地道形状与通风时间对地道风降温的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着采暖空调建筑的迅速增加,我国的采暖空调能耗急剧上升,提高能源的利用效率和节能减排已成为当今主题。由于地道风降温系统简单,节省能源和投资,响应了我国的能源发展战略,所以地道风的应用前景是很广泛的。长期以来,研究的地道通风大都采用天然或者人工地道,势必忽略一些因素对地道通风降温效果的影响。为使新建地道能充分利用地道周围土壤冷量,达到良好的降温效果,本文试图从地道形状和通风时间两方面对地道通风降温效果的影响来探寻优化新建地道设计的方法。
     本文在讲述了地道风降温技术在国内外研究现状的基础上,列举了各种不同地层土壤材料的热物性参数,并对地层土壤的热物性参数进行了讨论。然后,根据已知条件得出地层土壤内部的温度计算公式,并根据该计算公式,阐述了地层土壤内部温度波的变化特性,即温度波的延迟与衰减。另外,本文分析了夏季室外空气在地道中的冷却过程,建立了数学模型,给出边界条件,最后给出模型的计算方法。
     本文主要工作是:建立壁面和空气之间传热数学模型,在一定的边界条件下,利用FLUENT软件对空气和地道换热过程进行动态模拟分析。在模拟计算中,主要分析不同的地道形状与不同的间歇通风时间对地道通风降温效果的影响,得出不同条件下空气经地道换热后的空气终温,并对其进行分析后,得出结论。其一:相同截面面积的方管地道和圆管地道对空气降温效果相差不大,所以工程上采用容易得到的圆管。而相同截面面积的双圆管地道对空气降温效果明显优于单圆管,大约能多提供40%的冷量。其二:间歇通风的降温效果明显优于连续通风,在满足用户室内温湿度要求的情况下,尽量减少通风时间。
     本文通过分析湘北地区村镇住宅地道通风设计中地道形状和通风时间对降温效果的影响得出的结论,为湘北村镇住宅及类似地区建筑的地道通风优化提供了设计方法。对于目前湘北村镇住宅及类似地区建筑地道通风设计在没有具体规范指导的情况下,本文的研究成果对湘北村镇住宅及类似地区建筑地道通风设计具有一定的指导意义。
In recent years,because the buildings containing heating and cooling systems have been developing rapidly in our country,the heating and cooling energy consumption of buildings is rising fast. What we need to do right now is to save energy,improve energy efficiency and reduce pollution. Since the system of air through tunnel is simple, to save energy and investment, just responding to the energy development strategy of China,the prospect of air through tunnel is vast. In the past, the research of air through tunnel mainly were focused on natural or artificial tunnel and it is inevitable to ignore some factors on the effect of the air cooling in the system of air through tunnel. In orde to take full advantage of cooling in the surrounding soil of the new tunnel and get a good cooling effect, this paper attempts to explore the method which optimizes the new tunnel on the effect of the air cooling from the shape of underground tunnels and ventilation time.
     On the basis of analyzing the research status about the technology of air cooling in underground tunnels at home and abroad, on the basis of analyzing comprehensive impact on soil temperature, different thermo-physical parameters of different kinds of soil are listed. Then, the mathematic model of soil temperature is established, according to the known conditions. Based on the mathematic model,we can get the formula of soil temperature .According to this formula,the characteristics which is the attenuation and delay action of soil temperature are discussed. Secondly the cooling procedure that outdoor air flow through underground tunnelis analyzed. The mathe–matic model of soil temperature is established and boundary conditions, the model calculation are given .
     The major mission of this paper is following: mathematical model about heat transfer between air and soil is founded.And then program to simulate heat—transfer process under some certain boundary conditions. Numerical simulmion about the coupled heat transfer between airflow andtunnel is carried out with FLUENT software,and the cooling effect of underground tunnel is analyzed.In the simulation calculation, this paper give the analys is about effect of the air cooling from the shape of underground tunnels and ventilation time at two sides.and calculate air temperature under different conditions after heat exchange with soil.Finally we can draw conclusions after analyze it.Firstly, the effect of the air cooling of the same cross-sectional area of the square tube tunnels and tube tunnels is more or less the same,so we regularly use readily available pipe. The double-tube tunnel is better than single tube with the same cross-sectional area on the effect of the air cooling,which can provide about 40% cooling capacity excessively. Secondly, intermittent ventilation is better than continuous ventilation on the effect of the air cooling obviously,it is necessary to minimize ventilation time in the case of meeting the requirements of indoor temperature and humidityuse of users.
