用户名: 密码: 验证码:
竖向及水平增强体对粉土动力特性影响的试验及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性桩复合地基及加筋土复合地基在工程中应用广泛,很多情况下会受到各种各样的动荷载作用,对于它们动力特性的认识,目前的研究还远远落后于工程的需要。本文选用太原地区粉土,对水泥土增强体复合粉土、灰土增强体复合粉土、水泥砂浆增强体复合粉土及加筋粉土进行动三轴试验,通过与纯粉土的对比,研究竖向及水平增强体对土体动力特性的影响,着重探讨了不同因素对动弹模量等动力参数的影响规律,并给出了各影响因素下主要动力参数的推荐值及预测公式。本课题的研究有助于加深对复合地基动力性能的认识,并可为本地区的地震安全性评价及抗震设计提供借鉴和参考。
     主要研究成果归纳如下:
     1.水泥土增强体复合粉土、灰土增强体复合粉土以及水泥砂浆增强体复合粉土的动应力-应变关系曲线都具有双曲线特性,动应力-应变关系的变化规律与应变幅值相关;达到相同动应变所需的动应力随增强体刚度、增强体置换率、围压、干密度的增加而提高,随含水量的增加而降低。
     2.上述3种不同增强体复合粉土的动弹模量E d均随动应变幅值的增加而降低;在相同的动应变水平下,随增强体刚度、围压、置换率、干密度的增加而提高,随含水量的增加而降低;在小应变时,围压、置换率、干密度、含水量对动弹模量的影响较显著。
     3.增强体的设置使土体的最大动弹模量E dmax明显提高。上述3种不同增强体复合粉土的最大动弹模量E dmax随增强体刚度的增大而增大。在置换率、围压、干密度及含水量四个影响因素当中,当其它三个因素水平相同时,各增强体复合土的E dmax均随置换率的增加而增大,随围压的增加而增大,随干密度的增大而增大,随含水量的增加而降低。
     4.在E dmax的各影响因素中,对水泥砂浆增强体复合土而言,增强体设置对E dmax的影响最大;置换率的影响随围压的增加而降低,且置换率对水泥土增强体复合土的影响最大,对水泥砂浆增强体复合土的影响最小;围压的影响随置换率的增加而减小,低置换率下围压的影响随增强体刚度不同而不同;随着置换率的提高,围压对不同增强体复合土的影响逐渐趋于一致。
     5.水泥土增强体复合粉土、灰土增强体复合粉土、水泥砂浆增强体复合粉土的Ed / Edmax ~εd曲线按不同的增强体置换率有序排列,试验点较为集中地分布在各自狭窄的带宽内,说明归一化后复合试样对围压、干密度、含水量的依赖性相对降低,但增强体置换率的影响仍很明显。此外,不同置换率下Ed / Edmax ~εd归一化曲线有随着置换率的增加而向下方移动的趋势,表明随着置换率的提高,复合土体塑性变形能力提高,抵抗动荷载的能力增强。
     6.鉴于Ed / Edmax ~εd(或Gd / Gdmax ~γd)和E dmax(或Gd max)在地基动力分析中的重要性,在大量室内试验结果的基础上,给出水泥土增强体复合粉土、灰土增强体复合粉土、水泥砂浆增强体复合粉土归一化曲线Ed / Edmax ~εd的推荐值及回归公式,同时给出不同置换率、不同围压、不同干密度、不同含水量情况下三种不同增强体复合粉土最大动弹模量E dmax预测公式,可作为地区性资料供工程人员参考和选用。
     7.建立了由纯粉土的E dmax推算不同竖向增强体复合土在不同置换率、不同围压、不同干密度、不同含水量情况下E dmax值的计算公式,由此可利用普通土在常规状态下的试验结果推算不同影响因素及水平下、3种不同增强体复合土的E dmax值。
     8.对加筋土的研究表明,加筋材料、加筋层数、围压、土体的干密度对加筋土的动应力-应变关系、动弹模量、最大动弹模量都会产生影响,只有四者相互匹配时,才会有最好的加筋效果;加筋粉土动弹模量比E d / Edmax ~εd归一化后较为集中地分布在一个比较狭窄的带宽内,说明加筋粉土的动弹模量比对加筋材料、加筋层数、围压和干密度的依赖程度相对降低。
     9. 3种竖向增强体复合粉土的阻尼比λ~γd关系曲线均可分为三个阶段:平缓期,急升段,再次平缓期,三者最大的区别在于阻尼比急升段出现时所对应的动剪应变幅值不同。加筋粉土的λ~γd曲线不存在显著的急升段,其上升段较为缓和。
     10.竖向增强体或水平向增强体的设置都会使土体抵抗动荷载的能力增强,土体的动力性能得到提高。较高围压时,竖向增强体对土体动力性能的提高作用比水平向增强体的强;而较低围压时,水平向增强体对土体动力性能的提高作用与低置换率下的竖向增强体作用相似。
     11.利用本次试验分析结果建立了基于Ramberg-Osgood模型的竖向增强体复合粉土的动本构模型。
Flexible pile composite foundation and lateral reinforced soil are widely used in geotechnique engineering. In many conditions, they may bear varied dynamic load, but the knowledge of their dynamic characters is far behind the need of engineering. Using the silt gathered in Taiyuan, dynamic triaxial experiments are conducted on composite samples with vertical reinforcement, such as cement–soil reinforcement, lime–soil reinforcement, or cement mortar reinforcement, and composite samples with horizontal reinforcement, such as fibers. By comparison with pure silt soil, the influences of vertical reinforcement or horizontal reinforcement are studied. The influence regularities of different factors on dynamic parameters, such as dynamic elastic modulus, etc., are discussed. The averaging curves, recommended values and empirical formulas of major dynamic parameters under different factors are presented. This is benefit to acknowledge the dynamic property of composite silt with different reinforcements. These data will be valuable to engineering practices in Taiyuan area.
     The main works and achievements are concluded as follows:
