土路面板脱空检测中的应用.公路交通科技2007, 127(10): 35-37.
    66 JTGF30 - 2003,公路水泥混凝土路面施工技术规范,北京,人民交通出版社,2003
    67田波,李志明,吴青峰等,水泥混凝土路面脱空的检测及对策,华东公路,2002,(01),58-62
    68黄立葵,张学群,旧水泥混凝土路面板底灌浆技术研究,中南公路工程,2005,30(4),145-146
    69黎曼海,灌浆技术处治旧水泥混凝土路面应用探讨,山西建筑,2007,33(20),154-155
    70夏玉军,赵进,灌浆技术在水泥混凝土路面板施工中的应用,科技咨询导报,2007,(17),33
    71黎剑雄,孙晖,水泥混凝土路面灌浆材料研究,广东土木与建筑,2006,(03),61-63
    72赵茂才,刘德海,范长春,王文利,刚性路面板下脱空的封堵治理,森林工程,2000,(05),48-50
    73梁乃兴,陈忠明,注浆用水泥浆体性能研究,建筑材料学报,2000,3 (3),275-278
    74梁乃兴,陈忠明,灌注水泥浆体加固公路路基性能研究,重庆交通学院学报,2000 ,19 (3) ,54-57
    75电力工业部华东勘测设计院科学研究所,化学灌浆技术,北京,水利电力出版社,1984
    76钟世云,刘应刁,王培铭,聚合物改性特种水泥灌浆料的性能,建筑材料学报,2004,7(1),102-108
    77尚云龙,用水泥乳化沥青灌浆材料治理板底脱空,黑龙江交通科技,2007,160(6),1-2
    78孙巍,水泥混凝土路面板下封堵的新型灌浆材料,黑龙江交通科技,2006,(08),11
    79易进来,基于FWD的旧水泥砼路面板灌浆技术研究,公路与汽运,2005,(2),47-49
    80刘树军,水泥混凝土路面板下脱空及处治技术,黑龙江交通科技,2007,(4),15-17
    81吕永雄,透地雷达检测水泥混凝土路面脱空灌浆加固效果,西部探矿工程,2005,(10),27-28
    82夏玉军赵进,灌浆技术在水泥混凝土路面板施工中的应用,工程技术,2007,17,33
    83黄立葵,张学群,旧水泥混凝土路面板底灌浆技术研究,中南公路工程,2005,30(4),145-146
    84孙巍,寒区水泥混凝土路面接缝材料的研究[A硕士论文],东北林业大学,2004
    85李彩华,水泥混凝土路面填缝材料的应用研究,交通科技,2003,199(4),57-59
    86初宏,水泥混凝土路面填缝材料的分类及施工工艺,内蒙古公路与运输,2003,(5),4-5
    87余新民,周建中,水泥混凝土路面接缝养护的工程实践与技术研究,华东公路,1999,(5),7-10
    88马广亮,潘虎,李传涛,浅谈水泥混凝土路面接缝施工质量控制,江苏建材,2006,(2),29-31
    89王德兴,李德仁,曲淑萍,橡胶嵌缝条在水泥混凝土路面接缝中的应用,黑龙江交通科技,2001,(3),27-29
    90张君,李恒,凌云等,RTCS型路用填缝胶在工程上的应用,黑龙江交通科技,2003,(8)
    91孟维平,于德隆,PV聚氨酯密封胶在高寒地区水泥混凝土路面的应用,森林工程,2004,20(9),61-62
    92贾俊文,刘福生,李玉龙,新型水泥混凝土路面接缝密封材料,黑龙江交通科技,2004,(4),35-36
    93吴卓科,YN—砼路面非焦油聚氨酯填缝胶的应用,山西交通科技,2005,(5),32-33
    94寿崇琦,张志良,邢希学,水泥混凝土路面填缝材料的研究,公路,2005,(2),113-115
    95寿崇琦,康杰芬,尚盼,一种淘汰焦油型聚氨酯的新型耐老化填缝胶的研究,公路,2006,(10),181-183
    96寿崇琦,康杰分,邢希学等,耐老化聚硫橡胶型水泥混凝土路面填缝胶的研究,公路交通科技,2006,23(7),47-49
    97孙巍,水泥混凝土路面填缝料的选用原则,黑龙江交通科技,2006,151(9),21-23
    98陈宏坡,李立寒,郭玉军,水泥混凝土路面填缝材料若干性能的试验研究,建筑机械技术与管理,2005,(9),92-95
    99寿崇琦,尚盼,康杰分等,水泥混凝土路面填缝材料的抗疲劳老化性能研究,公路,2007,(6),172-174
    100寿崇琦,尚盼,宋南京,康杰分,娄嵩,徐文超.水泥混凝土公路填缝材料的耐久性研究.山东交通科技. 2007,(4):32-35
    101崇琦,尚盼,康杰分,宋南京,娄嵩,徐文超.水泥混凝土路面填缝材料的抗疲劳老化性能研究. 2006(6)172-174
    102黄志坚.水泥混凝土路面填缝材料的合理选用.建材技术与应用.2007(9): 34-35.