     In this paper, we can draw conclusions after analyzing the effect of the air cooling from the shape of underground tunnels and ventilation time,and we get the optimize design method for rural residence in North Hunan and the similar regions.For the situation that there is no specific standard to applied to guide the construction of air through tunnel,the research results in this paper can be applied to instruct the practice of the air through tunnel in the residential building for rural residence in North Hunan and the similar regions.
引文
[1]周北驹.发展新能源和可再生能源对可持续发展战略具有重大现实意义.中国能源,1997(3): 16-18
    [2]朱俊生.国内外新能源和可再生能源发展现状.节能与环保,2001(4): 33-35
    [3]赵朝晖,吴会军,朱冬生.可再生能源在空调制冷中的应用.制冷,2003,22(4): 40-42
    [4]罗志文.可再生能源在暖通空调中的应用分析.供热制冷, 2005(5): 47-51
    [5]马龙珍,薛凯喜.地道风降(升)温技术在西北地区的应用研究.建筑与工程, 2008(15): 428-429
    [6]金久圻.崇文地下影剧院地道风降温效果测定小结.暖通空调,1985(1): 42-46
    [7]北京市建筑设计院一室.地道风防暑降温测定调查.建筑技术,1974(5): 25-30
    [8]魏庆娥,李惠风.地道风用于影剧院降温通风的研究.建筑热能通风空调, 1984(4): 17-23
    [9]房庆生.浅谈纺织厂空气调节使用地道风降温的工艺要求及节能效果.生产实践,26-28
    [10]张亚立,关文吉,沙玉兰.敦煌市博物馆自然通风系统方案设计.暖通空调,2007,37(10):98-102
    [11]林其静,苏志军.北大附小教学楼地道通风及诱导通风设计.全国暖通空调制冷2004年学术年会
    [12]季亮,谭洪卫.空调系统应用地道风的节能评价.全国暖通空调制冷2008年学术年会
    [13]张锡虎.地道风降温的热工计算.暖通空调,1981(4): 5-11
    [14]牟灵泉.地道风降温计算与应用.北京:中国建筑工业出版社,1982,1-56,168-172
    [15]张建明,戎卫国.地道风换热在典型年冬季运行工况的研究.节能,2008(2): 49-51
    [16]曹宝山.触地围护结构传热问题的分析研究.天津城市建设学院学报, 1994(4): 7-24
    [17]忻尚杰.空气经地下风道凝湿冷却的降温动态模拟.地下空间,1989,9(1): 44-51
    [18]刘军,姚杨,王清勤.地下建筑围护结构传热的模拟与分析.全国暖通空调制冷2004年学术文集.兰州: 2004,155-157
    [19]忻尚杰.朱培根.浅层地下建筑围护结构传热模拟的一种新方法.暖通空调,1997,27卷增刊: 15-19
    [20]忻尚杰,王国杰,茅靳丰.测定地下建筑围护结构热特性的新方法.解放军理工大学学报,2000,1(4): 64-68
    [21]李永安,戎卫国,牟灵泉.基于地道风的空气源热泵性能研究.低温建筑技术, 2003(1): 56-57
    [22]朱培根.地下建筑风冷热泵空调系统的仿真与优化研究: [东南大学博士学位论文].南京:东南大学,2002,8-13,24-47
    [23]王琴,程宝义,缪小平等.浅埋工程围护结构全年动态传热计算.建筑节能, 2007,35(1): 24-28
    [24]王琴,程宝义,缪小平.三维非稳态耦合传热问题的数值方法研究.第四届全国制冷空调新技术研讨会论文集.南京: 2006,682-686
    [25]王琴,程宝义,缪小平.基于PHOENICS的地下工程岩土耦合传热动态模拟.建筑热能通风空调,2005,24(4): 19-24
    [26]夏春海,周翔,欧阳沁,朱颖心.地道通风系统的数值模拟与分析.太阳能学报,2006,27(9): 923-928
    [27]吴会军,朱冬生,张立志,孙加龙.土壤-空气换热系统流动与供冷性能的计算模拟.太阳能学报,2006,27(1): 78-82
    [28]吴会军,朱冬生,孙加龙.土壤-空气换热系统传热的数值模拟.华南理工大学学报,2004,32(11): 24-27
    [29]周翔,欧阳沁.地道风降温技术的数值模拟和应用研究.全国暖通空调制冷2004年学术年会资料摘要集(2).兰州: 2004,88-90
    [30]王丹宁.空气经地道降温的动态模拟与分析: [哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学,2002,1-35
    [31] Goch D.C, Pattrson H.S. The heat flow inti tunnels. Journal of the chemica -lmetallurgical and mining society of South Africa, 1940, 41(3): l17-128
    [32] Torrance B, Minish G.S. Heat exchanger data. Journal of the mine ventilation society of South Africa, 1962, 15(7): 129-138