     1. For composite silt with cement–soil reinforcement, lime–soil reinforcement, or cement mortar reinforcement, the relationship of dynamic stressσd versus dynamic strainεd is nearly hyperbola. The relationship ofσd andεd depends on the level of dynamic strain. It needs more dynamic stress to get a certain dynamic strain when reinforcement rigidity, replacement ratio, confining pressure, or dry density has an increment, or moisture content has a decrement.
     2. The dynamic elastic modulus E d of 3 kinds of composite sample mentioned above decrease with dynamic strain increasing. At the same strain level, theEd increases as confining pressure, replacement ratio, or dry density increasing, and it decreases as moisture content decreasing. When dynamic strain is small, the influence of confining pressure, replacement ratio, dry density or moisture content on E d is more obviously.
     3. The maximum dynamic elastic modulusEdmax of composite silt are much higher than that of pure silt due to reinforcement. TheEdmax of 3 kinds of composite samples mentioned above is bigger when there is an increment of the reinforcement rigidity. To these four factors, reinforcement replacement, confining pressure, dry density, and moisture content, when the other three factors are in same level, the E dmax is becoming bigger when there is an increment of replacement ratio, confining pressure, dry density, or moisture content.
     4. For the composite silt with cement-soil reinforcement, the reinforcement rigidity proposes the greatest influence on E dmax among the influence factors. The influence of replacement ratio decreases as confining pressure increasing, and proposes the greatest influence upon the composite samples with cement–soil reinforcement but the smallest influence upon those with cement mortar reinforcement. The influence of confining pressure decreases as replacement ratio increasing, and the degree of such influence varies with different reinforcement at lower replacement ratio. However, with the increasing of replacement ratio, the influences of confining pressure upon different composite samples will drop down to a same level.
     5. The E d / Edmax -εd curves for all 3 kinds of composite samples mentioned above appear in order according reinforcement replacement ratio, and experimental points concentrate relatively within respective narrow areas. This phenomenon indicates that the dependence of Ed / Edmax on confining pressure, dry density, and moisture content decrease, but the influence of replacement ratio on Ed / Edmax is still significant. Moreover, curves of Ed / Edmax moving down with replacement ratio increasing shows that the plastic deformation capability and dynamic resistance capability of composite samples will improved with replacement ratio increasing.
     6. In view of the importance of E d / Edmax -εd curves (or Gd / Gdmax ~γd curves ) and E dmax( Gd max)in dynamic analysis, the averaging curves, recommended values and regressing formulas E d / Edmax -εd for the 3 kinds of composite samples mentioned above are put forward basing on a large number of experiment data. The empirical formulas of E dmax, for composite silt with different reinforcement under different replacement ratio, confining pressure, initial dry density, and initial moisture content, are also provided. These can be used as reference in the practice.