    103谈俊卿,卢海筠.水泥混凝土路面填缝材料拉伸变形力学分析.华东公路. 2007,165(3): 33-35
    104胡明霞.水泥混凝土路面填缝材料的研究与应用.山西建筑. 2008,11(4).
    105陈国虞,长江中游桥墩防撞,航海科技动态,1995,(3),14 - 18
    106 Henrik G.,Dan O.,Ship collision analysis,Procs of the International Symposium on Advances in Ship Collision Analysis,Copenhagen,Published by AA Balkema,1998,41 - 52
    107王朝军,陈传尧,章建军等,桥墩防护装置数值模拟分析,国外桥梁,2001,(4),72-75
    108杨渡军,桥梁的防撞保护系统及其设计.北京,人民交通出版社,1990
    109 Larsen OD.,陈守荣,张乃华译,Ship Collision with Bridges,广东虎门技术咨询公司,1995
    110 JTJ021-89,公路桥涵设计通用规范,北京,人民交通出版社,1989
    111铁路工程技术规范,北京,人民铁道出版社,1975
    112项海帆,范立础,王君杰,船撞桥设计理论的现状与需进一步研究的问题,同济大学学报,2002,30(4),386-392
    113梁文娟,陈增高.船舶碰撞力和能量吸收.交通部上海船舶运输科学研究所学报,1992,(2)
    114鲁鄂,桥墩受船队撞击的强度核算,武汉造船,1997,115(4),9-12
    115杨家祥,梁文娟,赵华,桥墩碰撞力的计算,交通部上海船舶运输科学研究所学报,1994,17(2),23-29
    116朱厚勤,郑际嘉,刘土光,单层与双层舷侧结构承碰能力比较川,华中理工大学学报,1996,24(增刊),75-78
    117彭凯,肖盛燮,桥梁下部结构与外物碰撞的力学模型模拟,重庆交通学院学报,1999,18(4),138-141
    118梁文娟,金允龙,陈高增,船舶碰撞力计算及桥墩防撞,中国公路学会桥梁和结构工程学会2000年桥梁学术讨论会论文集,2000,842-847
    119肖盛燮,彭凯,蔡汝哲,周开发,船只/桥梁多柔体系统碰撞问题求解的Lagrange方程,重庆交通学院学报,2001,20(11),7-11
    120林建筑,郑振飞,卓卫东,泉州后诸大桥船撞力试验研究,中国公路学报,2003,(2),57-59
    121杨世殊,范众斌,靠船桩船舶撞击力的计算,湖南交通科技,2003,29(2),90-91
    122戴彤宇,桥梁船撞力实用计算方法,黑龙江交通科技,2003,26(1),1-3
    123吴澎,公路桥梁的通航净空和船撞力标准,中国土木工程学会第九界年会,2000
    124吴晶,船舶-桥梁碰撞计算研究进展,广东交通职业技术学院学报,2004,4(12),60-64
    125刘建成,顾永宁.基于整船整桥模型的船桥碰撞数值仿真.工程力学,2003,(5)
    126刘建成,顾永宁,等.桥墩在船桥碰撞中的响应及损伤分析.公路,2002,(10)
    127程翔云等,连续悬索桥受横桥向船撞力的分析,公路,2002,3(3),57-60
    128李孝平,船舶撞击作用下双柱式桩墩计算,铁道标准设计,1999,(2),22-24
    129高家铺,董国祥,李向群,船闸防撞装置撞击载荷计算及试验研究,船舶力学,1999,(10),34-39
    130姜河蓉,船和桥墩防撞装置碰撞仿真模拟研究[A硕士论文],武汉理工大学,2003
    131张巍,严少波,张文明,陈峰,张海龙.薄壁桥墩防撞浮箱的设计与仿真. 2007,30(2): 38-41.
    132潘溜溜,金允龙,姜金辉.船撞桥概率分析.上海船舶运输科学研究所学报. 2007,30 (12): 105-108
    133蔡敏,张飞帆.船舶撞击桥梁后的结构损伤分析.浙江水利水电专科学校学报. 2007,19(12).
    134耿波,王君杰,汪宏,范立础.桥梁船撞风险评估系统总体研究.土木工程学报. 2007,40(5).
    135王康,易幼平,关于抗撞桥墩设计与计算问题,河北工业大学学报,1997,(4),37-44
    136张进,船舶撞击桥梁下部结构问题的研究[A硕士论文],武汉理工大学,2003
    137张耀宏,顾金钧编译,名港中央大桥桥墩防撞结构的设计,国外桥梁,1999,(1),61-65
    138陈国虞,防御船撞桥的桥墩防撞装置,航海技术,2001,(1),23-24
    139陈国虞,倪步友,水中桩柱中港绳柔性冲击吸能器试验研究,交通部上海船舶运输科学研究所学报,1995,18(2),11-18
    140曾克俭,桥墩防撞设施研究及其应用综述,中南公路工程,1996,(4),40-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700