    [33] Starfield A.M. Tables for the flow of heat into a rock tunnel with different surface heat transfer coefficients. Journal of the South Africa institute of mining and metallurgy, 1966, 66(12): 692-694
    [34] D.Y.Goswami, K.M.Biseli. Use of Underground Air Tunnels for Heating and Cooling, 1993: 1-4
    [35] Mihalakakou G, Santamouris M, Asinakopoulos D. Parameric prediction of the buried pipes cooling potential for passive cooling applicationsSolar Energy,1995, 55(3): 163-173
    [36]陈滨,孙鹏.利用土壤能的地下埋管新风系统的研究现状及展望.暖通空调, 2004,36(6): 28-31
    [37] Mei Viung C. Heat transfer of buried pipe for heat pump. Journal of Solar Energy Engineering, 1991, 113: 51-55
    [38] Mihalakakou. Parametric prediction of the buried pipes cooling potential for passive cooling application. Solar Energy, 1995, 55(3): 163-173
    [39] Sagnier P, Verant J. On the validation of high enthalpy wind tunnel simulations. Aerospace Science and Technology, 1998, 2(7): 405-437
    [40] Gribrikov z.S, Korobov V.A, Mitin V.V. The tunnel diode as a thyristor emitter. Solid-State Electronics, 1998, 42(9): 1761-1763
    [41] Squire L.C. A reviews of the role of some small high. peed wind tunnels in Aeronutical research. Progress in Aerospace Scinces, 1998, 34(3-4): 106-107
    [42] Boulard T, Wang S. Mean and turbulent air flows and microclimatic patterns in an empty greenhouse tunnel. Agricultural and Forest Meteorology, 2000, 100(2-3): 169-181
    [43] Miyamura Kazuo, Hirukawa Shuichi, Gohshi Yohichi. Difference in the Tunnel Current-Tunnel Gap Width Dependence of Molecule-Adsorbed and Non-Adsorbed. Spectrochimica Acta Part B: Atomic Spectroscopy, 1999, 54(1): 163-166
    [44] Von Glehn F H. Bluhm S J. Practical aspects of the ventilation of high. speed developing tunnels in hot working environments. Tunneling and Underground Space Technology, 2000, 15(4): 471-475
    [45] Wittwer Adrian R, Moiler Sergio V. Characteristics of the low-speed wind tunnel of the UNNE. Journal of Wind Engineering and Industrial Aerodynamic, 2000, 84(3): 307-320
    [46] Loredo-Souza A M, Davenport A G. A novei approach for wind tunnel modeling of transmission lines. Journal of Wind Engineering and Industrial Aerodynamic, 2001, 89(11-12): 1017-1029
    [47] Bosniakov S. Experience in integrating CFD to the technology of testing models in wind tunnel. Progress in Aerospace Sciences, 1998, 34(7-8): 391-422
    [48]黄瑞农.环境土壤学.高等教育出版社,1987,1-45
    [49]严健汉,詹慈著.环境土壤学.武汉:华中师范大学出版社,1985,1-50
    [50]中国土壤系统分类研究丛书会.中国土壤系统分类进展.北京:科学出版社, 1993,354-360
    [51]胡汉华,吴超,李茂楠.地下工程通风与空调.长沙:中南大学出版社,2005,1-38
    [52]郑爱平.地道风应用分析与计算.新能源,2000(7): 23-27
    [53]王琳.基于地道风的空气源热泵夏季运行特性研究: [山东建筑大学硕士学位论文].山东:山东建筑大学,2008,71-78,81-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700