     7. The inference formulas of E dmax from pure silt to composite silt under different influence factors, such as replacement ratio, confining pressure, initial dry density, and initial moisture content, are set up. Then the experiment results of ordinary silts (pure soil) can be used to predict E dmax of composite silt with different reinforcements under various influence factors.
     8. For silt with fibers,σd ~εd curves, dynamic modulus E d, and the maximum dynamic elastic modulus E dmax are influenced by fiber material, numbers of fiber layer, confining pressure, and dry density. It will get the best effect only when these factors match well. The E d / Edmax -εd curves of silt with fibers concentrate relatively within a narrow areas, which indicates the dependence of Ed / Edmax on fiber material, numbers of fiber layer, confining pressure, and dry density decreases.
     9. Theλ~γd curves of 3 kinds of composite sample with vertical reinforcement mentioned above have three stages: gentle stage, steep rise stage, second gentle stage. The main distinction is that the steep rise stage appears at different dynamic shear strain for the 3 vertically reinforced composite soils. Theλ~γd curves of silt with fibers have not steep rise stage, the rise stage is slow.
     10. The dynamic ability of silt can be improved by vertical reinforcement or horizontal reinforcement. Under higher confining pressure, the effect of vertical reinforcement is more than horizontal reinforcement; under lower confining pressure, the effect of horizontal reinforcement is similar to the vertical reinforcement with low reinforcement replacement ratio.
     11. A dynamic constitutive relation of composite soil with vertical reinforcement is established based on Ranberg-Osgood model by experiment analysis.
引文
[1] GB/JGJ 79-2002,《建筑地基处理技术规范》[S].北京:中国建筑工业出版社,2002.
    [2]刘松玉,钱国超,章定文编著.粉喷桩复合地基理论与工程应用[M].北京:中国建筑工业出版社,2006.
    [3]龚晓南.复合地基发展概况及其在高层建筑中的应用[J].土木工程学报,1999,32(6):3-10.
    [4]龚晓南.复合地基理论及工程应用[M].北京:中国建筑工业出版社,2002:4~5.
    [5]贺建清.石灰改良土路基填料的动力特性及应用研究[D].湖南:中南大学,2005.
    [6]张晨明,董秀竹,郭莹等.波浪荷载作用下砂土变形特性的模拟试验研究[J].地震工程与工程振动,2005,25 (2):155-159.
    [7]刘保健,谢定义.随机荷载下土动力特性测试分析法[M].北京:人民交通出版社,2001.
    [8]吴世明,徐攸在.土动力学现状与发展[J].岩土工程学报,1998,20(3):125-131.
    [9]叶书麟.地基处理[M].北京:中国建筑工业出版社,1988.
    [10]地基处理手册编写委员会.地基处理手册[M].北京:中国建筑工业出版社,1988.
    [11]何广讷.振冲碎石桩复合地基[M].北京:人民交通出版社,2001.
    [12]许明军,方磊,姜在国.碎石桩处理液化地基抗液化研究现状及存在问题[J].防灾减灾工程学报,2003,23(3):99-103.
    [13] Duncan J M, Chang C Y. Nonlinear of stress and strain in soils [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1970 (SM5): 576-589.
    [14] Vucetic M, Dobry R. Effect of soil plasticity on cyclic response [J]. Journal of Geotechnical Engineering, ASCE, 1991, 117(1): 89-107.
    [15] Ghayamghamian M R, Kawakami H. On-site nonlinear hysteresis curves and dynamic soil properties [J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 2000, 126(6): 543-555.
    [16] Janbu N. Soil compressibility as determined by oedometer and triaxial tests[C]. Proceedings of European Conference on Soil Mechanics and Foundation Engineering, 1963, 19-25.
    [17]何培玲.粉喷桩复合地基的抗震性能[J].建筑技术,2006,37(3):175-177.
    [18]章定文,刘松玉.水泥土桩复合地基动力研究进展[J].地震工程与工程振动,2006,26(2):149-155.
    [19]雷胜友.现代加筋土理论与技术[M].北京:人民交通出版社,2006.
    [20]梁旭.水泥搅拌桩复合地基动力特性及其与上部结构动力作用研究[D].浙江:浙江大学,2003.
    [21] Saxena S K, et al. Dynamic moduli and damping rations of cemented sands at low strains [J]. Canadian Geotechnical Journal, 1998, (25): 353-368.
    [22] Chiang Y C, Chae Y S. Dynamic properties of cement treated soil [R]. National Academy of Sciences, Highway Research Record, 1972, 379:39-51.
    [23] Fahoum K, Aggour M S, Amini F. Dynamic prosperity of cohesive soils treated with lime [J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 1996, 122(5): 383-389.
    [24] Sauer E K, Weimer N F. Deformation of lime modified clay after freeze-thaw [J]. Transportation Engineering Journal, 1978, 104(2): 201-212.
    [25] Bhattacharya P G. Fatigue test set-up for lime soil mixtures [J]. Journal of the Institution of Engineering, Part VI: Civil Engineering Division, 1987, 68(3):130-135.
    [26] Akoto B K, Singh G. Behavior of lime-stabilized laterite under repeated loading [J]. Australian Road Research, 1986, 16(4): 259-267.
    [27]陈善民,王立忠,李挺等.水泥土动力特性室内试验及复合地基抗震特性分析[J].浙江大学学报(工学版),2000,34(4):398-403.
    [28]杨广庆.水泥改良土的动力特性试验研究[J].岩石力学与工程学报,2003,22(7): 1156-1160.
    [29]贺建清,曾娟.循环荷载作用下低掺量水泥土试样变形性状试验研究[J].工程地质学报, 2006,15(5):661-666.
    [30]蔡袁强,梁旭,李坤.水泥土-土复合试样的动力特性[J].水利学报,2003,(10):19-25.
    [31]侯永峰,张航,周建等.循环荷载作用下水泥复合土变形性状试验研究[J].岩土工程学报, 2001,23(3):288-291.
    [32]侯永峰,耿化军.循环荷载作用下水泥复合土孔压性状试验研究[J].工业建筑,2002,32(9):37-40.
    [33]白顺果,侯永峰,张鸿儒.循环荷载作用下水泥土复合地基的临界循环应力比和永久变形分析[J].岩土工程学报,2006,28(1):84-87.
    [34]李海晓,龚晓南,林楠.复合地基的地震动力反应分析[J].工业建筑,2001,31(6):43-45.
    [35]潘晓东,徐长节,蔡袁强.水泥搅拌桩加固坝基动力响应分析[J].振动工程学报,2001,14(3):359-363.
    [36]王立忠,柯瀚,陈云敏等.地震荷载作用下水泥土搅拌桩的动力响应[J].振动工程学报,1998,11(4):416-423.
    [37] Weisemann. Effectiveness of a rein forcing geogred in a railway subbase under dynamic loads [J]. Geotestiles and Geomembranes, 1994, (13): 91-99.
    [38] Maher. Dynamic response of sand reinforced with randomly distributed fibers [J]. Journal of Geotechnical Engineering, 1990, 116(7): 1116-1131.
    [39]张小江,周克骥,周景星.纤维加筋土的动力特性试验研究[J].岩土工程学报,1998,20(3):45-49.
    [40]杨果林,李海深,王永和.加筋土挡墙动力特性模型试验与动力分析[J].土木工程学报,2003,36(6):105-110.
    [41]李海深,杨果林,邹银生.加筋土挡土墙动力特性分析[J].中国公路学报,2004,17(2):28-31.
    [42]《岩土工程手册》编写委员会.《岩土工程手册》[M].北京:中国建筑工业出版社,1994.
    [43] Sangrey D A, Henkel D J, Esrig M I. The effective stress response of a saturated clay soil to repeated loading [J]. Canadian Geotechnical Journal, 1969 (6): 241-252.
    [44] France J W, Sangrey D A. Effects of drainage in repeated loading of clays [J]. Journal Geotechnical Engineering, ASCE, 1977, 103(7): 769-785.
    [45] Stewart H E. Permanent strain from cyclic variable-amplitude loadings [J]. Journal Geotechnical Engineering, ASCE, 1986, 112(6): 653.
    [46] Ishihara K, Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads [J]. Soil and Foundations, JSSMFE, 1983, 23(4): 11-26.
    [47] Towhata I, Ishihara K. Undrained strength of sand undergoing cyclic rotation of principal stress axes [J]. Soil and Foundations, JSSMFE, 1985, 25(2): 135-147.
    [48]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展.河海大学学报,1999,27(1):6-15
    [49]齐文浩,薄景.土层地震反应等效线性化方法综述[J].世界地震工程,2007,23(4):221-226.
    [50]齐吉琳,马巍,孙崇绍等.张掖地区季节冻土场地上的地震动效应[J].岩石力学与工程学报,2005,24(12):2082-2088.
    [51] Assimaki D, Kausel E, Whittle A. Model for dynamic shear modulus and damping for granular soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(10): 859-869.
    [52] Kagawa T. Moduli and damping factors of soft marine clays [J]. Journal of Geotechnical Engineering, ASCE, 1992, 118(9): 1360-1375.
    [53] Teachavorasinskun S, Thongchim P, Lukkunappasit P. Shear modulus and damping ratio of a clay during undrained cyclic loading [J]. Geotechnique, 2001, 51(5): 467-470.
    [54] Lanzo G, Vucetic M, Doroudian M. Reduction of shear modulus at small strains in simple shear [J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 1997, 123(11): 1035-1042.
    [55] M O Al-Hunaidi, et al. Shear moduli and damping in frozen and unfrozen clay by resonant column tests [J]. Canadian Geotechnical Journal, 1996, (33): 510-514.
    [56] Hardin B O, Black W L. Vibration modulus of normally consolidated clay: design equations and curves [J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1968, 94(2): 353-369.
    [57] Hardin B O, Black W L. Closure to Vibration modulus of normally consolidated clay: design equations and curves [J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1969, 95(6): 1531-1537.
    [58] Seed H B, Idriss I M. Soil modulus and damping factors for dynamic response analyses [R]. EERC Report, 1970, No.70-10.
    [59] Hardin B O, Drnevich V P. Shear modulus and damping ratio in soil: design equations and curves [J]. Journal of the Soil Mechanics and Foundations Engineering Division, ASCE, 1972, 98(7): 667-692.
    [60] Hardin B O, Drnevich V P. Shear modulus and damping ratio in soil: design measurement and parameter effects [J]. Journal of the Soil Mechanics and Foundations Engineering Division, ASCE,1972, 98(6): 603-624.
    [61]Martin P P, Seed H B. One dimensional dynamic ground response analysis[J]. Journal of Geotechnical Engineering, ASCE, 1982, 108(7): 935-954.
    [62] Zen K. and Higuchi Y. Prediction of vibratory shear modulus and damping ratio for cohesive soils [C]. Proc. 8th WCEE, San Francisco, 1984, (3): 23-30.
    [63] Vucetic M, Lanzo G, Doroudian M. Damping at small strains in cyclic simple shear test [J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 1998, 124(7): 585-593.
    [64]河海大学,钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:水利水电出版社,1996:510.
    [65]陈颖平,黄博,陈云敏.循环荷载作用下结构性软粘土的变形和强度特性[J].岩土工程学报,2005,27(9):1065-1071.
    [66]熊伟,尚守平,刘方成等.动荷载作用下饱和砂土动剪切模量试验研究[J].地震工程与工程振动,2007,27(6):176-180.
    [67]杨永杰,宋扬,楚俊.循环荷载作用下煤岩强度及变形特征试验研究[J].岩石力学与工程学报,2007,26(1):201-205.
    [68]刘建锋,谢和平,徐进等.循环荷载作用下岩石阻尼特性的试验研究[J].岩石力学与工程学报,2008,27(4):712-717.
    [69]孙静,袁晓铭.土的动模量和阻尼比研究述评[J].世界地震工程,2003,19(1):88-95.
    [70]张茹,李洪,费文平等.室内土动力测试研究进展[J].水利水电科技进展,2005,25(2):62-66.
    [71]刘小生,汪闻韶,常亚屏等.地基土动力特性测试中的若干问题[J].水利学报,2005,36(11):1298-1306.
    [72]石兆吉,丰万玲.土壤动压缩模量共振柱法测定[J].岩土工程学报,1985,7(6):25-32.
    [73]阮元成.坝体原状土的动剪切模量.第三届全国土动力学学术会议[C].上海:同济大学出版社,1990:165-168.
    [74]阮元成,陈宁,刘小生.覆盖层土体最大动剪模量室内外试验比较分析[J].水利学报,2005,36(4):496-500.
    [75]徐存森,吴俊壁.用扭转单剪、共振柱仪测定空心试样土的动剪切模量[J].大坝观测与土工测试,1992,16(2):37-43.
    [76]何昌荣.周期荷载作用下的模量阻尼特性[J].应用基础与工程科学学报,1995,3(2): 113-119.
    [77]何昌荣.动模量和阻尼的动三轴试验研究[J].岩土工程学报,1997,19(2):39-48.
    [78]袁晓铭,孙锐,孙静等.常规土类动剪切模量比和阻尼比试验研究[J].地震工程与工程振动,2000,20(4):133-139.
    [79]孙静,袁晓铭,孙锐.土动剪切模量和阻尼比的推荐值和规范值的合理性比较[J].地震工程与工程振动,2004,24(2):125-133.
    [80]袁晓铭,孙静.非等向固结下砂土最大动剪切模量增长模式及Hardin公式修正.岩土工程学报, 2005, 27(3): 264-269.
    [81]郭莹,栾茂田,董秀竹等.不同应力条件下砂土动模量特性的试验对比研究[J].水利学报,2003,(5):41-45.
    [82]齐剑峰,栾茂田,杨庆等.饱和黏土动剪切模量与阻尼比的试验研究[J].岩土工程学报, 2008,30(4):518-523.
    [83]尚守平,卢华喜,任慧等.动荷载作用下土阻尼比的试验对比研究[J].地震工程与工程振动,2006,26(2):161-165.
    [84]尚守平,卢华喜.动剪模量和阻尼比的循环单剪试验研究[J].工程勘察,2006,(4):1-3.
    [85]尚守平,卢华喜,任慧.粉质粘土动剪切模量的试验对比研究[J].岩土工程学报,2006,28(3):410-414.
    [86]刘江平,罗银河,张英德.黏土动、静弹性模量相关性试验研究[J].岩石力学与工程学报,2007,26(2):427-432.
    [87]陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动,1995,15(1):73-84.
    [88]陈国兴,朱定华,何启智. DSZ-1型动三轴试验机研制与性能试验[J].地震工程与工程振动,2002,22(6):71-75.
    [89]陈国兴,刘雪珠,朱定华等.南京新近沉积土动剪切模量比与阻尼比的试验研究[J].岩土工程学报,2006,28(8):1023-1027.
    [90]徐春华,徐学燕,邱明国等.循环荷载下冻土的动阻尼比试验研究[J].哈尔滨建筑大学学报,2002,35(6):22-25.
    [91]徐春华,徐学燕,耿永常等.振动荷载作用下冻土结构弱化机理研究[J].哈尔滨工业大学学报,2003,35(12):1429-1431.
    [92]吕悦军,唐荣余,沙海军.渤海海底土类动剪切模量比和阻尼比试验研究[J].防灾减灾工程学报,2003,23(2):35-42.
    [93]胡庆兴,刘雪珠,从卫民等.淮安市典型土动力特性的试验研究[J].地震工程与工程振动, 2003,23(6):144-148.
    [94]马德翠,单红仙,周其健.黄河三角洲粉质土的动模量和阻尼比试验研究[J].工程地质学报,2005,13 (3):353-360.
    [95]王丽霞,胡庆立,凌贤长等.青藏铁路重塑冻结粉质黏土动剪切模量试验研究[J].地震工程与工程振动,2007,27(2):177-180.
    [96]骆亚生,田堪良.非饱和黄土的动剪模量与阻尼比[J].水利学报,2005,36(7):830-834.
    [97]周健,池毓蔚,Th.Triantafyllidis等.垃圾土室内动力试验研究.岩土力学,1999,20(4):1-5.
    [98]陈云敏,柯瀚,凌道盛.城市垃圾填埋体的动力特性及地震响应[J].土木工程学报,2002,35(3):66-72.
    [99]冯世进,陈云敏,孔宪京等.城市固体废弃物动力特性试验研究[J].岩土工程学报, 2005,27(7):750-754.
    [100]陈云敏,冯世进,孔宪京等.城市固体废弃物的动力特性及参数确定[J].土木工程学报, 2006,39(5):90-95.
    [101]冯世进,高广运,陈云敏等.城市固体废弃物的动强度试验研究[J].岩石力学与工程学报,2007,26(3):560-566.
    [102]朱向荣,方鹏飞,李云飞等. EPS动力特性试验研究.岩土工程学报,2005,27(11): 1253-1256.
    [103]贺建清,阳军生,靳明.循环荷载作用下掺土煤矸石力学性状试验研究[J].岩石力学与工程学报,2008,27(1):199-205.
    [104]张茹,何昌荣,费文平等.固结应力比对土样动强度和动孔压发展规律的影响[J].岩土工程学报,2006,28(1):101-105.
    [105]蒋通,邢海灵.围压对土动剪模量和阻尼比影响的简化计算方法[J].岩石力学与工程学报,2007,26(7):1432-1437.
    [106]包承纲,詹良通.非饱和土性状及其与工程问题的联系[J].岩土工程学报,2006,28(2):129-136.
    [1] GB/T 50123-1999,土工试验方法标准[S].北京:中国计划出版社,1999.
    [2]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [3]吴世明.土动力学[M].北京:中国建筑工业出版社,2000.
    [4]彭社琴,赵其华,黄润秋.成都黏土动三轴试验研究[J].地质灾害与环境保护,2002,13(1): 57-60.
    [5] GB/T 50269-97,地基动力特性测试规范[S].北京:中国计划出版社,1998.
    [1]蔡袁强,梁旭,李坤.水泥土-土复合试样的动力特性[J].水利学报,2003,(10):19-25.
    [2]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [3]徐学燕,仲丛利.冻土的动力特性研究及其参数确定[J].岩土工程学报,1998,20(5):77-81
    [4]冯世进,陈云敏,孔宪京等.城市固体废弃物动力特性试验研究[J].岩土工程学报, 2005,27(7):750-754.
    [1]郑大同,王惠昌.循环荷载作用下土的非线性应力应变模型[J].岩土工程学报,1983,5(1):65-76
    [2]蔡袁强,柳伟,徐长节等.基于修正Iwan模型的软黏土动应力-应变关系研究[J].岩土工程学报,2007,29(9):1314-1319.
    [3]陈学良,金星,陶夏新,韦永祥.考虑试验阻尼效应的一种土体动力双型抛物线本构模型[J].岩土力学,2008,29(8):2102-2110.
    [4]王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的粘弹塑性模型[J].岩土工程学报,1980,2(3):10-20
    [5]李小军,廖振鹏.土应力应变关系的粘-弹-塑模型[J].地震工程与工程振动,1989,9(3):65-72.
    [6]迟世春,宋振河.土的量化记忆模型及其参数确定[J].岩土力学,2004,25(1):77-81.
    [7]李亮,杜修力,赵成刚等.饱和砂土弹塑性动力本构模型研究[J].岩石力学与工程学报, 2005,24(18):3380-3385.
    [8]庄海洋,陈国兴,朱定华.土体动力粘塑性记忆型嵌套面本构模型及其验证[J].岩土工程学报,2006,28(10):1267-1272.
    [9]蓝航,姚建国,张华兴,徐乃忠.基于FLAC3D的节理岩体采动损伤本构模型的开发及应用[J].岩石力学与工程学报,2008,27(3):572-579.
    [10]迟世春,郭晓霞,杨峻,林皋.土的动力Hardin-Drnevich模型小应变特性及其阈值应变研究[J].岩土工程学报,2008,30(2):243-249.
    [11]齐吉琳,马巍,孙崇绍等.张掖地区季节冻土场地上的地震动效应[J].岩石力学与工程学报,2005,24(12):2082-2088.
    [12]陈善民,王立忠,李挺等.水泥土动力特性室内试验及复合地基抗震特性分析[J].浙江大学学报(工学版),2000,34(4):398-403.
    [13]栾茂田.土动力非线性分析中的变参数Rqmberg-Osgood本构模型[J].地震工程与工程振动,1992,12(2):69-77.
    [14] Masing G. Eigenspannungen and verfestigung beim mssing proceeding[C]. Second International Congress of Applied Mechanics,1926:332-335.
    [15]李小军,廖振鹏,张克绪.考虑阻尼拟合的动态骨架曲线函数式[J].地震工程与工程振动,1994,14(1):30-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700